6.891

Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 3:
— Multi-scale Image Representations
— Gaussian/Laplacian Pyramids
— QMF/Wavelets
— Steerable Filters
— Image statistics

Readings: F&P Chapter 7.7, 9.2; Simoncelli et al. handout
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Course Calendar

Lecture| Date Description Readings Assignments Materials
. Req: FP Lecture 1
1 2/3 gouﬁe "n[rzldt\c“on PSoout Lecture 1 (6
ameras and Lenses Al
N Lecture 2
2 2/5  Image Filtering R Lecture 2 (6
slides/page)
Tmage Representations: .
3 10 i Req: FP 7.7, 0.2 Handout 1
4 2/12  Texture ;’:4‘ e LSS PSo due
2/17  Monday Classes Held (NO LECTURE)
5 2/19 | Color Req: FP 6.1-6.4 PS1out
6 2/24  Local Features
7 2/26 | Multiview Geometry  Req: FP 10 PS1due
s 3/2 Affine Reconstruction  Req: FP 12
9 3/4  Projective Reconstruction Req: FP 13 PS2.0ut
10 3/9  Scene Reconstruction
1 3/11 Non-Rigid Motion P2 due
Morphable and Active
2 3/16  ppearance Models EX1 out
Model-Based Object
13 3/18 nition EX1due

3/23-3/25 Spring Break (NO LECTURE)

Last time; Linear Filters

» Convolution kernels

« Edges and contrast

* Fourier transform

» Sampling and Aliasing

Linear image transformations

* In analyzing images, it’s often useful to
make a change of basis.

transformed image
—

F = (]_> <+—— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

An example of such a transform:
the Fourier transform

discrete domain

Forward transform

Flm,n]= Mz‘ﬁ 11k, z]ef'"(”'%nj

Inverse transform
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=— F
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To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---

as a function of x,y for some
fixed u, v. We get a function
that is constant when (ux+vy)
is constant. The magnitude of
the vector (u, v) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the

directi
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perceived near
horizontal
grating come

Analyze crossed
gratings...
gratings. ..
from?

Where does

Analyze crossed
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in the previous

are larger than
slide.

Here uand v
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F(B)
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F(A)**F(B)

Today

+ Image pyramids

» Image statistics

* Color and spatial frequency effects

F(A)**F(B)

Lowpass(F(A)**F(B))
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F(C)




What is a good representation for
image analysis?

Fourier transform domain tells you “what”

(textural properties), but not “where”.

* Pixel domain representation tells you
“where” (pixel location), but not “what”.

* Want an image representation that gives
you a local description of image events—
what is happening where.

* Should naturally represent objects across

varying scale. "

Scaled representations

« Big bars (resp. spots, * Alternative:
hands, etc.) and little bars — Apply filters of fixed
are both interesting size to 1mages of
— Stripes and hairs, say different sizes
« Inefficient to detect big — Typically, a collection
bars with big filters of images whose edge

length changes by a
factor of 2 (or root 2)

— This is a pyramid (or
Gaussian pyramid) by
visual analogy

— And there is superfluous
detail in the filter kernel

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/

Example application: CMU face detector

Tnputimge prrorid  Bxwocted window  Comect lighting  Histograrn equalization Receptive fields
(20 by 20 pixelst

Prepiccessing Newal etwork
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Image pyramids

* Gaussian
 Laplacian
Wavelet/QMF

* Steerable pyramid

The Gaussian pyramid

* Smooth with gaussians, because
— a gaussian*gaussian=another gaussian
* Synthesis
— smooth and sample
* Analysis
— take the top image
+ Gaussians are low pass filters, so repn is
redundant

23

The computational advantage of pyramids

GAUSSIAN PYRAMID

P
SR

. 0 . . . . 80,
g, = IMAGE

= REDUCE [g, ]

