6.8391

Computer Vision and Applications

Prof. Trevor Darrell

Lecture 8: Multi-view Geometry
— Instantaneous Essential Matrix
— Fundamental Matrix
— Trifocal Tensor

Readings: F&P Ch 10.



Lecture Date Description Readings Assignments Mater

Course Introduction Req: FP 1.1, 2.1, 2.2,
1 2/3  Cameras, Lenses and 2.3, 3.1, 3.2 PSoout
Cenzors
o 2/t Image Filtering 5561 F 7l = T
Image Representations: )
3 2/10 . Feq: FP 7.7, 0.2
il 2/12  Texture Feq: FP 9.1, 9.3, 9.4 PSodue
2717  Monday Classes Held (MO LECTURE)
5 2/19  Color Feq: FP 6.1-6.4 P51 out
& 2f/24 Local Features
7 2/26  Multiview Geometry Feq: FFP 10 P31 due
3 3/2  Multiview Geometry II
g 3/4  Affine Reconstruction FP 12 PS2 out
10 3/9  Projective Reconstruction
11 3/11  Scene Reconstruction P52 due
12 3/16  Project Previews EX1 out
Model-Based Object
13 3/18 Fecognition 5L ce

5’%”}13% Spring Break (NO LECTURE)



[ ast time

Affine Invariant Interest points [Schmid]

Evaluation of interest points and descriptors
[Schmid]

Epipolar geometry and the Essential Matrix



Affine invariant Harris points

* Theory for affine invariant neighborhood
(Lindeberg’94)

ML - /u(XLaz:L)

Isotropic
neighborhoods
related by rotation



Affine invariant Harris points

e Initialization with multi-scale interest points




Evaluation of affine invariant detectors

repeatability — perspective transformation

Fepeatahility of detectors
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Descriptor Evaluation
Viewpoint change (60 degrees)
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Epipolar constraint
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O’ of the two
cameras, and the two images p and p' of P all lie in the same plane.

All epipolar lines contain epipole, the image of other camera center.



The Essential Matrix

Matrix that relates image of point in one
camera to a second camera, given
translation and rotation.

Assumes intrinsic parameters are known.




Today

Instantaneous Essential Matricies
Fundamental Matrix and the 8-point algorithm

Tri-focal tensor
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Example: converging cameras

11

[ Image from Marc Pollefeys; www.cs.unc.edu/~marc/mvg/course11.ppt ]



Example: motion parallel with image plane

e at e’ at
i — ——
infinity infinity
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[ Image from Marc Pollefeys; www.cs.unc.edu/~marc/mvg/course11.ppt ]



Example: forward motion
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[ Image from Marc Pollefeys; www.cs.unc.edu/~marc/mvg/course11.ppt ]




Essential matrix for pure tranlation

o
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Instantaneous Motions

t=0t-v
R=1+6to]
p'=p+ot-p
pT gp, ~0 p= I;j = Velocity Vector
V7
P ' [Vx ](] + ot [a)x ])(p + 0t - p) =0 _ Z _ Translational
VTZ _ Component of Velocity

P ! ([Vx ][Q)X ])p o (p X p )'V — O Zj_ Angular Velocity
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Translating Camera
P ([vJo)p—(px plv=0

=0

(pxp)v=0

p, p,and v are coplanar

Focus of expansion (FOE): Under pure translation, the motion
field at every point in the image points toward the focus of

' 16
expansion



FOE for translating camera

,.‘" h . e




What 1f calibration 1s unknown?

Recall calibration egn:
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Fundamental matrix

Essential matrix for points on normalized image plane,

p EP'=0

assume unknown calibration matrix:

p=Kp

yields:

p'Fp =0| F=KTex'!




Estimating the Fundamental Matrix

p Fp' =0

Each point correspondence can be expressed as a
single linear equation

F, Fi» Fis u
(u,v,1) (F_u Fis Fz:i) (_1_1;) =0
Fao Fse Faz) \ 1,
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Estimating the Fundamental Matrix

p Fp' =0

Each point correspondence can be expressed as a
single linear equation

Fy, F Fis u F
(w,v, 1) Fou  Foo Fos || v | =0 < (wu',wv', u,ve’, o0, v,u', v, 1) | Fas 0

Fy1. Fso Faz/ \ 1,
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Estimating the Fundamental Matrix

How many correspondences are needed to estimate F?

