6.891

Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 4: Texture

- Filter-based models
- Example-based / Non-parametric approaches
- Quilting and Epitomes

Readings: F & P 9.1, 9.3, 9.4

The Challenge

- How to capture the essence of texture?
- · Need to model the whole spectrum: from repeated to stochastic texture
- This problem is at intersection of vision, graphics, statistics, and image compression

The Goal of Texture Synthesis input image SYNTHESIS True (infinite) texture generated image Given a finite sample of some texture, the goal is to synthesize other samples from that same texture - The sample needs to be "large enough"

The Goal of Texture Analysis input image ANALYSIS "Same on "different" True (infinite) texture generated image

Compare textures and decide if they're made of the same "stuff".

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?

Pre-attentive texture discrimination

9

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?

11

Julesz

- Textons: analyze the texture in terms of statistical relationships between fundamental texture elements, called "textons".
- It generally required a human to look at the texture in order to decide what those fundamental units were...

L	$ldsymbol{f f f f f f f f f f f f f $	$ldsymbol{f f f f f f f f f f f f f $	oxdot	\top \top \top	\top	
L	$ldsymbol{f eta}$	oxdot	L	T T T	T 12	

2

Representing textures

- · Textures are made up of quite stylized subelements, repeated in meaningful ways
- · Representation:
 - find the subelements, and represent their statistics
- But what are the subelements, and how do we find them?
 - recall normalized correlation
 - find subelements by applying filters, looking at the magnitude of the response

13

Influential early paper:

Early vision and texture perception

James R. Bergen* & Edward H. Adelson**

* SRI David Sarnoff Research Center, Princeton, New Jersey 08540, USA ** Media Lab and Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

14

Efros and Leung '99

- · preserve local structure
- model wide range of real textures
- · ability to do constrained synthesis
- · method:
 - Texture is "grown" one pixel at a time
 - conditional pdf of pixel given its neighbors synthesized thus far is computed directly from the sample image

http://www.ce.barkaka.adu/_afroe/pacameh/NDS/afroe.iccs/00 p

- Assuming Markov property, what is conditional probability distribution of p, given the neighbourhood window?
- Instead of constructing a model, let's directly search the input image for all such neighbourhoods to produce a histogram for p
- To synthesize p, just pick one match at random

http://www.cs.herkelev.edu/~efros/research/NPS/efros.iccv99.r

Really Synthesizing One Pixel

- However, since our sample image is finite, an exact neighbourhood match might not be present
- So we find the best match using SSD error (weighted by a Gaussian to emphasize local structure), and take all samples within some distance from that match

Growing Texture

- Starting from the initial configuration, we "grow" the texture one pixel at a time
- The size of the neighbourhood window is a parameter that specifies how stochastic the user believes this texture to be
- To grow from scratch, we use a random 3x3 patch from input image as seed

http://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.ppt

Randomness Parameter

More Synthesis Results

://www.cs.berkeley.edu/~efros/research/NPS/efros-iccv99.pg

What we learned from Efros and Leung regarding texture synthesis

- Don't need conditional filter responses across scale
- Don't need marginal statistics of filter responses.
- Don't need multi-scale, multi-orientation filters.
- Don't need filters.

46

Efros & Leung

- The algorithm
 - Very simple
 - Surprisingly good results
 - Synthesis is easier than analysis!
 - ...but very slow
- Optimizations and Improvements
 - [Wei & Levoy,'00] (based on [Popat & Picard,'93])
 - [Harrison,'01]
 - -[Ashikhmin,'01]

7

Quilting

- The "Corrupt Professor's Algorithm" Freeman:
 - Plagiarize as much of the source image as you can
 - Then try to cover up the evidence
- Rationale:
 - Texture blocks are by definition correct samples of texture so problem only connecting them together

48

Texture Transfer

- Take the texture from one object and "paint" it onto another object
 - This requires separating texture and shape
 - That's HARD, but we can cheat
 - Assume we can capture shape by boundary and rough shading

boundary and rough shading

Then, just add another constraint when sampling: similarity to underlying image at that spot

Homage to Shannon!

describing the response of that neuron-describing the response of that neuron the as a function of position—in perhap functional description of that neuron, seek a single conceptual and mathem seribe the wealth of simple-cell recep-ded heurophysiologically³² and inferred especially if such a framework has the the plus to understand the functio leeper vay. Whereas no generic mo-usatian (DOO, difference of offset (rivative of a Gaussian, higher derivati function, and so on—can be expect imple-cell receptive field, we noneth

input image

Portilla & Simoncelli Xu, Guo & Shum

Wei & Levoy

half fall has be gravifeed, or not such an incommendation of the such as a s

Portilla & Simoncellis

Xu, Guo & Shum

cols punince tiappm, neloc exionsts of cert entered the color of cert entered the cer

Summary of image quilting • Quilt together patches of input image - randomly (texture synthesis) - constrained (texture transfer) · Image Quilting - No filters, no multi-scale, no one-pixel-at-a-time! - fast and very simple - Results are not bad

What is epitome good for?

- A better way to learn a library of patches (for SR, texture synthesis and analysis, ...)
- A tool for easy editing
- Organizing visual memory for recognition
- An alternative both to templates and low-order statistics (e.g., histograms) in vision systems

Nebojsa Jojic, Brendan Frey and Anitha Kannan, 78 CV 2003