Fig |. A one-dimensional graphic representation of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels.
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http://www-bes.mit.edwpeople/adelson/pub_pdfs/pyramid83.pdf JEEE TRANSACTHONS ON COMMUNICATIONS, VDL COM.31 X0 4 APRIL 1953




|/ GAUSSIAN PYRAMID
& ’
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4 5

Fig. 4. First six levels of the Gaussian pyramid for the "Lady" image The original image, level 0, meusures 257 by 257 pixels and each
0 higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.
0 gt
SPATIAL POSITION (x)

Fig. 2. The equivalent weighting functions /(x) for nodes in levels 1, 2, 3,
and infinity of the Gaussian pyramid. Note that axis scales have been

adjusted by factors of 2 to aid comparison Here the parameter  of the
generating kemel is 0.4, and the resulting equivalent weighting

functions closely resemble the Gaussian probability density functions. 25 2
http://www-bes it edwipeople/adelson/pub pdfs/pyramid83.pdf  'EEETRANSACTIONS ONCOMMUNICATIONS, VOL COM-34, 0.4 APRIL 153 htp://www-bes.mit edwipeople/adelson/pub _pdfs/pyramid83.pdf IEEE TRASACTIONS ON COMMUNICATIONS, YOL COM-31, M0, 4, APRIL 153

Linear image transforms

transformed image
—

F = U_’ <+— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

Convolution and subsampling as a matrix

multiply (1-d case) Next pyramid level

u2=
ul=

1 4 6 4 1 0 0 0
1 4 6 4 1000000000000 000
000 1 4641 000000000000 0 0 0 1 4 6 4 1 0
000 00 1 46 410000000000 0

0O 0 0 0 1 4 6 4
0000000 1 464100000000 0
0000 00G0GO0O0OT1 46410000000 0O 0 0 0 0 0 1 4
000000000001 464100000
0000000000000 1 4641000
000 0000000000001 46410

29 30




b * a, the combined effect of the
two pyramid levels

>>U2* Ul

ans =
1 4 10 20 31 40 44 40 31 20 10 4 1 0 0 O 0O O 0O O
0 0 0 0 1 4 10 20 31 40 44 40 31 20 10 4 1 0 0 O
0 0 0 0 0 0 0O O I 4 10 20 31 40 44 40 30 16 4 0
00 0 00 0 0 00 0 0 0 1 4102 25 16 4 0
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IEEE TEANSACTIONS ONCOMMUNICATIONS, VOL COM31, NO.& APRIL 15

http://www-bes.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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The Laplacian Pyramid

» Synthesis

— preserve difference between upsampled
Gaussian pyramid level and Gaussian pyramid
level

— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other
levels

Analysis

— reconstruct Gaussian pyramid, take top layer

Dt

Application to image compression

torigianl taage) [r———

Fig. 10. A summary of the steps in Laplacian pyramid coding and decoding. First, the original image g, (lower left) is used to generate

‘Gaussian pyramid levels g,. g.. ... through repeated local averaging. Levels of the Laplacian pyramid L, L, ... are then computed as
the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized 1o yield the Laplacian pyramid code C,.
Cy, C. ... Finally, a reconstructed image r, is generated by summing levels of the code pyrami

IEEE TRANSACTIONS ONCOMMUNICATIONS, YOL. €0M 31 N0, 4, APRIL 1953

.//www-bes.mit.edw/people/adelson/pub_pdfs/pyramid83.pdf




Oriented pyramids
Laplacian pyramid is
multi-scale
band-pass

but is over-complete

Is this a problem?
maybe

Wavelets/QMFs are multi-scale, band-pass, complete...

Wavelets/QMF’s

High and low bandpass analysis filters...

