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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 4: Texture
— Filter-based models
— Example-based / Non-parametric approaches
— Quilting and Epitomes

Readings: F& P9.1,9.3,9.4

Last time: 1ma e pyramids
\ s g€ Py

Progressively blurred and
subsampled versions of the
image. Adds scale invariance
to fixed-size algorithms.

* Gaussian

Shows the information added in
Gaussian pyramid at each
spatial scale. Useful for noise
reduction & coding.

+ Laplacian

Bandpassed representation, complete, but with
aliasing and some non-oriented subbands.

* Wavelet/QMF

B Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture

(

The Challenge

S

* How to capture the essence of T
2 L

texture? S

* Need to model the whole repeated

spectrum: from repeated to
stochastic texture

+ This problem is at intersection of
vision, graphics, statistics, and
image compression

stochastic

* Steerable pyrami

and feature analysis.

The Goal of Texture Synthesis

mput zmage

. Given a finite sample of some texture, the goal is

to synthesize other samples from that same texture
— The sample needs to be "large enough*

The Goal of Texture Analysis

mput zmage

ANALYSI&C “Same” or
“different”

True (innite) texture generated image
Compare textures and decide if they’re made of the
same “stuff”.

Pre-attentive texture discrimination




Pre-attentive texture discrimination
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Pre-attentive texture discrimination

Same or different textures?

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?
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» Textons: analyze the texture in terms of
statistical relationships between
fundamental texture elements, called
“textons”.

* It generally required a human to look at the
texture in order to decide what those
fundamental units were...
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Representing textures

» Textures are made up of quite stylized
subelements, repeated in meaningful ways
* Representation:
— find the subelements, and represent their statistics
« But what are the subelements, and how do we
find them?
— recall normalized correlation

— find subelements by applying filters, looking at the
magnitude of the response

Influential early paper:

Early vision and texture perception

James R. Bergen* & Edward H. Adelson®#*

#* SRI David SarnofT Research Center, Princeton,

New Jersey 08540, USA

## Media Lab and Department of Brain and Cognitive Science.
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

Bergen and Adelson, Nature 1988

Learn size-tuned filter responses.

Fig. 1 Top row. Textures
consisting of Xs within a

composed of Ls

text
The  micropatierns _ are
placed at random orienta-

criminabitiy is enhanced
c. The bars of the Ls
have been shortened by
25%, and the intensity
adjusted for the  same
mean luminance. Dis-
criminabitity is impaired
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Malik and Perona
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Learn: use lots of filters, multi-ori&scale.

Malik J, Perona P. Preattentive texture discrimination
with early vision mechanisms. J OPT SOC AM A 7:
(5) 923-932 MAY 1990 16

Squared responses ~ Spatially blurred

W

vertical filter

Threshold squared,
blurred responses,
then categorize
texture based on
those two bits

image

>
-
horizontal filter
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Pyramid-Based Texture Analysis/Synthesis

David J. Heeger* James R. Bergent
Stanford University SRI David Sarnoff Research Center

SIGGRAPH 1994

Bergen and Heeger

Idea: Learn filter marginal statistics.

(Lefu) Input digitized sample texinre: burled mappa wood. (Middle) Taput noi
that matelies the appearance of the digitized sample. Note that, the synthesized texture ie
our approach allows generation of as much iexiure as desired. In addition, (he synthetic texu

armless]

an the digitized sample;
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Figure 3¢ In cach pa 1t image i oiginal aad right image is synhetic: suce, idescent ibbon,green marbl, paada fur, 24
g siom, figured yew wood




Bergen and Heeger failures

Figure 9: More failures: hay and marble.

DeBonet

Learn filter conditional statistics across scale.

é:‘ "

Figure 8: The distribution from which pixels in the synthesis pyra- Figure 9: An input texture is decomposed to form an analysis pyra-
mi mpled is conditioned on the “parent” structure of those i, from which a new synthesis pyramid is sampled, conditioned
pixels. Each clement of the parent structure contains a vector of the  on local features within the pyramids. A filter bank of local texture
feature measurements at that location and scale.

measures, based on psychophysical models, are used as features.
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DeBonet
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DeBonet

TR
B

Zhu, Wu, & Mumford, 1998

Gibbs sampling of Markov Random Field

model: mT ™ TR ;q;r‘

Cheetah Synthetic
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IEEE International Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric S:

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
{efros,leungt} @cs.berkeley.edu

X
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Efros and Leung ‘99

* preserve local structure
+ model wide range of real textures
« ability to do constrained synthesis
* method:
— Texture is “grown” one pixel at a time

— conditional pdf of pixel given its neighbors
synthesized thus far is computed directly from
the sample image

31

Synthesizing One Pixel

Infinite sample
image

Generated image
— Assuming Markov property, what is conditional probability|
distribution of p, given the neighbourhood window?