E has 5 independent parameters up to scale.

In principle F has 7 independent parameters up to scale,
and can be estimated from 7 point correspondences.

Direct, sitmpler method uses 8 correspondences....
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The 8 point algorithm

8 corresponding points, 8 equations.

[upw) wiv) w viuy o) owvow) o\ [ Fip (l\l
uoh wovh wn  wouh wvovh wvo  uh v Fis 1
wauh wqvh  wg wvauh wavh vy wh vl Fis 1
wqu!y  wgvy owg owvgu, vy vy u v For | 1
wsut  usvk  ws wvsut  owvsvt vy uwb o ! Fol |1
Uglp UgUk  Ug Uglh Uk vg Up U Foq 1
urut  wrvh  wy wvruk owrvh owr owbo wb || Fay 1

\usug usvy us  vsug vsvg vs uy vy /) \Fi) \1/

Invert and solve for F.

(Use more points if available; find least-squares
solution to minimize  §™(p Fp)? ) 23
=1



The 8 point algorithm
p Fp' =0

1s F (or ‘E) full rank?

No...singular with rank=2.
Has zero eigenvalue corresponding to epipole.

Fle=0
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Improved 8 point algorithm

Enforce rank 2 constraint!

(Also pay attention to numerical conditioning...)

Hartley 1995: use SVD.
1. Transform to centered and scaled coordinates
2. Form least-squares estimate of F

3. Set smallest singular value to zero.
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Normalizing the Input Data

* Directly use the pixel coordinates produces bad
result

« Normalization method is quite necessary

* Isotropic scaling of the input data:
— Points are translated to have their centroid at the origin

— The coordinates are scaled 1sotropically so that the
average distance from the origin to these points 1s equal

—
L
—_—

Zhengyou Zhang 26
Determining the Epipolar Geometry and its Uncertainty: A Review
www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt



Linear Least SOuares

Hartley, 1995

Luone ef al.,

1005

Av. Dist.

2.33 pixels

(.92 pixel

0.=56 pixel

Av, Dist,

2,18 pixels

(.85 pixel

(.50 pixel
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Example of Fundamental Matrix
Estimation with Comparison

Fig. 4. Image pair used for comparing different estimation techniques of the fundamental matrix

Zhengyou Zhang 30
Determining the Epipolar Geometry and its Uncertainty: A Review
www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt



Example of Fundamental Matrix
Estimation with Comparison

* The intrinsic parameters of both cameras and the
displacement between them were computed
offline through stereo calibration. The
fundamental matrix computed from these
parameters serves as a ground truth.

e There are 241 point matches, which are
established automatically.

Zhengyou Zhang 31
Determining the Epipolar Geometry and its Uncertainty: A Review
www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt



Example of Fundamental Matrix
Estimation with Comparison

i
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Fig, &5, Epipolar geometry estimated through classical stereo calibration, which serves as the ground truth

Zhengyou Zhang 32
Determining the Epipolar Geometry and its Uncertainty: A Review
www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt



Example of Fundamental Matrix
Estimation with Comparison

Fig. fi. Epipolar geometry estimated with the linear method

Zhengyou Zhang 33
Determining the Epipolar Geometry and its Uncertainty: A Review
www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt



Example of Fundamental Matrix
Estimation with Comparison

*&H‘

Fig. ¥, Epipolar geometry estimated with the linear method with prior data normalization

Zhengyou Zhang 34
Determining the Epipolar Geometry and its Uncertainty: A Review
www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt



Example of Fundamental Matrix
Estimation with Comparison

Fig, & Epipolar geometry estimated with the nonlinear method

Zhengyou Zhang 35
Determining the Epipolar Geometry and its Uncertainty: A Review
www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt



