
6.891 Computer Vision and Applications 1

Problem Set 2
Assigned: 03/04/2004

Due: 03/11/2004

Please submit an electronic copy of your writeup and code for each problem
to 6.891-submit@ai.mit.edu.

Problem 1 Implement and Evaluate the DoG detector

Background Reading

Read the reference paper, ”Distinctive Image Features from Scale-Invariant
Keypoints” by David Lowe. To understand how the DOG detector works,
you should read at least Sections 3 and 4. The remaining sections talk about
the SIFT descriptor and applications to object recognition. You don’t have
to implement ”Accurate Keypoint Localization”, the first part of Section 4,
although you should read about and understand it.

(a) The Difference-of-Gaussian is a function of what variables? Explain
what they are, don’t just state their names.

(b) What trick is used to speed up scale selection in this paper?

(c) Suppose you are given σcur, or the current scale of the image. Derive
an expression for σ∆, or the width of the Gaussian with which the
image must be blurred to obtain the next scale sub-level in an octave.
The expression should be in terms of σcur and k, the constant factor
separating the scale sub-levels.

Hint: Use the Gaussian semi-group property:

g(σ2
1) ∗ g(σ2

2) = g(σ2
1 + σ2

2)

where g(σ) is a two-dimensional Gaussian with covariance σI2.

Implementation

Implement the following functions in MATLAB. You should use the opti-
mized parameters given in the paper, namely, use an initial blurring pa-
rameter InitSigma = 1.6, scale resolution Scales = 3 intervals per octave,

6.891 Computer Vision and Applications 2

Difference-of-Gaussian peak threshold PeakThresh = 0.03 and eigenvalue ra-
tio threshold R = 10.

function [InitSigma, Scales, PeakThresh, R] = get dog params

Returns the constant parameters as described above. Call this function from
inside the other functions to get the parameter values.

function Points = compute dog points(Image)

This is the main detector function. It should detect and display keypoints
in the input image Image. First, double the image size and blur it to obtain
the initial spatial resolution of InitSigma. You can assume that the doubled
image already has blurring equivalent to σ = 1.0. Then, use the following
functions as subroutines to search for the interest points. Finally, display the
points on the image, using the provided function draw sigma to show a circle
with width proportional to the scale of the detected point. Points should
be an N ×3 matrix with the rows corresponding to the detected points (row,
column and scale). Note, duplicate points that are detected within 1/2 a
pixel of an existing point should be discarded.

function [P, nextOctave] = process octave(Octave, octSize)

This function forms the sub-levels of the given octave and creates the dif-
ference images, or the Difference-of-Gaussian function. Octave is the first
sub-level of the current octave, while octSize is the size of the octave rela-
tive to the original image. For example, in the first octave, the octSize is
0.5 because the image was doubled. You should use the octSize parameter
to scale the points to the size of the original image. The function returns all
the detected points (P) and the first level of the next octave (subsampled by
2.)

function P = find dog peaks(DoG, octSize)

Search over all given scales and locations in the DoG for one octave, checking
if each point value is above a threshold. You must also check that the point
is a local extremum and not an edge as discussed below. Return the detected
points, P . Don’t look too close to the border (minimum 5 samples) to avoid
unstable points. Also, divide the PeakThresh parameter by Scales, since
more closely spaced scale samples produce smaller DoG values. Use the
following to functions as subroutines two find dog peaks:

function bool = is local extremum(N)

6.891 Computer Vision and Applications 3

This function returns true if the given location is a local extremum at the
given scale in a 3×3×3 neighborhood of the point (see the paper for details.)
You should try to make this check efficient.

function A = not an edge(DoG, row, col, R)

Returns true if the eigenvalue ratio of the Hessian matrix for the given lo-
cation and scale of the DoG is above the threshold R. To compute the 2× 2
Hessian, use point differences computed around the 3 × 3 neighborhood of
the given point.

function Im = blurGauss(Im, sigma)

Returns the image after convolving it with a Gaussian kernel of width (stan-
dard deviation) sigma. You should use the mkGaussian and rconv2 functions
from the matlabPyrTools package. The Gaussian kernel should be truncated
at 4 sigmas from the center.

In your submission, please include the m-file for each function named as
[function name]-[last name].m.

Evaluation

You are given a test image einstein.jpg and the images einstein0*.jpg,
which are scaled versions of the first image. Please answer the following
questions.

(a) Run the detector on the test image einstein.jpg with the suggested
parameter values provided above. Change the peak threshold PeakThre

sh to 0.08 and re-run your code on this image. Explain how this pa-
rameter affects the number of detected points. For the remainder of
this problem use PeakThresh = 0.08.

(b) How many points are detected in each of the images? Hand in a print-
out of each image with the keypoints superimposed. Also include in
your writeup the point location and scale in table format of each point
detected in the original image einstein.jpg.

(c) How many of the points detected in the original image are still detected
in the scaled images at the correct location and scale, i.e. what is the
repeatability rate? Plot the number of points detected along with the

6.891 Computer Vision and Applications 4

number of correct detections for each test image. On a separate graph,
plot the repeatability rate (# correct / # detected) for each test image
as a function of its scale with respect to the original image.

(d) Examine how the Scales parameter influences repeatability. For Scal
es = 2,3,4,5 plot the resulting repeatability rate across all images on a
single plot. What are your conclusions?

Problem 2 Lukas-Kanade Optical Flow Tracker

Lucas and Kanade’s optical flow technique proposes to solve the brightness
constant constraint equation (BCCE) by assuming constant flow over a patch:(∑

I2
x

∑
IxIy∑

IxIy

∑
I2
y

) (
u
v

)
= −

(∑
IxIt∑
IyIt

)
(1)

Implement a single-iteration Lucas-Kanade tracker. Your function should
have the following syntax:

function[dx, dy] = lucaskanade(I1, I2, xl, yt, xr, yb, wsize)

where I1 and I2 are the iamges, (xl, yt) and (xr, yb) are the top-left and
bottom-right corners of the region where you want the optical flow computed,
and wsize is the size of the squared image patch used to solve equation (1).

Please include the file lucaskanade-[last name].m in your submission.

Test your implemenation using LK-0001.bmp and LK-0002.bmp with different
window sizes: 5, 9, 13, and 17.

(a) For each window size, plot the optical flow for the region (xl, yt);(xr,
yb) = (80,170);(150,220) using the MATLAB function quiver. To
better visualize the flow field (dx,dy), sub-sample it by keeping only
every fifth flow value in both the x and y directions.

(b) Is the estimated optical flow constant over the whole region? Should
the true optical flow differ from your estimate? Why or why not?

(c) Does the window size change the estimated optical flow? Why or why
not?

Hint: To compute the image gradient you should first blur image I1 and
then use the MATLAB function gradient. The temporal gradient can be
approximated by the difference between blurred versions of I1 and I2.

