6.891

Computer Vision and Applications

Prof. Trevor Darrell

Lecture 8: Multi-view Geometry

- Instantaneous Essential Matrix
- Fundamental Matrix
 Trifocal Tensor

Readings: F&P Ch 10.

Lecture	Date	Description	Readings	Assignments	Mate
1	2/3	Course Introduction Cameras, Lenses and Sensors	Req: FP 1.1, 2.1, 2.2, 2.3, 3.1, 3.2	PS0 out	
2	2/5	Image Filtering	Req: FP 7.1 - 7.6		
3	2/10	Image Representations: pyramids	Req: FP 7.7, 9.2		
4	2/12	Texture	Req: FP 9.1, 9.3, 9.4	PS0 due	
	2/17	Monday Classes Held (NO LECTURE)			
5	2/19	Color	Req: FP 6.1-6.4	PS1 out	
6	2/24	Local Features			
7	2/26	Multiview Geometry	Req: FP 10	PS1 due	
8	3/2	Multiview Geometry II			
9	3/4	Affine Reconstruction	FP 12	PS2 out	
10	3/9	Projective Reconstruction	1		
11	3/11	Scene Reconstruction		PS2 due	
12	3/16	Project Previews		EX1 out	
13	3/18	Model-Based Object Recognition		EX1 due	
	3/23-	Spring Break (NO LECTUR	Ξ)		
				2	

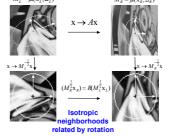
Last time

Affine Invariant Interest points [Schmid]

Evaluation of interest points and descriptors [Schmid]

Epipolar geometry and the Essential Matrix

Affine invariant Harris points • Theory for affine invariant neighborhood (Lindeberg'94)

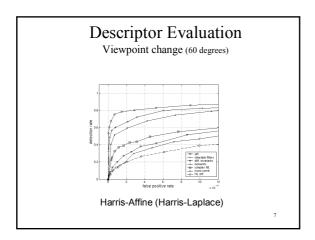


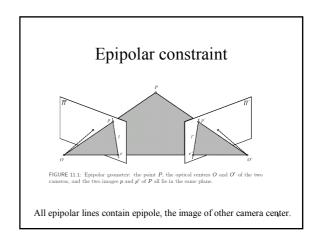
Affine invariant Harris points

· Initialization with multi-scale interest points

Iterative modification of location, scale and neighborhood

Evaluation of affine invariant detectors repeatability - perspective transformation





The Essential Matrix

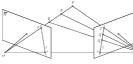
Matrix that relates image of point in one camera to a second camera, given translation and rotation.

Assumes intrinsic parameters are known.

$$p \cdot [t \times (\mathcal{R}p')] = 0$$

$$\varepsilon = [t_x] \Re$$

$$\boldsymbol{p}^T \mathcal{E} \boldsymbol{p}' = 0$$



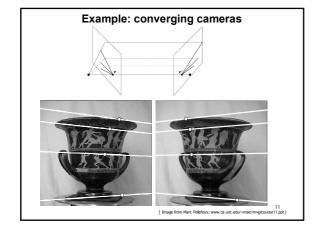
 $\vec{a} \times \vec{b} = [a_x]\vec{b}$

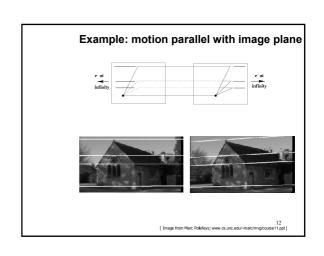
Today

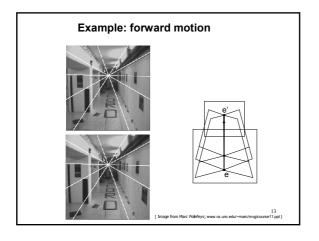
Instantaneous Essential Matricies

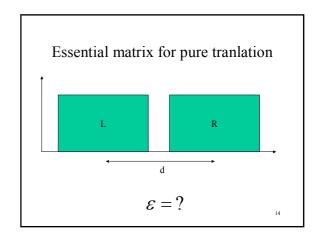
Fundamental Matrix and the 8-point algorithm

