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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 6: Local Features
— Interest operators
— Correspondence
— Invariances
— Descriptors

Readings: Shi and Tomasi; Lowe.

Local Features

Matching points across images important for
recognition and pose estimation

Tracking vs. Indexing

Today

Interesting points, correspondence, affine patch
tracking

Scale and rotation invariant descriptors [Lowe]

Correspondence using window matching

Points are highly individually ambiguous...

More unique matches are possible with small
regions of image.

Correspondence using window matching

Left Right

Criterion function:

disparity
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Sum of Squared (Pixel) Differences

(JCI_’YI_) (xl,_d’yL)

w, and w;, are corresponding m by m windows of pixels.
We define the window function :
W, (x,y)={u,v|x-2<usx+5,y-4<v<y+24}

The SSD cost measures the intensity difference as a function of disparity :
Cxyd)= Y, v)~Iu=-dv]

()W, (x.y)




Image Normalization

« Even when the cameras are identical models, there
can be differences in gain and sensitivity.

 The cameras do not see exactly the same surfaces,
so their overall light levels can differ.

« For these reasons and more, it is a good idea to
normalize the pixels in each window:

S )
=5 W ")E;(Ix (V’T’V) Average pixel
HIHWW_” = S Window magnitude
(W)l (x.y)
I(x,y)= Jeen=1 Normalized pixel
HI_[HW,,‘(‘.,»-) 7

Images as Vectors

Left Right

Wy

Each window is a vector
in an m? dimensional
vector space.
Normalization makes
them unit length.

“Unwrap”
image to form
vector, using
raster scan order

wl.
rowl | |m
row2 | [m
row3 || m

Image windows as vectors

Possible metrics

Distance? WR (d)
Wy

Angle?

Image Metrics

(Normalized) Sum of Squared Differences

wo(d) Conld) = DAL ~Lpw=dwP

(uv)eW, (x,y)
Wi

2
=[w, —we (@)

Normalized Correlation

Coold)= I v (u—d,v)

(uw)el, (x.p)

=w, - Wy(d)=cos@

d" =argmin, |w, - we(d)| = arg max, w, - w,(d)

Local Features

Not all points are equally good for
matching. ..




Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow




(Review) Differential approach:
Optical flow constraint equation

Brightness should stay
constant as you track

motion [(x+u5t,y+v5t,t+5t):[(x,y,t)

Aperture Problem and Normal Flow

The gradient constraint:

Lu+lv+1,=0

VieU =0

Defines a line in the (u,v) space

15t order Taylor series,
valid for small Of

I(x,y,t)+udtl +vol , +tl, =1(x,,t)

v

Normal Flow:

Constraint equation
ul +vI +1,=0 R | u
| =
V1| Vi
“BCCE” - Brightness Change Constraint Equation 20

Lucas-Kanade: Integrate
Combining Local Constraints gradients over a Patch

Assume a single velocity for all pixels within an image patch

E@v)= Y (1., »)u+1,(x,yv+1,)

X,yeQ

VI'eU =-1!
VI*eU = _112 Solve with:

VI eU =-1I [Z[f lely}(u]_ _(Z/,/,)
) =
i, Y| >,
On the LHS: sum of the 2x2 outer product
tensor of the gradient vector

v ==Y v,

21 22

u etc.

Local Patch Analysis Selecting Good Features

* What’s a “good feature”?
— Satisfies brightness constancy
— Has sufficient texture variation
— Does not have too much texture variation
— Corresponds to a “real” surface patch
— Does not deform too much over time
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Good Features to Track

2 BHES
A u = b

When is This Solvable?
» Ashould be invertible
+ A should not be too small due to noise
— eigenvalues %, and %, of A should not be too small
» A should be well-conditioned
— M4/ 2, should not be too large (14 = larger eigenvalue)

Both conditions satisfied when min(i,, 1,) > ¢
25

Harris detector
Same idea, based on the idea of auto-correlation
7

Important difference in all directions => interest point
26

Harris detector

Auto-correlation function for a point (x, y) and a shift (Ax, Ay)

fxy)= z(l(x}:’yk)_l(xk +Axs)’k+AJ’))z

[ENNE

Discret shifts can be avoided with the auto-correlation matrix

. Ax
with  T(x + Ax, y + Ay) = 1(x, v, + (1 (x, y,) Iy(qu/k))(Ay]

Ax 2
fan= Y {(A(xk,yk) 1y<xk,yk>( Ayn

(s )W
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Harris detector

Auto-correlation matrix

Z(IA(x/(’yk))2 Zl,\(xkhyk)ly(xk’yk) Ax
= (Ax Ay Gyl o)l R [
S yOL (%, 30) U (x5 0) Ay
Cor)el el