— Instead of constructing a model, let’s directly search the
input image for all such neighbourhoods to produce a
histogram for p

— To synthesize p, just pick one match at random

hitp v, ber I i«

Really Synthesizing One Pixel

Generated image

— However, since our sample image is finite, an exact
neighbourhood match might not be present

— So we find the best match using SSD error (weighted by a
Gaussian to emphasize local structure), and take all samples
within some distance from that match 5

I

Growing Texture

— Starting from the initial configuration, we “grow” the
texture one pixel at a time

— The size of the neighbourhood window is a parameter that
specifies how stochastic the user believes this texture to be

— To grow from scratch, we use a random 3x3 patch from
input image as seed ;

hiip v cs.ber

Randomness Parameter

% More Synthesis Results
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Increasing window size » 3
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Brodatz Results

reptile skin aluminum wire

1 >

More Brodatz Results

french canvas rafia weave

hip iy

wood

More Results

granite

More Results

white bread brick wall

Constrained Synthesis
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Visual Comparison

Synthetic tilable
texture

[DeBonet, ‘97| Simple tiling Our approach,




Growing garbage Verbatim copying s

Texturing a sphere
Sample image s
L= o 2D -]

a — 2 o

o o o

Image Extrapolation
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What we learned from Efros and
Leung regarding texture synthesis

* Don’t need conditional filter responses
across scale

* Don’t need marginal statistics of filter
responses.

« Don’t need multi-scale, multi-orientation
filters.

Don’t need filters.

Efros & Leung

* The algorithm
— Very simple
— Surprisingly good results
— Synthesis is easier than analysis!
— ...but very slow
* Optimizations and Improvements
— [Wei & Levoy,’00] (based on [Popat & Picard,’93])
— [Harrison,’01]
— [Ashikhmin,’01]
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Quilting

* The “Corrupt Professor’s Algorithm” - Freeman:
— Plagiarize as much of the source image as you can
— Then try to cover up the evidence

+ Rationale:

— Texture blocks are by definition correct samples of
texture so problem only connecting them together




Quilting: Efros & Freeman

non-parametric
sampling

I | Input image

Synthesizing a block

+ Observation: neighbor pixels are highly correlated
Idea: unit of synthesis = block
¢ Exactly the same but now we want P(B|N(B))

¢ Much faster: synthesize all pixels in a block at once

* Not the same as multi-scale! %

block

Input texture

B1 B2 B1 B2 B1||B2
Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut

Minimal error boundary

overlapping blocks vertical boundary

-5
-1 R

overlap error min. error boundary

Algorithm

— Pick size of block and size of overlap
— Synthesize blocks in raster order

— Search input texture for block that satisfies overlap
constraints (above and left)
« Easy to optimize using NN search [Liang et.al., ’01]

— Paste new block into resulting texture

* use dynamic programming to compute minimal error
boundary cut




Failures
(Chernobyl
Harvest)
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» Take the texture from one
object and “paint” it onto
another object

— This requires separating texture

and shape

— That’s HARD, but we can cheat

— Assume we can capture shape by
boundary and rough shading

Texture Transfer

Then, just add another constraint when sampling:
similarity to underlying image at that spot

61

parmesan

Source
texture

Source
correspondence
image

Target

image

correspondence

65
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Wei & Levoy

Homage to
Shannon!

