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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 4: Texture
— Filter-based models
— Example-based / Non-parametric approaches
— Quilting and Epitomes

Readings: F & P 9.1,9.3, 9.4



Last tlme 1mage pyramids

Progressively blurred and
subsampled versions of the
image. Adds scale invariance

(Gaussian to fixed-size algorithms.

 Shows the information added in
‘Gaussian pyramid at each
spatial scale. Useful for noise
reduction & coding.

Laplacian

Bandpassed representation, complete, but with
Wavelet/ QMF . aliasing and some non-oriented subbands.
Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture
and feature analysis.

Steerable pyrami



The Challenge pummmms

e e R

* How to capture the essence of o PP R 1
B T

texture? I T P

* Need to model the whole
spectrum: from repeated to
stochastic texture

» This problem is at intersection of
vision, graphics, statistics, and
Image compression

e e

Both? *

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



The Goal of Texture Synthesis

input lmage

Ry N SYNtIESIS

T re(inﬁnit) texture  generated image

Given a finite sample of some texture, the goal 1s

to synthesize other samples from that same texture
— The sample needs to be "large enough*



The Goal of Texture Analysis

input image

AN ALYSIH “Same” or

" ._"- — - ccdifferent”

T r(infmit) texture  generated image

Compare textures and decide if they’re made of the
same “‘stuff”.



Pre-attentive texture discrimination



Pre-attentive texture discrimination
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Pre-attentive texture discrimination

Same or different textures?



Pre-attentive texture discrimination



Pre-attentive texture discrimination
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Pre-attentive texture discrimination

Same or different textures?
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Julesz

* Textons: analyze the texture in terms of
statistical relationships between
fundamental texture elements, called
“textons”.

* [t generally required a human to look at the
texture 1n order to decide what those
fundamental units were...

12



Representing textures

Textures are made up of quite stylized
subelements, repeated in meaningful ways
Representation:

— find the subelements, and represent their statistics

But what are the subelements, and how do we
find them?

— recall normalized correlation

— find subelements by applying filters, looking at the
magnitude of the response

13



Influential early paper:

Early vision and texture perception

James R. Bergen* & Edward H. Adelson®#

= S5E1 David Sarnofl Research Center, Princeton,
New Jersey OB540, USA

#* Media Lab and Department of Brain and Cognitive Science,

Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA
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Bergen and Adelson, Nature 1988

Learn size-tuned filter responses.

‘I-.
~
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Fig. 1 Top row, Textures
consisting of Xs within a
texture composed of Ls.
The micropatterns  are
placed at random orienta-
tions on a randomly per-
turbed lattice. a, The bars
of the Xs have the same
length as the bars of the
Ls. b, The bars of the Ls
have been lengthened by
25%. and the intensity
adjusted for the same
mean  luminance.  Dis-
criminability is enhanced.
¢, The bars of the Ls
have been shortened by
25%. and the intensity
adjusted  for the same
mean luminance. Dis-
criminabitity 18 impaired.
Bottom row: the responses
of a size-tuned mechan-
ism d, response o image
a: e, response Lo image b;
f: response o image c.
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Malik and Perona

) -

VW I)P s~

Learn: use lots of filters, multi-ori&scale.

Malik J, Perona P. Preattentive texture discrimination
with early vision mechanisms. J OPT SOC AM A 7:
(5) 923-932 MAY 1990 16
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. O Squared responses  Spatially blurred

vertical filter

Threshold squared,
blurred responses,
then categorize

texture based on
horizontal filter those two bits

1mage

>
o>
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Pyramid-Based Texture Analysis/Synthesis

David J. Heeger” James R. Bergen!
Stanford University SRI David Sarnoff Research Center
(] - »@ —
*@ °
= X SIGGRAPH 1994
ut . a
o

b uc
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Bergen and Heeger

Idea: Learn filter marginal statistics.

E .

Figure 2: (Lelt) Input digitized sample lexture: burled mappa wood. (Middle) Input noise. {Right) Quipui synihetic texture
that matches the appearance of the digitized zample. INote that the synthesized texture iz larger than the digitized sample;
our approach allows gensration ol as much texture as desired, In addition. ithe syniletc texinres tile seamlessly.

