6.891

Computer Vision and Applications

Prof. Trevor Darrell

Lecture 8: Multi-view Geometry
— Instantaneous Essential Matrix
— Fundamental Matrix
— Trifocal Tensor

Readings: F&P Ch 10.
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Description Readings Assignments
Course Introduction Req: FP 1.1, 2.1, 2.2,
2f3  Cameras, Lenzes and 2.3,3.1, 3.2 PSoout
Sensors
/5 Image Filtering 8B PP 72 =725
Image Representations: .
2/10 - Req: FP 7.7,9.2
2/12 Texture Req: FP 9.1, 9.3, 9.4 PSodue
2/17 Monday Classes Held (NO LECTURE)
2/19 Color Req: FP 6.1-6.4. PS1out
/24 Local Features
2/26 Multiview Geometry Req: FP 10 PS1due
3/2  Multiview Geometry 1T
34 Affine Reconstruction ~ FP 12 PS2out
3/9  Projective Reconstruction
3/11 Scene Reconstruction PSz2due
3/16  Project Previews EX1 out
Model-Based Qbject
/1% Reconition EEcls
3/23- oo
2/x  Spring Break (NO LECTURE)

Mate:

Last time

Affine Invariant Interest points [Schmid]

Evaluation of interest points and descriptors
[Schmid]

Epipolar geometry and the Essential Matrix

Affine invariant Harris points

* Theory for affine invariant neighborhood
(Lindeberg’94)
M, = p(x,,%,)

My = p(x,Z)
"

1 1
(Mixg)=RM;x,)

Isotropic
neighborhoods
related by rotation 4

Affine invariant Harris points

« Initialization with multi-scale interest points

s .‘
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« Iterative modification of location, scale and neighborhood

Evaluation of affine invariant detectors

repeatability — perspective transformation

Repeatabilty of detectors

" Fara-Afine
o Hortis-AffneRegon

repeatabilty %

r
viewpoint anale °




Descriptor Evaluation
Viewpoint change (60 degrees) Eplp 01 ar ¢ onstraint

. -

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O’ of the two
cameras, and the two images p and p/ of P all lie in the same plane

g
false positve rate w0

Harris-Affine (Harris-Laplace)
All epipolar lines contain epipole, the image of other camera center.

T
The Essential Matrix oday

Matrix that relates image of point in one | ‘ Essential Matrici
camera to a second camera, given nstantaneous Essential Matricies

translation and rotation.
Fundamental Matrix and the 8-point algorithm

Assumes intrinsic parameters are known.

Tri-focal tensor

Example: converging cameras Example: motion parallel with image plane

eat
-
infinity

[ Image from Marc Polefeys; www.cs.unc edu/~marc/mvgicourse11.ppt |

[ Image from Marc Pollefeys; www.cs.unc.edu/~marc/mvgicourse11.ppt |




Example: forward motion

a

LA
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[ Image from Marc Poliefeys; www.cs.unc. edu/~marcimvgicourse11.ppt |

Essential matrix for pure tranlation

o

Instantaneous Motions
t=0t-v

R=1+éo ]
p'=p+dt-p
prgp, -0 p= EZ = Velocity Vector
pT [Vx ](1 + &[wx ])(P + §t : P) = 0 y= 7’;: }_ Translational
Vr: Component of Velocity
pT ([vx ][wx ])p - (p X p)V = O P 72’;}: Angular Velocity

Translating Camera
p'(v.Jo Dp—(px phv=0
o=0

(px p).v= 0

p, b, and v are coplanar

Focus of expansion (FOE): Under pure translation, the motion
field at every point in the image points toward the focus of .
expansion

FOE for translating camera

What if calibration is unknown?

Recall calibration eqn:

" o —acotf  ug
def 2]
p— Kp, where p v and K 0 — v |
| siné
0 0 1




Fundamental matrix

Essential matrix for points on normalized image plane,

AT A
p&p'=0
assume unknown calibration matrix:

yields: pP= Kp

p'Fp'=0| F=KTex'"?
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Estimating the Fundamental Matrix
p Fp' =0

Each point correspondence can be expressed as a
single linear equation

Fu Fo F o
um.u(Fu Py F >(1') 0
Fsi Fn Fis/ \1

Estimating the Fundamental Matrix

p'Fp' =0
Each point correspondence can be expressed as a

single linear equation
(Fi1
Fiy
Fi3

Fi Fp Fi\ (o Fy
(wo, 1) Fu Fu Fu (v | =0 (w/iu,uou, oo, 0/, 1) | Foo | =0
Fy Fn Fs)\1

EEEEE
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Estimating the Fundamental Matrix

How many correspondences are needed to estimate 7?

E has 5 independent parameters up to scale.

In principle ¥ has 7 independent parameters up to scale,
and can be estimated from 7 point correspondences.

Direct, simpler method uses 8 correspondences....

The 8 point algorithm

8 corresponding points, § equations.
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F
Fy
Fy,

Invert and solve for .

(Use more points if available; find least-squares
solution to minimize Z(PiT Fp)? ) "
i=1

The 8 point algorithm
p"Fp' =0

is ¥ (or ‘E) full rank?

No...singular with rank=2.
Has zero eigenvalue corresponding to epipole.

Fle=0




Improved 8 point algorithm

Enforce rank 2 constraint!
(Also pay attention to numerical conditioning...)

Hartley 1995: use SVD.

1. Transform to centered and scaled coordinates
2. Form least-squares estimate of F

3. Set smallest singular value to zero.
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Normalizing the Input Data

+ Directly use the pixel coordinates produces bad
result

* Normalization method is quite necessary
* Isotropic scaling of the input data:
— Points are translated to have their centroid at the origin

— The coordinates are scaled isotropically so that the
average distance from the origin to these points is equal

—_

to 2.