1 s 8 s Cural eaOT— e 5
deseribing the response of that neuro: i

t as a function of position—is perhap
funy al description of that neuron

a single conceptual and mathem;
ibe the wealth of simple-cell recer
td neurophysiologically' and inferred
especially if such a framework has the
it helps us to understand the functio
leeper way. Whereas no generic mor
ussians (DOG), difference of offset C
rivative of a Gaussian, higher derivati
* function, and so on—can be expect:
imple-cell receptive field, we noneth

input image

Portllla & Slmoncelh

i - sen ous
€0l pniinnca tiamm, helole aniohe
O car es gince, rep mc, !Op;(s
esoeao 5o eercectd 5 .
euOgrs e——s1-cesiaze At m:i onn
fy &— ccisrcimes et e e dsione
ﬂ““‘“‘ FI92 oy S atsncrha
nse"E b 5 ifemn M Micephreoe
. onoass 18 1 thon
> hal dell t1ev0wIY fiutlymr ;d 1
cmgamimaqmcer terimoes flilssin!
o m\\‘h cassa-188 ** one mo ai
o apackiel can e e I cas

r

1 §1 omiooes] 5 :"lae. e ne wen
alle-can ]
tunnting fped " Jsmsnnim nf

I aavenmn . (rrenenss Nt

Wei & Levoy

) iussians (DOG)pim
+ leepe‘s

C T T T T
e g ?m.‘v‘“rmxsrm‘m
Bt &ple-cell recesz; so
ple-cell recey:
!“Namimr,.m,_;“‘e tiybing t 5
o neurophysiol( Je; a,,, funct! 4
+specially it sud VeehE gl deser
i@ helps us to uitative sing PEI1Y
ceper way. Wi function, el
s 1D arlecell gt el

- igher i rialt
cription of thaiti fyey & !"mmhe
r“conceptuul and hin s, d
unialth of simple-g, 0 »:
implologically'an} puéldbh—(shat )

R R

Xu, Guo & Shum

sition—is perk a single conceptual an
1of that neuribe the wealth of simple|
ual and matheurophysiologically'-* an)
simple-cell necially if such a framewol
y*and inferlps us to understand t]
mmework has perhay. Whereas no g
:and the fumeuroiDOG), difference
+ no generic a single conceptual and
rence of offse the wealth of simple-cy
, higher deriescribing the response of]
—can be expes a function of position|
helps us to understand tription of t|
per way. Whereas no gonceptual a
sians (DOG), differencealth of simpl}

Example-based model

Input image

A set of image patches

Nebojsa Jojic, Brendan Frey and Anitha Kannan, [ECV 2003

www research.microsoft.c

~jojic/epitome.htm

Wei & Levoy

Summary of image quilting

Quilt together patches of input image
— randomly (texture synthesis)
— constrained (texture transfer)
* Image Quilting
— No filters, no multi-scale, no one-pixel-at-a-time!
— fast and very simple
— Results are not bad

Compressed example-based model

A set of image patches

Input image

Epitome

Nebojsa Jojic, Brendan Frey and Anitha Kannan, [€CV 2003
www.research.microsoft.com i htm
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Compact representation

Nebojsa Jojic, Brendan Frey and Anitha Kannan, I6CV 2003
www.research. micre i, i htm

Learning the epitome

« For each patch, infer the posterior over the mappings
« Average all patches using the posterior as a weight

< Estimate the variance

Nebojsa Jojic, Brendan Frey and Anitha Kannan, 16CV 2003
www.research. microsoft. joji htm

More examples

%

mean

variance

Nebojsa Jojic, Brendan Frey and A Kannan, 16CV 2003
www research microsoft.com/jojic/cpitome.htm

More examples

Nebojsa Jojic, Brendan Frey and Anitha Kannan, 1€CV 2003

www research.microsoft.com/~jojic/epitome. htm

More examples

Nebojsa Jojic, Brendan Frey and Anitha Kannan, [¢CV 2003

www research.microsoft.com/—jojic/epitome; htm

What is epitome good for?

A better way to learn a library of patches
(for SR, texture synthesis and analysis, ...)

* A tool for easy editing
* Organizing visual memory for recognition
* An alternative both to templates and low-order

statistics (e.g., histograms) in vision systems

Nebojsa Jojic, Brendan Frey and Anitha Kannan, 18CV 2003

www research.microsoft.com/—jojic/epitome. htm
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Denoising

SNR=13dB SNR=18.4dB SNR=19.2dB

i - Reconstruction Reconstruction
Original image Noisy image using & mixture of using an 80x80
1000 patches epitome
learned from the
noisy image

(in both cases, the patch size was 8x8)

Nebojsa Jojic, Brendan Frey and Anitha Kannan, 10CV 2003
www.research. micre i, ~jojic/ htm
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