23



]

Bergen and Heeger results

Figure 3: In each pair left image is original and right image is synthetic:
slag stone, figured yew wood.

sincco, iridescent ribhon

, green marble, panda fur,

24



Bergen and Heeger failures

o, b i

Figure 9: More failures: hay and marble.



DeBonet

[.earn filter conditional statistics across scale.

el e b el

i

Figure 8: The distribution from which pixels in the synthesis pyra-
mid are sampled 1s conditioned on the “parent” structure of those
pixels. Each element of the parent structure contains a vector of the
feature measurements at that location and scale.
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Figure 9: An input texture is decomposed to form an analysis pyra-
mid, from which a new synthesis pyramid is sampled. conditioned
on local features within the pyramids. A filter bank of local texture
measures. based on psychophysical models, are used as features.
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DeBonet
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*ﬁ:pﬂ%m DeBonet
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Zhu, Wu, & Mumford, 1998

Gibbs sampling of Markov Random Field
model: - - 1,,*

Cheetah Synthetic
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IEEE International Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
{efros,leungt } @cs.berkeley.edu

X
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Efros and Leung ‘99

preserve local structure

model wide range of real textures

ability to do constrained synthesis

method:

— Texture 1s “grown” one pixel at a time

— conditional pdf of pixel given its neighbors
synthesized thus far 1s computed directly from

the sample 1image

31

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Synthesizing One Pixel

LT
L' SAMPLE

T —

e P
Infinite sample
image S -

Generated image
— Assuming Markov property, what 1s conditional probability

distribution of p, given the neighbourhood window?

— Instead of constructing a model, let’s directly search the
input 1image for all such neighbourhoods to produce a
histogram for p

— To synthesize p, just pick one match at random .

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Really Synthesizing One Pixel

[ ] I! I
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P

Generated image

finite sample
image

— However, since our sample 1mage 1s finite, an exact
neighbourhood match might not be present

— So we find the best match using SSD error (weighted by a
Gaussian to emphasize local structure), and take all samples

within some distance from that match “

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Growing Texture

— Starting from the 1nitial configuration, we “grow” the
texture one pixel at a time

— The size of the neighbourhood window 1s a parameter that
specifies how stochastic the user believes this texture to be

— To grow from scratch, we use a random 3x3 patch from
input image as seed "

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Randomness Parameter

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Jf’ﬁ?aﬁﬁ";ﬁ?f- e
a b

J*r?arfffa#:'f,f? e -ﬁffﬁr"

ﬂ-"*-"‘W/:"'r A
2z '?‘”;ﬂ?ffr'ﬁ'aﬁ’ﬂf’r{fff i

P
,’}j{ﬂ_{fﬁ‘?fa{fﬁfﬁ’ﬁ#ﬁ} s

s
PR T o A
A
e
e e e e

CEdiEdal

e F

m‘-—.r.m

BRI Sy
e i o

Increasing window size

T o

L A
iﬂr"ﬁ’ﬁ?ﬁ’?fﬁ%ﬁﬁ#ﬂf’f
'_..-'f-*-f:-' ﬁﬁffﬂf#féfg
e
e

i
e

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt




Brodatz Results

reptile skin aluminum wire

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



More Brodatz Results

french canvas rafia weave

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



More Results

wood granite

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



More Results

white bread brick wall

--1-- 40

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Constrained Synthesis

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Visual Comparison

Synthetic tilable
texture

[DeBonet, ‘97]

Simple tiling

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Growing garbage Verbatim copying 43

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



Texturin

Sample image
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http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt
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Image Extrapolation

45

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt



What we learned from Efros and
Leung regarding texture synthesis

Don’t need conditional filter responses
across scale

Don’t need marginal statistics of filter
responses.

Don’t need multi-scale, multi-orientation
filters.

Don’t need filters.

46



Efros & Leung

* The algorithm
— Very simple
— Surprisingly good results
— Synthesis 1s easier than analysis!

