6.891

Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 6: Local Features

- Interest operators
- Correspondence
- Invariances
- Descriptors

Readings: Shi and Tomasi; Lowe.

Local Features

Matching points across images important for recognition and pose estimation

Tracking vs. Indexing

2

Today

Interesting points, correspondence, affine patch tracking

Scale and rotation invariant descriptors [Lowe]

Correspondence using window matching

Points are highly individually ambiguous... More unique matches are possible with small regions of image.

4

Correspondence using window matching

Sum of Squared (Pixel) Differences

 w_L and w_R are corresponding m by m windows of pixels. We define the window function:

W_m(x, y) = {u, v | x - $\frac{m}{2}$ ≤ u ≤ x + $\frac{m}{2}$, y - $\frac{m}{2}$ ≤ v ≤ y + $\frac{m}{2}$ }

The SSD cost measures the intensity difference as a function of disparity:

$$C_r(x, y, d) = \sum_{(u,v) \in W_m(x,y)} [I_L(u,v) - I_R(u-d,v)]^2$$

Image Normalization

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- The cameras do not see exactly the same surfaces, so their overall light levels can differ.
- For these reasons and more, it is a good idea to normalize the pixels in each window:

$$\begin{split} \bar{I} &= \frac{1}{\|\mathbb{F}_n(x,y)\|} \sum_{(u,v) \in \mathbb{F}_n(x,y)} I(u,v) & \text{Average pixel} \\ \|I\|_{\mathbb{F}_n(x,y)} &= \sqrt{\sum_{(u,v) \in \mathbb{F}_n(x,y)}} I(u,v)]^2 & \text{Window magnitude} \\ \hat{I}(x,y) &= \frac{I(x,y) - \bar{I}}{\|I - \bar{I}\|_{\mathbb{F}_n(x,y)}} & \text{Normalized pixel} \end{split}$$

Local Features

Not all points are equally good for matching...

Selecting Good Features

- What's a "good feature"?
 - Satisfies brightness constancy
 - Has sufficient texture variation
 - Does not have too much texture variation
 - Corresponds to a "real" surface patch
 - Does not deform too much over time

Good Features to Track

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} \sum I_x I_t \\ \sum I_y I_t \end{pmatrix}$$

When is This Solvable?

- A should be invertible
- A should not be too small due to noise
- eigenvalues λ_1 and λ_2 of \boldsymbol{A} should not be too small
- A should be well-conditioned
 - λ_1/λ_2 should not be too large (λ_1 = larger eigenvalue)

Both conditions satisfied when $min(\lambda_1, \lambda_2) > c$

Harris detector

Same idea, based on the idea of auto-correlation

Important difference in all directions => interest point

Harris detector

Auto-correlation function for a point (x, y) and a shift $(\Delta x, \Delta y)$

$$f(x,y) = \sum_{(x_k, y_k) \in W} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

Discret shifts can be avoided with the auto-correlation matrix

$$\begin{aligned} \text{with} \quad & I(x_k + \Delta x, y_k + \Delta y) = I(x_k, y_k) + (I_x(x_k, y_k) - I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \\ & f(x, y) = \sum_{(x_k, y_k) \in W} \left(\left(I_x(x_k, y_k) - I_y(x_k, y_k) \right) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \right)^2 \end{aligned}$$

Harris detector

$$= \begin{pmatrix} \Delta x & \Delta y \end{pmatrix} \begin{bmatrix} \sum\limits_{(x_k,y_k) \in W} (I_x(x_k,y_k))^2 & \sum\limits_{(x_k,y_k) \in W} I_x(x_k,y_k)I_y(x_k,y_k) \\ \sum\limits_{(x_k,y_k) \in W} I_x(x_k,y_k)I_y(x_k,y_k) & \sum\limits_{(x_k,y_k) \in W} (I_y(x_k,y_k))^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

- Auto-correlation matrix
 - captures the structure of the local neighborhood
 - measure based on eigenvalues of this matrix

 - 2 strong eigenvalues => interest point
 1 strong eigenvalue => contour
 0 eigenvalue => uniform region • 0 eigenvalue
- Interest point detection
 - threshold on the eigenvalues
 - local maximum for localization

Selecting Good Features

 λ_{1} and $~\lambda_{2}$ are large $_{\!_{29}}$

Selecting Good Features

large $\lambda_{\text{1}}, \text{ small } \lambda_{\text{2}}$ $_{\text{30}}$

Tracking vs. Indexing But.... What if you can't track over time?

Today

Interesting points, correspondence, affine patch tracking

Scale and rotation invariant descriptors [Lowe]

41

CVPR 2003 Tutorial

Recognition and Matching Based on Local Invariant Features

David Lowe Computer Science Department University of British Columbia

Invariant Local Features

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Advantages of invariant local features

- Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
- **Distinctiveness:** individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- · Efficiency: close to real-time performance
- Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

Scale invariance

Requires a method to repeatably select points in location and scale:

- The only reasonable scale-space kernel is a Gaussian (Koenderink, 1984; Lindeberg, 1994)
- An efficient choice is to detect peaks in the difference of Gaussian pyramid (Burt & Adelson, 1983; Crowley & Parker, 1984 – but examining more scales)
- Difference-of-Gaussian with constant ratio of scales is a close approximation to Lindeberg's scale-normalized Laplacian (can be shown from the heat diffusion equation)

45

Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale
- Fit a quadratic to surrounding values for sub-pixel and sub-scale interpolation (Brown & Lowe, 2002)
- Taylor expansion around point

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x^T} \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

 Offset of extremum (use finite differences for derivatives):

$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$

47

Select canonical orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

Feature stability to noise

- Match features after random change in image scale & orientation, with differing levels of image noise
- Find nearest neighbor in database of 30,000 features

Feature stability to affine change

- Match features after random change in image scale & orientation, with 2% image noise, and affine distortion
- Find nearest neighbor in database of 30,000 features

Distinctiveness of features

- Vary size of database of features, with 30 degree affine change, 2% image noise
- Measure % correct for single nearest neighbor match

Today

Interesting points, correspondence, affine patch tracking

Scale and rotation invariant descriptors [Lowe]