U= >> inv(U)
1 1 ans =

0.5000 0.5000

is?
(what about for synthesis?) 0.5000 -0.5000

>> inv(U)

ans =

37
u

1 1.0 0 0 0 0 O

1 -1 0 0 0 0 0 O

0O 0 1 1 0 0 0 O

o 0 1 -1 0 0 0 0

0O 0 0 0 I 1 0 O

0O 0 0 0 I -1 0 O

0O 0 0 0 0 O 1 1

0O 0 0 0 0 0 1 -1 39

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

n ‘ QMF-5 ‘

0.85

0 118
1 1
2| -0.0761025
3
1
2

38
G -0.014556438

Table 4.1: Odd-length QMF kernels. Half of the impulse response sample
values are shown for each of the normalized lowpass QMF filters (All filters
are symmetric about n = 0). The appropriate highpass filters are obtained
by delaying by one sample and multiplying with the sequence (—1)".
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0.5000  0.5000 0 0 0 0 0 0
0.5000 -0.5000 0 0 0 0 0 0
0 0 0.5000 0.5000 0 0 0 0
0 0 0.5000 -0.5000 0 0 0 0
0 0 0 0 0.5000 0.5000 0 0
0 0 0 0 0.5000 -0.5000 0 0
0 0 0 0 0 0 0.5000 0.5000
0 0 0 0 0 0 0.5000 -0.5000 40
Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.
Analysis section Synthesis section

Figure 4.2: An analysis/synthesis filter bank.




Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.
(n)

Yoo

Figure 4.3: A non-uniformly cascaded analysis/synthesis filter bank. 43

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

) |
. G
OCXT ]
IOCX ]

Figure 4.4: Octave band splitting produced by a four-level pyramid cas-
cade of a two-band A/S system. The top picture represents the splitting
of the two-band A/S system. Each successive picture shows the effect of
re-applying the system to the lowpass subband (indicated in grey) of the
previous picture. The bottom picture gives the final four-level partition of
the frequency domain. All frequency axes cover the range from 0 to 7.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply
the 1-d filters separably in
the two spatial dimensions

AT

/”—,/R

s

Wavelet/QMF representation

w‘_Eﬂ_m # o, # o
Good and bad features of
wavelet/QMF filters
* Bad:
— Aliased subbands
— Non-oriented diagonal subband
* Good:

— Not overcomplete (so same number of
coefficients as image pixels).

— Good for image compression (JPEG 2000)
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Steerable pyramids

* Good:
— Oriented subbands
— Non-aliased subbands
— Steerable filters
* Bad:
— Overcomplete

— Have one high frequency residual subband, required in
order to form a circular region of analysis in frequency
from a square region of support in frequency.




First companen of
V. lmerl

Laplacian Pyramid Oriented Pyramid

49

Wy
But we need to get rid
of the corner regions
before starting the
recursive circular

Filter Kernels

Coarsest scalnﬂ

Image
Finest scale

a 7z

Reprinted from “Shiftable MultiScale T by
on Information Theory, 1992, copyright 1992, IEEE

i et al., IEEE Transactions

51

filtering
Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with & = 4. Frequency axes range from
—7 to 7. The basis functions are related by
translations, dilations and rofations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.
[r— i 195b.pdf i and Freeman, ICIP 1995 50
Laplacian Pyramid | Dyadic QMF/Wavelet | Steerable Pyramid
self-inverting (tight frame) || no yes yes
overcompleteness 4/3 1 k)3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice [9] | yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

11i and Freeman, ICIP 1995

http://www.cns.nyu. i i95b.pdf

yramids
Progressively blurred and
subsampled versions of the
image. Adds scale invariance
to fixed-size algorithms.

//Imag/e p

&
=

« Gaussian

Shows the information added in
Gaussian pyramid at each
spatial scale. Useful for noise
reduction & coding.

 Laplacian

Bandpassed representation, complete, but with
° Wavelet/QMF aliasing and some non-oriented subbands.
Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for tgxture
and feature analysis.

Schematic pictures of each
matrix transform

 Shown for 1-d images

* The matrices for 2-d images are the same
idea, but more complicated, to account for
vertical, as well as horizontal, neighbor
relationships.




Fourier transform

Fourier
transform

Fourier bases
are global:
each transform
coefficient
depends on all
pixel locations.

pixel domain
image

Laplacian
pyramid

pixel image

Overcomplete representation.
Transformed pixels represent

bandpassed image information.

Steerable
pyramid

Multiple
orientations at.
—— one scale

Multiple
orientations at,
the next scale

the next scale...

pixel image

Over-complete
representation,
but non-aliased
subbands.