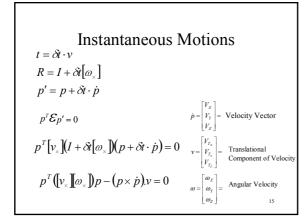
Tri-focal tensor

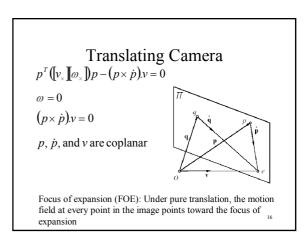


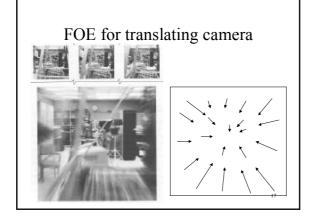


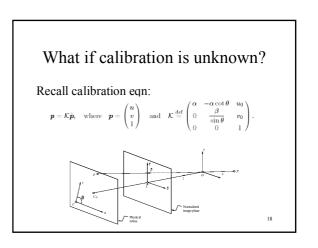












Fundamental matrix

Essential matrix for points on normalized image plane,

$$\hat{p}^T \mathcal{E} \hat{p}' = 0$$

assume unknown calibration matrix:

yields:

$$p = K\hat{p}$$

$$\boxed{oldsymbol{p}^T \mathcal{F} oldsymbol{p}' = 0} \quad \mathcal{F} = \mathcal{K}^{-T} \mathcal{E} \mathcal{K}'^{-1}$$

Estimating the Fundamental Matrix

$$\mathbf{p}^T \mathcal{F} \mathbf{p}' = 0$$

Each point correspondence can be expressed as a single linear equation

$$(u, v, 1)$$
 $\begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix}$
 $\begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$

20

Estimating the Fundamental Matrix

$$\mathbf{p}^T \mathcal{F} \mathbf{p}' = 0$$

Each point correspondence can be expressed as a single linear equation

$$(u,v,1)\begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix}\begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \Leftrightarrow (uu',uv',u,vu',vv',v,u',v',1), \begin{cases} F_{12} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{33} \\ F_{34} \\ F_{35} \\ F$$

21

23

Estimating the Fundamental Matrix

How many correspondences are needed to estimate \mathcal{F} ?

 \pounds has 5 independent parameters up to scale. In principle \digamma has 7 independent parameters up to scale, and can be estimated from 7 point correspondences. Direct, simpler method uses 8 correspondences....

22

The 8 point algorithm

8 corresponding points, 8 equations.

Invert and solve for \mathcal{F} .

(Use more points if available; find least-squares solution to minimize $\sum (p_i^T \mathcal{F} p_i')^2$)

The 8 point algorithm

$$\mathbf{p}^T \mathcal{F} \mathbf{p}' = 0$$

is \mathcal{F} (or \mathcal{E}) full rank?

No...singular with rank=2.

Has zero eigenvalue corresponding to epipole.

$$\mathcal{F}^T e = 0$$

Improved 8 point algorithm

Enforce rank 2 constraint! (Also pay attention to numerical conditioning...)

Hartley 1995: use SVD.

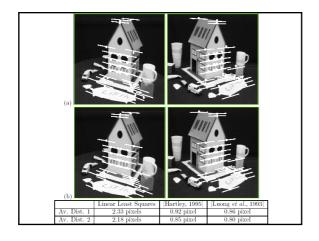
- 1. Transform to centered and scaled coordinates
- 2. Form least-squares estimate of F
- 3. Set smallest singular value to zero.

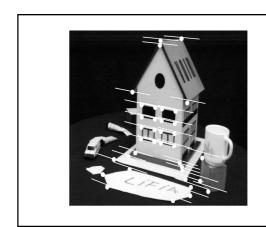
25

Normalizing the Input Data

- Directly use the pixel coordinates produces bad result
- · Normalization method is quite necessary
- Isotropic scaling of the input data:
 - Points are translated to have their centroid at the origin
 - The coordinates are scaled isotropically so that the average distance from the origin to these points is equal to √2.

Zhengyou Zhang
Determining the Epipolar Geometry and its Uncertainty: A Review





28

Example of Fundamental Matrix Estimation with Comparison

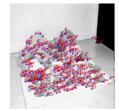


Fig. 4. Image pair used for comparing different estimation techniques of the fundamental matrix

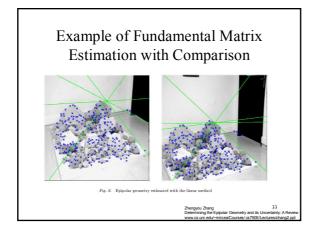
Zhengyou Zhang 30
Determining the Epipolar Geometry and its Uncertainty: A Revi www.cs.unr.edu/~mircea/Courses/cs790E/Lectures/zhang2.pp

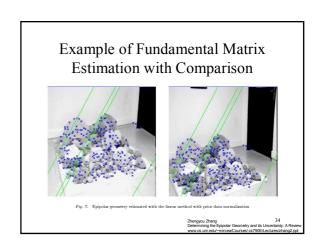
Example of Fundamental Matrix Estimation with Comparison

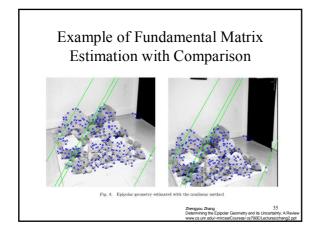
- The intrinsic parameters of both cameras and the displacement between them were computed offline through stereo calibration. The fundamental matrix computed from these parameters serves as a ground truth.
- There are 241 point matches, which are established automatically.

