PSPACE

Polynomial Hierarchy

http://ovid.cs.depaul.edu/documents/phcom.pdf

Completeness in the Polynomial-Time Hierarchy A Compendium*

Marcus Schaefer
School of CTI
DePaul University
243 S. Wabash Avenue
Chicago, Illinois 60604, USA
schaefer@cs.depaul.edu

Christopher Umans
Computer Science Department
Caltech
1200 East California Boulevard
Pasadena, CA 91125
uumans@cs.caltech.edu

October 5, 2008

Abstract

We present a Garey/Johnson-style list of problems known to be complete for the second and higher levels of the polynomial-time Hierarchy (polynomial hierarchy, or **PH** for short). We also include the best-known hardness of approximation results. The list will be updated as necessary.

A General Theory of Motion Planning Complexity: Characterizing Which Gadgets Make Games Hard

Erik D. Demaine*

Dylan H. Hendrickson*

Jayson Lynch*

https://arXiv.org/abs/1812.03592

Abstract

We build a general theory for characterizing the computational complexity of motion planning of robot(s) through a graph of "gadgets", where each gadget has its own state defining a set of allowed traversals which in turn modify the gadget's state. We study two families of such

	1-Player Game	2-Player Game	Team Game
Polynomially Bounded (DAG)	NL vs. NP-complete: full characterization [§5]	P vs. PSPACE- complete: full characterization [§6]	P vs. NEXPTIME: full characterization [§7]
Polynomially Unbounded (reversible, deterministic gadgets)	NL vs. PSPACE- complete: full characterization [§2] Planar: equivalent [§2.3]	P vs. EXPTIME- complete: partial characterization [§3]	P vs. RE-complete $(\Rightarrow Undecidable)$: partial characterization [§4]

Everything Simulates Everything

[Demaine, Grosof, Lynch, Rudoy 2018]

Crossover Gadget

[Demaine, Grosof, Lynch, Rudoy 2018]

4-Spinners are PSPACE-hard

[Demaine, Grosof, Lynch, Rudoy 2018]

3D PushPull-1F is PSPACE-hard

[Demaine, Grosof, Lynch 2017]

(a) 2-Toggle in state A. The arrows indicate the transition to state B.

(b) 2-Toggle in state *B*.

Tilt Assembly is PSPACE-hard

[Balanza-Martinez, Caballero, Cantu, Garcia, Luchsinger, Reyes, Schweller, Wylie 2019]

Crossing 2-toggle