Example of Fundamental Matrix
Estimation with Comparison

Fig. 0. Comparison between the Epipolar geometry estimated through classical stereo calibration (shown in Red/Darlk
lines) and that estimated with the nonlinear method (shown in Green /Grey lines)

Zhengyou Zhang 36
Determining the Epipolar Geometry and its Uncertainty: A Review
www.cs.unr.edu/~mircea/Courses/ cs790E/Lectures/zhang2.ppt



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that
satisfies x’TFx=0 for all x—x’

(i) Transpose: if F 1s fundamental matrix for (P,P’),
then F' is fundamental matrix for (P’,P)

(ii) Epipolar lines: I'’=Fx & I=F'x’

(iii) Epipoles: on all epipolar lines, thus ¢’ TFx=0, Vx
=¢’ 'F=0, similarly Fe=0

(iv) F has 7 d.o.f. , 1.e. 3x3-1(homogeneous)-1(rank?2)

(v) F is a projective mapping from a point x to a line
I’=Fx
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Trinocular constraints

Given p’,p’’ 1n left and middle 1image, where
1s p’’ 1n a third view?
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Three essential matrices

Essential matrices relate each pair:

(calibrated case)

— Cn ~  En—




Trinocular epipolar geometry

Trifocal plane _/A//n point transfer:

formed from < Given p2 & p3, pl is
trifocal lines: determined!

(without explicit depth
estimation;
only weak calibration)

40




Three essential matrices

P?glzpz — 0:*
pl Ea3py = 0,
pggfﬂlpl — 0:*

Any two are independent!

Can predict third point from two others.

Point transfer: e.g., solve for p, given p,,p;,.E,,,E5;

41



Trifocal line constraint

Form the plane containing a line / and optical center
of one camera:

42



Trifocal line constraint

3 cameras, 3 plane equations: /L/n
liMl

£ Cl@f l&_‘ M o,
%‘\ Figure 12.6. Three images of a line define it as the intersection of three planes in i

l M same pencil.
3 3

If 3 lines intersect in more than one point (a line) this system

. ] 43
is degenerate and is rank 2.



Trifocal line constraint

Assume calibrated camera coordinates

My = (Id 0)

Mo = (Rz tg)

Mz =(Rg t3)
then liT 0

L= @Rz l;tg
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1l 0
L= lgvzz zgtg

Rank £ =2 means det. of 3x3 minors are zero,
and can be expressed as:

l; Gil,
L, x | 12g2, | =0,
I3 Gl

with ; i ;
gl — tQRBT — 215?
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The trifocal tensor

These 3 3x3 matrices are called the trifocal tensor.
| o |
Gi =t Ry — RLtS
the constraint

121G,
L, x [ 12g2, | =o0,
11git,

can be used for point or line transfer. 46



Trifocal line constraint

line transfer:
1G f l?
ll ~ g

point transfer via lines: form independent pairs of
lines through p2,p3, solve for pl.
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[Line transfer

0,
’M
L

15 Gl
igfzg
l5 Gilg

2
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Uncalibrated case
Iy K4 0
L = l?)cm,z lg}cgtg
I3 KsRs 15 K3ty

def

A&

}CERE}Cl—l a; déf }Cztz

Ml — (]Cl 0)? Mz — (A;JCl (1',2)j

Mz = (A3K1 a3z)

1 0

ra

0 L

~— 1] A
Rank(L) = 2 <= Rank(L (KJ' v ) ) = Rank (E.F{Ag 1T a, ) = 2

l?qv'ﬁl-: l?ﬂ-_*,
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Project

The final project may be
— An original implementation of a new or published idea

— A detailed empirical evaluation of an existing
implementation of one or more methods

— A paper comparing three or more papers not covered in
class, or surveying recent literature in a particular area

A project proposal not longer than two pages must be
submitted and approved by April 1st.
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Project

March 16: Project previews / Brainstorming

3-5 minute presentation of

Specific Project 1dea

Y our recent research, or thesis proposal (if it relates to
Vision)

Paper you are interested in and think may form the basis of
a project

Area you wish to write a survey paper on; list major
papers...
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