* Auto-correlation matrix
— captures the structure of the local neighborhood
— measure based on eigenvalues of this matrix
« 2 strong eigenvalues => interest point
* 1strongeigenvalue => contour
« 0 cigenvalue
* Interest point detection
— threshold on the eigenvalues
— local maximum for localization

=> uniform region

)

Selecting Good Features

Xy and A, are large,

Selecting Good Features

large &, small &,




Selecting Good Features

small &, small %, ,,

Feature Distortion

« Feature may change shape over time
— Need a distortion model to really make this work

Find displacement (u,v) that minimizes SSD error over feature region

Y UWalw,y), Wz, ) — J(=,9))?
(zy)eFcJ
(minimize with respect to W, and W)

Shi and Tomasi: use affine model for verification
Wa(z,y) = az+by+c
Wy(z.y) = ex+fy+yg

Affine Motion

u(x, y) = ay+ a;x+a,y

v(x,y)=aztax+agy

u(x; a)=
(u(xy), v(x.y))

5l

I(x+u(x; a), t-1) = I(x, t)

I(x, t-1)

Affine Motion

u(x,y)=a, +a,x+a,y

v(x,y)=a, +ax+agy

Substituting into the B.C.C.E.:
I u+l,-v+I =0

1 (aq, ~l—c12)c+c13y)+1y(a4 +ax+agy)+1, zO‘

Each pixel provides 1 linear constraint in 6 global unknowns
ini 6 pixels y)

Least Square Minimization (over all pixels):

Err(a) =z:[lx(a1 +ax+ay)+1,(a, +a5x+a6y)+341,] 2

(Brightness Constancy Assumption) 33
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1: real

2:affine
deformation

occlusion




Convergence

iterations

Translation Dissimilarity
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Tracking vs. Indexing

But....

What if you can’t track over time?

Today

Interesting points, correspondence, affine patch
tracking

Scale and rotation invariant descriptors [Lowe]
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CVPR 2003 Tutorial

Recognition and Matching
Based on Local Invariant
Features

David Lowe
Computer Science Department
University of British Columbia




Invariant Local Features

+ Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters
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SIFT Features

Advantages of invariant local features

Locality: features are local, so robust to
occlusion and clutter (no prior segmentation)

« Distinctiveness: individual features can be
matched to a large database of objects

* Quantity: many features can be generated for
even small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to wide
range of differing feature types, with each
adding robustness

Scale invariance

Requires a method to repeatably select points in location
and scale:

The only reasonable scale-space kernel is a Gaussian
(Koenderink, 1984; Lindeberg, 1994)

An efficient choice is to detect peaks in the difference of
Gaussian pyramid (Burt & Adelson, 1983; Crowley &
Parker, 1984 — but examining more scales)

Difference-of-Gaussian with constant ratio of scales is a
close approximation to Lindeberg’s scale-normalized
Laplacian (can be shown from the heat diffusion
equation)
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Scale space processed one octave at a time

Scale
(first
octave)

====z Difference of
Gaussian Gaussian (DOG) 46

Key point localization

* Detect maxima and minima of
difference-of-Gaussian in scale

space
p , , S
« Fita quadratic to surrounding A A
0 W
values for sub-pixel and sub-scale LT
interpolation (Brown & Lowe, S ZZ
Scale Ve
2002) AT
A
. . I
« Taylor expansion around point: —————
W
. AT
apT 1 oD W2
Do =D+ 224 La 2D A

*  Offset of extremum (use finite
differences for derivatives):

. &D7'oD
2=_92 %2

ax ox
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Select canonical orientation

¢ Create histogram of local
gradient directions computed
at selected scale

* Assign canonical orientation
at peak of smoothed
histogram

« Each key specifies stable 2D
coordinates (X, y, scale,
orientation)




Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle
curvatures (Harris approach)

&4 (a) 233x189 image

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures
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SIFT vector formation

» Thresholded image gradients are sampled over 16x16
array of locations in scale space

* Create array of orientation histograms
« 8 orientations x 4x4 histogram array = 128 dimensions
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Image gradients Keypoint descriptor )

Feature stability to noise
« Match features after random change in image scale &
orientation, with differing levels of image noise
« Find nearest neighbor in database of 30,000 features

100

60

40

Correctly matched (%)

Keypoint location —+—
Location & orientation -—s—

» Nearest descriptor - ™
0 i |
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Image noise 51

Feature stability to affine change
» Match features after random change in image scale &
orientation, with 2% image noise, and affine distortion
+ Find nearest neighbor in database of 30,000 features
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Viewpoint angle (degrees)

Distinctiveness of features

» Vary size of database of features, with 30 degree affine
change, 2% image noise
* Measure % correct for single nearest neighbor match
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Number of keypoints in database (log scale)

Today

Interesting points, correspondence, affine patch
tracking

Scale and rotation invariant descriptors [Lowe]