Gaussian
pyramid

pixel image

Overcomplete representation.

Low-pass filters, sampled

appropriately for their blur.

Wavelet
pyramid

Ortho-normal
transform (like
Fourier transform),
but with localized
basis functions.

pixel image

Eero P. Simoncelli

Associate Investigator,
Howard Hughes Medical Institute
Associate Professor,

Neural Science and Mathematics,
New York University

Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html

60
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Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html
lev:

Laboratory for Computational Vision
|_Home [ People | Research [Publications| Software |

Publicly Available Software Packages

« Text

i is - Matiab code is available for

Synthesizing visual textures. README | Contents | ChangeLog | Source
code (UNIXIPC, gzip'ed tar fil)

« EPWIC - Embedded Progressive Wavelet Image Coder. C source code
available.

——p - matlabPyrTools - Matiab source code for mult-scale image processing
Includes tol orbuling snlmeripsting Lapaclen praic

has
many baunawhmdlmg optons, README, Contrts, Moficaon st
UNIXIPC source or Macintosh

———p - The Steerable Pyramid, an (appmmme\y) frarslaon:and eéfon miank
mul acale ke daccempoalion; Mt s (s sbave) and
|mplemenmnns are avai
Models of cortical neurons. program available

« EPIC - Efficient Pyramid (Wavelet) Image Coder. C source code available.

« OBVIUS [Object-Based Vision & Image Understanding System]:
README / ChangeL og / Doc (225K) / Source Code (2.25M)

« CL-SHELL [Gnu Emacs <> Common Lisp Interface]: 61
README / Change Log / Source Code (119K

Image statistics (or, mathematically,
how can you tell image from noise?)

Rarge [0, 256]
Dimns (384, 549)

Pixel representation
image histogram

Range [0, 255)
Dims (391, 805]
5000 q

bandpass filtered image

Range [-228, 227]
Dims [294, 598]

bandpassed representation
image histogram

Ranga 228, 227)
Oims 384, 535] i

11



Pixel domain noise image and
histogram

Range 1.2 +003] ‘
Dims [394, 509] B s = o = s i

Noise-corrupted full-freq and bandpass images
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Bayesian MAP estimator for clean bandpass

coefficient values
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem o[
8
P(xly) =k P(yx) P(x) y
P B
® K P(y)
P(ylx) f
P(xly) P(xly)

a
-280 -200 -180 100 &0 o &0 100 150 200 280

Bandpass domain noise image
and histogram

Bayes theorem

P(x, y) = P(x]y) P(y)
SO

P(xly) P(y) = P(y[x) P(x)
and

P(xly) = PT(yIX) P(x)/ li(y)

The parameters you
want to estimate

Constant w.r.t.

Likelihood T
parameters X.

function

What you observe Prior probability E

Bayesian MAP estimator

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

x 10t
By Bayes theorem 2
8
P(xly) =k P(yx) P(x) y
P(x) °©
5 P(y[x)
P(ylx) 4

P(xly)
2 P(xly)

a
-260 200 180 100 &0 o 50 100 180 200 280
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Bayesian MAP estimator

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

x10*
]

By Bayes theorem

P(xly) =k P(y[x) P(x)

8

P(x)
P(yk)

P(xly)

MAP estimate, x , as function of
observed coefficient value, y

X

-0 -30 0 20 60
Figure 2: Bayesian estimator (symmetrized) for
the signal and noise histograms shown in figure 1.
Superimposed on the plot is a straight line indicat-
ing the identity function.

bes it i noise.pdf Bayesian Wavelet Coring

Figure 4 Noisc reduction cxample. (a) Original image (cropped). (b) Image contaminated with additive Gaussian
white noise (SNR = 0.004B). (¢) Lmage restored using (semi-blind) Wicner flter (SNR = 118843). () Image restored 75
using (scmni-biind) Dayesian estimator (SNK = 15.5245).Simoncelli and Adelson, Noise Removal via
bes.mit noise.pdf Bayesian Wavelet Coring

74
Simoncelli and Adelson, Noise Removal via

13



