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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 2:
— Linear Filters and Convolution (review)
— Fourier Transform (review)

— Sampling and Aliasing (review)

Readings: F&P Chapter 7.1-7.6

Recap: Cameras, lenses, and
calibration
Last time:
¢ Camera models
¢ Projection equations
 Calibration methods

Images are projections of the 3-D world onto
a2-D plane...

Recap: pinhole/perspective

Pinole camera model -
box with a small hole s
n it:

Perspective projection: ' e
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Recap: Intrinsic parameters
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Recap: Combining extrinsic and
intrinsic calibration parameters
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Other ways to write the same equation

pixel coordinates

world coordinates
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What is image filtering?

* Modify the pixels in an image based on
some function of a local neighborhood of
the pixels.

10/ 5|3 Some function
451 — 7
1117

Local image data Modified image data ¢

Convolution

flmn]=1®g = I[m-kn-Iglk.I]

Today

Review of early visual processing
— Linear Filters and Convolution
— Fourier Transform
— Sampling and Aliasing
You should have been exposed to this material in
previous courses; this lecture is just a (quick)
review.
Administrivia:
— sign-up sheet
— introductions

Linear functions

» Simplest: linear filtering.
— Replace each pixel by a linear combination of
its neighbors.
¢ The prescription for the linear combination
is called the “convolution kernel”.
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Linear filtering (warm-up slide)
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Linear filtering (warm-up slide)
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Linear filtering

Pixelooffset
original shifted
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Blurring
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Blur examples
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Smoothing reduces noise

* Generally expect pixels to

“be like” their neighbours
— surfaces turn slowly

— relatively few reflectance

Implies that smoothing
suppresses noise, for
appropriate noise models
Scale

changes — the parameter in the

* Generally expect noise symmetric Gaussian
processes to be — as this parameter goes up,
independent from pixel to more pixels are nvolved in
pixel the average
— and the image gets more
blurred
— and noise is more
effectively suppressed

Blur examples
8 ki 24
2
impulse =)
g 03
original Pixelooffset filtered
8 5 8
=
edge 4 g 03 4
CRTT
original Pixelooffset filtered
19
0=0.05 0=0.2
o
= i # smoothing
=
T The effects of smoothing

Each row shows smoothing

with gaussians of different

width; each column shows
o=1pixel different realisations of

an image of gaussian noise

. . .Gzpiu]s
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Linear filtering (warm-up slide)

_JEE

original

Linear filtering (no change)

2.0

original Filtered
(no change)
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Linear filtering

20

original




(remember blurring)
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applied in both
dimensions).
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Linear filtering

original
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Sharpening

Sharpened
original

27

2.0
- 0.33 ‘7
TR
0 0
original
Sharpening example
1.7
= 112
8 5 8
s |
-0.25
.. -0.3
original Sharpened

(differences are
accentuated; constant
areas are left untouched).
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Sharpening

Gradients and edges

 Points of sharp change * General strategy

in an image are
interesting:

— linear filters to estimate
image gradient

before after

29

— change in reflectance
— change in object
— change in illumination
— noise
¢ Sometimes called
edge points

— mark points where
gradient magnitude is
particularly large wrt
neighbours (ideally,
curves of such points).




Smoothing and Differentiation

* Issue: noise
— smooth before differentiation
— two convolutions to smooth, then differentiate?
— actually, no - we can use a derivative of Gaussian filter

« because differentiation is convolution, and convolution is
associative

Oriented filters

Gabor filters (Gaussian modulated
harmonics) at different
scales and spatial frequencies

Top row shows anti-symmetric
(or odd) filters, bottom row the
symmetric (or even) filters.

Self-inverting transforms

Same basis functions are used for the inverse transform
f=U"F
=U'F

T

U transpose and complex conjugate

1 pixel

3 pixels 7 pixels

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

Linear image transformations

« In analyzing images, it’s often useful to
make a change of basis.

transformed image
—

F — U}‘ <+— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

An example of such a transform:
the Fourier transform

discrete domain

Forward transform

Flm,n] = Af]vzf Ik, l]ef'"(%lﬁnj

Inverse transform

1 Ml +m[%+%)
[Tk 0= v ;;F[m nle




To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---

as a function of X,y for some
fixed u, v. We get a function
that is constant when (ux+vy)
is constant. The magnitude of
the vector (u, v) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the
direction.

Here uand v
are larger than
in the previous
slide

And larger still.

Phase and Magnitude

 Fourier transform of a real
function is complex
— difficult to plot, visualize
— instead, we can think of the
phase and magnitude of the
transform
* Phase is the phase of the
complex transform
* Magnitude is the
magnitude of the complex
transform

Curious fact
— all natural images have

about the same magnitude
transform

— hence, phase seems to

matter, but magnitude
largely doesn’t

Demonstration
— Take two pictures, swap the

phase transforms, compute
the inverse - what does the
result look like?

a1

This is the
magnitude
transform
of the
cheetah pic




This is the
phase
transform
of the
cheetah pic
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This is the
magnitude
transform
of the zebra

pic

45

This is the
phase
transform
of the zebra

pic

Reconstruction
with zebra
phase, cheetah
magnitude

Reconstruction
with cheetah
phase, zebra
magnitude




Example image synthesis with
fourier basis.