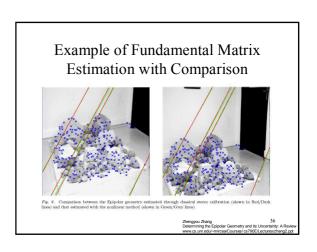
Zhengyou Zhang
Determining the Epipolar Geometry and its Uncertainty: A Review

Example of Fundamental Matrix Estimation with Comparison Fig. 5. Epipolar geometry estimated through classical stereo calibration, which serves as the ground truth American Belgapolar Geometry and its thincetianty, A Reviews Comparison 32 Determining the Epipolar Geometry and its thincetianty A Reviews









The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x'TFx=0 for all x↔x'

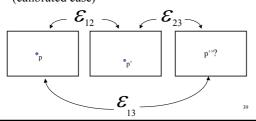
- (i) **Transpose:** if F is fundamental matrix for (P,P'), then FT is fundamental matrix for (P',P)
- (ii) Epipolar lines: l'=Fx & l=F^Tx'
- (iii) Epipoles: on all epipolar lines, thus e'TFx=0, $\forall x$ \Rightarrow e'^TF=0, similarly Fe=0 (iv) F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- (v) F is a projective mapping from a point x to a line

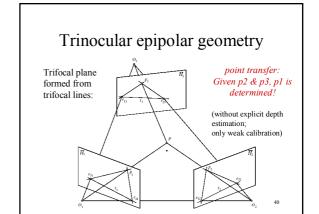
Trinocular constraints

Given p',p'' in left and middle image, where is p" in a third view?

Three essential matrices

Essential matrices relate each pair: (calibrated case)





Three essential matrices

$$\left\{ \begin{array}{l} \boldsymbol{p}_{1}^{T}\mathcal{E}_{12}\boldsymbol{p}_{2}=0,\\ \boldsymbol{p}_{2}^{T}\mathcal{E}_{23}\boldsymbol{p}_{3}=0,\\ \boldsymbol{p}_{3}^{T}\mathcal{E}_{31}\boldsymbol{p}_{1}=0, \end{array} \right.$$

Any two are independent! Can predict third point from two others.

Point transfer: e.g., solve for p_1 given $p_2, p_3, \boldsymbol{E}_{12}, \boldsymbol{E}_{31}$

Trifocal line constraint

Form the plane containing a line l and optical center of one camera:

 $\boldsymbol{l}^T \mathcal{M} \boldsymbol{P} = 0,$

Trifocal line constraint

3 cameras, 3 plane equations:

$$egin{pmatrix} egin{pmatrix} oldsymbol{l}_1^T \mathcal{M}_1 \ oldsymbol{l}_2^T \mathcal{M}_2 \ oldsymbol{l}_3^T \mathcal{M}_3 \end{pmatrix} \ oldsymbol{P} = oldsymbol{0}$$



If 3 lines intersect in more than one point (a line) this system is degenerate and is rank 2.

Trifocal line constraint

Assume calibrated camera coordinates

$$\mathcal{M}_1 = (\operatorname{Id} \quad \mathbf{0})$$

$$\mathcal{M}_2 = (oldsymbol{\mathcal{R}}_2 \quad oldsymbol{t}_2)$$

$$\mathcal{M}_3 = (\mathcal{R}_3 \quad \boldsymbol{t}_3)$$

then

$$\mathcal{L} = egin{pmatrix} oldsymbol{l}_1^T & 0 \ oldsymbol{l}_2^T \mathcal{R}_2 & oldsymbol{l}_2^T oldsymbol{t}_2 \ oldsymbol{l}_3^T \mathcal{R}_3 & oldsymbol{l}_3^T oldsymbol{t}_3 \end{pmatrix}$$