— ...but very slow
* Optimizations and Improvements
— [We1 & Levoy,’00] (based on [Popat & Picard,’93])
— [Harrison,’01]
— [Ashikhmin,’01]

47



Quilting

* The “Corrupt Professor’s Algorithm” - Freeman:
— Plagiarize as much of the source image as you can
— Then try to cover up the evidence

« Rationale:

— Texture blocks are by definition correct samples of
texture so problem only connecting them together

48



Quilting: Efros & Freeman

non-parametric

sampling
< %

Input image

Synthesizing a block

* QObservation: neighbor pixels are highly correlated

Idea: unit of synthesis = block

e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once

e Not the same as multi-scale! 49



block

Input texture

B1 | B2 B1| | | B2 B1 | | B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut




Minimal error boundary

overlapping blocks vertical boundary

V-8
-1 BF

overlap error min. error boundary




Algorithm

— Pick size of block and size of overlap

— Synthesize blocks 1n raster order

— Search mput texture for block that satisfies overlap
constraints (above and left)

 Easy to optimize using NN search [Liang et.al., *01]
— Paste new block into resulting texture

 use dynamic programming to compute minimal error
boundary cut

52
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Failures
(Chernobyl
Harvest)




Texture Transter

e Take the texture from one
object and “paint” 1t onto
another object

— This requires separating texture
and shape

— That’s HARD, but we can cheat

— Assume we can capture shape by
boundary and rough shading

Then, just add another constraint when sampling:
similarity to underlying image at that spot

61



parmesan










Source A
texture §+:

Source
correspondence
image

Target
correspondence
image
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Wei & Levoy
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Summary of image quilting

* Qult together patches of input image
— randomly (texture synthesis)
— constrained (texture transfer)
* Image Quilting
— No filters, no multi-scale, no one-pixel-at-a-time!
— fast and very simple
— Results are not bad




Example-based model

A set of image patches

Input image

Nebojsa Jojic, Brendan Frey and Anitha Kannan, fécv 2003
www.research.microsoft.com/~jojic/epitome.htm



Compressed example-based model

A set of image patches
Input image

Epitome

Nebojsa Jojic, Brendan Frey and Anitha Kannan, fécv 2003
www.research.microsoft.com/~jojic/epitome.htm



Compact representation

Nebojsa Jojic, Brendan Frey and Anitha Kannan, fécv 2003
www.research.microsoft.com/~jojic/epitome.htm



Learning the epitome

* For each patch, infer the posterior over the mappings

e Average all patches using the posterior as a weight

Estimate the variance

Nebojsa Jojic, Brendan Frey and Anitha Kannan, fécv 2003
www.research.microsoft.com/~jojic/epitome.htm



More examples

mean

variance

Nebojsa Jojic, Brendan Frey and Anitha Kannan, fécv 2003
www.research.microsoft.com/~jojic/epitome.htm



Nebojsa Jojic, Brendan Frey and Anitha Kannan, fécv 2003
www.research.microsoft.com/~jojic/epitome.htm



More examples
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Nebojsa Jojic, Brendan Frey and Anitha Kannan, fécv 2003
www.research.microsoft.com/~jojic/epitome.htm



What 1s epitome good for?

A better way to learn a library of patches
(for SR, texture synthesis and analysis, ...)

A tool for easy editing
Organizing visual memory for recognition
An alternative both to templates and low-order

statistics (e.g., histograms) in vision systems

Nebojsa Jojic, Brendan Frey and Anitha Kannan, %&CV 2003

www.research.microsoft.com/~jojic/epitome.htm



Original image

Denoising

SNR=18.4dB SNR=19.2dB

SNR=13dB

1 e i-

Noisy image

Reconstruction Reconstruction
using a mixture of using an 80x80
1000 patches epitome
learned from the
noisy image

(in both cases, the patch size was 8x8)

Nebojsa Jojic, Brendan Frey and Anitha Kannan, fecv 2003
www.research.microsoft.com/~jojic/epitome.htm