¢ 16 images

49

#1:Range [0, 1] #2 Range (0000103, 0.0267]
Dims (255, 256] Dims (255, 256]

#1:Range [0, 1] #2 Range (1 89¢-007, 0.226]
Dims (255, 256] Dims (256, 256

18

#:Range 0, 1] #2Range (4796007, 0503)
Dimns (256, 256 Dims (256, 256]

#:Range [0, 1) #2: Range [.56-005,1.7)
Dims (258, 256] Dims [258, 256]

82

#1:Range 0, 1] #2 Range [3856-007, 221)
Dims (256, 256] Dims (256, 256]




136

#1:Range [0,1] #2 Range [8.255-006, 348
Dims (256, 256] Dims (266, 256]

282

#1:Range [0, 1] #2 Range [1 396-005, 5.86]
Dims (266, 256 Dims (266, 256]

538

#:Range [0, 1) #2 Range [0176-006, 8.4)
Difns (258, 256] Ditms [256, 256]

1088

1088

#:Range 0,1] #2 Range (3996005, 15]
Dirms [256, 256 Dims (256, 256]

#1:Range 0, 1)
Dims (256, 256]

#2 Range (872-005,13]
Dims (256, 256]

4052.

#1-Range 0, 1] #2:Range [0.000558, 37.7)
Dims (256, 2561 Dims (286, 256

10



#1:Range [0, 1) #2 Range [000032,645]
Dimms (258, 256] Dims (256, 256]

61

#1:Range [0, 1] #2 Range [0.000231,91.1]
Dims (256, 256] Dims (255, 258)

28743

#1-Range [, 1] #2 Range (100103, 145]
Dims (256, 2581 Dims (255, 256]

63

#:Range 0. 1] #2: Ranga (000758, 204)
Dims 256, 258) Dirs 256, 256]

65536.

#:Range [05,15] #2 Range [4 436015, 255]
Dims (255, 2561 Dims (255, 2561

65

Fourier transform magnitude

11



Masking out the fundamental and
harmonics from periodic pillars

67

Name as many functions as you
can that retain that same
functional form in the transform
domain

Linear Fiters  Cf

TABLE7.1 A variety of functions of two dimensions and their Fourier transforms. This ta
be used in two directions (with appropriate substitutions for u. v and X, y) because the

transform of the Fourier transform of a function is the function. Observant readers may sif
that the resuls on infinite sums of & functions contradict the inearity of Fourer transforms,
carelul Inspection of imits, i is possible to show that they do not (see, e.g., Bracewel, 19
Observant readers may also have noted that an expression for 7(57) 0an be oblained by

combining two lines of this table.

flax.by) | -

Forsyth&Ponce 69

68
Discrete-time, continuous frequency Fourier transform
Many sequences can be represented by ;x Fouriér integral orfﬂliezf;r’;x;- RENT:
1 7
- — joygion
] =5 /_ K)o, (2.133)
where
%
X)) =3 xlnleion. (2134)
n=—oo
Oppenheim,
Schafer and
Buck,
Discrete-time
signal processing,
Prentice Hall,
1999
70

Discrete-time, continuous frequency Fourier transform pairs

TABLE2.3  FOURIER TRANSFORM PAIRS

Sequence Fourier Transform
1. 8] 1
2. 8[n—no) emjono
3.1 (~co<n<oo) > 2ns(w+ 22k
=
4 aufn] (lal <1) 1_,,1!—,»
5. uln) ﬁ +kz 750+ 27K)
" < J Sy
6. (n+a"u[n] (lal <1) T—acToy
rsinwp(n +1) 1
e U T
Oppenheim, 5, snan Xey= { L ol < o
Schafer and i O wc<lolsm
Buck, 9. xln] = { o SansM sinle(M+1)/2] - juwra
. othe @
Discrete-time e sl
signal processing, 10, efoon 3 2asto— o+ 2nk)
Prentice Hall, [ty
1999 11. cos(won +¢) 3 [re5(0 — 0o+ 2k) + x50+ wo + 27k)]

K—o

Bracewell’s pictorial dictionary of Fourier
transform pairs

73
Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978

12



Bracewell’s pictorial dictionary of Fourier
transform pairs

fi T
i Li i

s

. 7
Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 !

Bracewell’s pictorial dictionary of Fourier
transform pairs

Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 ”

Bracewell’s pictorial dictionary of Fourier
transform pairs

T — -

Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 7

Why is the Fourier domain
particularly useful?

« It tells us the effect of linear convolutions.