 $\mathcal{L} = egin{pmatrix} oldsymbol{l}_1^T & 0 \ oldsymbol{l}_2^T \mathcal{R}_2 & oldsymbol{l}_2^T oldsymbol{t}_2 \ oldsymbol{l}_3^T \mathcal{R}_3 & oldsymbol{l}_3^T oldsymbol{t}_3 \end{pmatrix}$

Rank $\mathcal{L} = 2$ means det. of 3x3 minors are zero, and can be expressed as:

$$egin{aligned} oldsymbol{l}_1 imes egin{pmatrix} oldsymbol{l}_2^T \mathcal{G}_1^1 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \end{pmatrix} = oldsymbol{0}, \end{aligned}$$

with

$$\mathcal{G}_1^i = oldsymbol{t}_2 oldsymbol{R}_3^{iT} - oldsymbol{R}_2^i oldsymbol{t}_3^T$$

The trifocal tensor

These 3 3x3 matrices are called the trifocal tensor.

$$\mathcal{G}_1^i = oldsymbol{t}_2 oldsymbol{R}_3^{iT} - oldsymbol{R}_2^i oldsymbol{t}_3^T$$

the constraint

$$egin{aligned} oldsymbol{l}_1 imes egin{pmatrix} oldsymbol{l}_2^T \mathcal{G}_1^1 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \ oldsymbol{l}_2^T \mathcal{G}_1^3 oldsymbol{l}_3 \end{pmatrix} = oldsymbol{0}, \end{aligned}$$

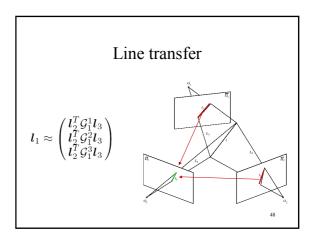
can be used for point or line transfer.

Trifocal line constraint

line transfer:

$$oldsymbol{l} oldsymbol{l}_1pproxegin{pmatrix} oldsymbol{l}_2^T\mathcal{G}_1^1oldsymbol{l}_3\ oldsymbol{l}_2^T\mathcal{G}_1^2oldsymbol{l}_3\ oldsymbol{l}_2^T\mathcal{G}_1^3oldsymbol{l}_3 \end{pmatrix}$$

point transfer via lines: form independent pairs of lines through p2,p3, solve for p1.



Uncalibrated case

$$\begin{split} \mathcal{L} &= \begin{pmatrix} \boldsymbol{l}_1^T \mathcal{K}_1 & 0 \\ \boldsymbol{l}_2^T \mathcal{K}_2 \mathcal{R}_2 & \boldsymbol{l}_2^T \mathcal{K}_2 \boldsymbol{t}_2 \\ \boldsymbol{l}_3^T \mathcal{K}_3 \mathcal{R}_3 & \boldsymbol{l}_3^T \mathcal{K}_3 \boldsymbol{t}_3 \end{pmatrix} \\ A_i &\stackrel{\text{def}}{=} \mathcal{K}_i \mathcal{K}_i \mathcal{K}_1^{-1} & \boldsymbol{a}_i \stackrel{\text{def}}{=} \mathcal{K}_i \boldsymbol{t}_i \\ \mathcal{M}_1 &= (\mathcal{K}_1 \quad \boldsymbol{0}), \, \mathcal{M}_2 = (\mathcal{A}_2 \mathcal{K}_1 \quad \boldsymbol{a}_2), \\ \mathcal{M}_3 &= (\mathcal{A}_3 \mathcal{K}_1 \quad \boldsymbol{a}_3) \end{split}$$

$$_{\text{Rank}(\mathcal{L}) = 2 \iff \text{Rank}(\mathcal{L}\begin{pmatrix} \mathcal{K}_1^{-1} & 0 \\ 0 & 1 \end{pmatrix}) = \text{Rank}\begin{pmatrix} \mathcal{L}_1^T & 0 \\ \mathcal{L}_1^T \mathcal{A}_2 & \mathcal{L}_2^T \boldsymbol{a}_2 \\ \mathcal{L}_1^T \mathcal{A}_3 & \mathcal{L}_2^T \boldsymbol{a}_2 \end{pmatrix} = 2} \end{split}$$

49

Project

The final project may be

- An original implementation of a new or published idea
- A detailed empirical evaluation of an existing implementation of one or more methods
- A paper comparing three or more papers not covered in class, or surveying recent literature in a particular area

A project proposal not longer than two pages must be submitted and approved by April 1st.

50

Project

March 16: Project previews / Brainstorming

3-5 minute presentation of

- · Specific Project idea
- Your recent research, or thesis proposal (if it relates to vision)
- Paper you are interested in and think may form the basis of a project
- Area you wish to write a survey paper on; list major papers...