Znengyou Zhang
Determining the Epipolar Geometry and its Uncertainty: A Review
= ‘cST90E/Lectures/zhang?.ppt

(b)

Lincar Least Squares | [Hartley, 1095 Luong ef al., 1093
Av. Dist. 1 2.33 pixcls 0,02 pixcl 056 pixel
Av. Dist. 2 318 pixels 035 pixel .80 pixel
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Example of Fundamental Matrix
Estimation with Comparison

Fig. 4. Image pair used for comparing different estimation techniques of the fundamental matrix

iang 30
Determining the Epipolar Geomelry and its Uncertainty: A Review
790E /Lecturesizhang?2.ppt




Example of Fundamental Matrix
Estimation with Comparison

The intrinsic parameters of both cameras and the
displacement between them were computed
offline through stereo calibration. The
fundamental matrix computed from these
parameters serves as a ground truth.

There are 241 point matches, which are
established automatically.

Zhengyou Zha 31
Determining the Epipolar Geometry and its Uncertainty: A Review

790E/Lecturesizhang2.ppt

Example of Fundamental Matrix
Estimation with Comparison

Fig. 5. Epipolar geometry estimated through classical stereo ca ch serves as the ground truth,

Zhengyou Zhang 32
Determining the Epipolar Geometry and its Uncertainty: A Review
= ‘cST90E/Lectures/zhang?.ppt

Example of Fundamental Matrix
Estimation with Comparison

Fig. 6. Epipolar geometry estimated with the linear method

iang
Determining the Epipolar Geometry and its Uncertainty: A Review
j~mircealCourses) cs790E Lectures/zhang

Example of Fundamental Matrix
Estimation with Comparison

Fig. 7. Epipolar geometry estimated with the linear method with prior data normalization

Znengyou Znang
Determining the Epipolar Geometry and its Uncertainty: A Review
du/~mircea/Courses) cs790E Leclures/zhang2.ppt

Example of Fundamental Matrix
Estimation with Comparison

Zhang 35
Determining the Epipolar Geometry and its Uncertainty: A Review
7¢

/90E Lectures/zhang2.ppt

Example of Fundamental Matrix
Estimation with Comparison

9. Comparison between the Epi
d with the

Fig.
lines) and that

ng 36
Determining the Epipolar Geomelry and ifs Uncertainty: A Review
790E /Lecluresizhang?2.




The fundamental matrix F

F is the unique 3x3 rank 2 matrix that
satisfies X TFx=0 for all x—x'

(i) Transpose: if F is fundamental matrix for (P,P’),
then FT is fundamental matrix for (P”,P)

(i) Epipolar lines: '=Fx & 1=FTx’

(iii) Epipoles: on all epipolar lines, thus ¢’TFx=0, Vx
=¢’TF=0, similarly Fe=0

(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)

(v) F is a projective mapping from a point x to a line
I'=Fx

Trinocular constraints

Given p’,p’’ in left and middle image, where
is p”’ in a third view?

Three essential matrices

Essential matrices relate each pair:
(calibrated case)

— Co~  En—

Trinocular epipolar geometry

point transfer:
Given p2 & p3, pl is
determined!

Trifocal plane
formed from
trifocal lines:

(without explicit depth
estimation;
only weak calibration)

Three essential matrices

pi E12p, =0,
P;<€23p3 = 0-,
pi Ea1py =0,

Any two are independent!
Can predict third point from two others.

Point transfer: e.g., solve for p, given p,,ps.E|,,E3,

Trifocal line constraint

Form the plane containing a line / and optical center
of one camera:




Trifocal line constraint

3 cameras, 3 plane equations:

I;Ml
I%MZ P=0
I3 M3
def liMl
L= l%/\/lz
I3 Mg

If 3 lines intersect in more than one point (a line) this system
is degenerate and is rank 2.

Trifocal line constraint

Assume calibrated camera coordinates

M, =(Id 0)

My =(Ry t2)

M3 =(Rs t3)

then lFIF 0
L= léng 17t

IR, 1l

i 0
L= lgm l;tz
I3Rs l3ts

Rank £ =2 means det. of 3x3 minors are zero,
and can be expressed as:

gl
Lox | g, | =o,

g,

with 3 7 7
Gi =t RY" — Ryt]
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The trifocal tensor

These 3 3x3 matrices are called the trifocal tensor.

Gi = to Ry — Ryt

TGl
x| g, | =0,

LG,

the constraint

can be used for point or line transfer.

Trifocal line constraint

line transfer:
1761,
I ~ lggfl3
l flg

point transfer via lines: form independent pairs of
lines through p2,p3, solve for p1.
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Line transfer




Uncalibrated case

1Tx, 0
L= lg/Cz'Rg 1T Koty
I3 KC3Rs 15 Kty

A R a; Kot

/\/ll:(fcl 0).M2:(A2/Cl az).
M.‘s:(/\sKl 03)

/o N I3 0
! |
Rank(£) — 2 <= Rank(£L (K"l) ‘l‘) )= Rank | 154y Tay | =2
/ T4, Tay
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Project

The final project may be
— An original implementation of a new or published idea
— A detailed empirical evaluation of an existing
implementation of one or more methods
— A paper comparing three or more papers not covered in
class, or surveying recent literature in a particular area
A project proposal not longer than two pages must be
submitted and approved by April 1st.

Project
March 16: Project previews / Brainstorming

3-5 minute presentation of

Specific Project idea

Your recent research, or thesis proposal (if it relates to

vision)

 Paper you are interested in and think may form the basis of
a project

« Area you wish to write a survey paper on; list major

papers...