Fourier transform of convolution

Consider a (circular) convolution of g and h

f=g®h

Fourier transform of convolution
f=g®h

Take DFT of both sides

F[m,n]=DFT(g®h)

13



Fourier transform of convolution

f=g®h
F[m,n]=DFT(g®h)

Write the DFT and convolution explicitly

um vn

M-
F[m,n]:

u=0 v

2

-1

> glu—k.v—Ilh [k.lle (M N

k.1

Il
o

80

)

Fourier transform of convolution
[S=g®h
F[m,n]=QFT(g®h)
F[m,n]:ZZZg[u—k,v—l]h[k,l]eim(ﬁ*ﬁj

u=0 v=0 k/

Move the exponent in

M-1N-1 _ (“”uﬂ)
—ZZZgu kv-1Ile ‘™ YHk,1I]
u=0 v=0 k,I

Fourier transform of convolution
f=g®h
Flm,n]= DFT(g@h)

Flnn)= 335 gl kv 17k 1 )
u=0v=0 kJ

*ZZZg[u k,v— I]e [\4 ‘th[k,l]

Change variables in the sum
M—k-1N-I-1 _ (k>/~t)m+(l>u) \

SN etk

u=—k v=-I k|l

82

Fourier transform of convolution

f=g®h
F[m,n]=DFT(g®h)

M-1N-1 7m(m+\'7‘x]
Flnn]= 333 glu—kv=iyik.le ¥

u=0v=0 kJ

M-1N-1

ZZZg[u k,v— /]e (M‘ﬁ]h[k.l]
=0 v=0 k!

,,,,,

M—k-1 N-i-1 (ttm»m

z ZZg[/,LL)em

bk o=1 kL

)h[k‘ |

Perform the DFT (circular boundary conditions)
km In

—ZG[m nk (i Njh[kl

Fourier transform of convolution

f=¢g®h
Flm.nl=DFT (g ®h)
Flnnl=3S" S gl k. v—1Vk. 1E )

u=0 v=0 kJ
M-1N-1

*ZZZg[u ky,v— l]e [M N]h[k,/]

Mkl N1 G (130

!
35 ot g

f—k o=l kL

=>6[m, n]e’"'[%”\)/z[k, 1

k1

Perform the other DFT (circular boundary conditions)

= G[m, n]H[m, n]

84

Analysis of our simple filters

14



Analysis of our simple filters

coefficient
§ o

Pixel offset

original Filtered
(no change)
M-1N-1 [L’” L“J
Flm,n]=>">" flk, e ‘M ¥
k=0 1=0
_ 1 lloconstant

0
86

Analysis of our simple filters

R

Pixel offset

fhicient

™
“
coe.

original shifted

M-1N-1 ,,,,[’L’"J,"j

Flm,n] > flk-6,0e M ¥
%=0 =0 Constant

5 magnitude,
v _ L0 Jinearly shifted
=€
e Phase

Ana1y51s of our simple filters

Pixel offset

original blurred

gefﬁme

T
=

-1 ’L”QL“]

Flm,n]= Flk. e (M N

=~
Il

w\»—ﬂ
e

i
o

Low-pass

filter
1+2cos m N
M VY
0

88

Analysis of our simple filters

2.0 .
| - 033 1
M
0

0
original sharpened

Z

-1

f[k,l]e (M v

M-1 kmlnj

Flm,n] _ )
k=0 1=0 high-pass filter
1 m VZS
=2——|1+2cos| —
3 ( (M D .

0

Sampling and aliasing

90

N

; in 1D takes a function and replaces it with a
vector of values, consisting of the function’s values at a set of
sample points. We’ll assume that these sample points are on a
regular grid, and can place one at each integer for convenience.

15



Sampling in 2D does the same thing, only in 2D. We’ll assume that
these sample points are on a regular grid, and can place one at each
integer point for convenience

A continuous model for a
sampled function

« We want to be able to
approximate integrals
sensibly

¢ Leads to

— the delta function

— model on right

Sample,, (f(x. )= D f(x1)6(x~i,y= )

1= ==

= fNY Y By )

The Fourier transform of a
sampled signal

F(Sample , (f(x.)))= F| (f()ay) i i S(x- i,yfj))

[y —
@

. F(f(x,y»**F(z > 5<x_,-,y_,-)j

Y —

= i iF(u—i,v—j)

94
Tourier
Transform Magnitude
Signal —_— /-’A\ Spectrum
* t
Sample Copy and
shift
Sampled  Tourier
Signal ‘Transform Magnitude
N Pl Spectrum
Cut out by
multiplication
with box filter
Inaceurately Inverse
i ruded  Fourier
Signal “Transform
— Magnitude
Spectrum
96

iy o
Fourier
P\ Transform Magnitude
—_— A Spectrum
lsﬂmmc | Copy and
Shift
Sampled Fourier
} S\gn!ﬂ Transform ';’“F:””“““
. Spectrum
RREEEL] AN /‘I\/\
[ Cut out by
multiplication
Aceurately Inverse with boxilter
Reconstrueted Fourier
S Transform
]h,_\ -— A Magnitude
Spectrum
95
Aliasing
» Can’t shrink an image by taking every second
pixel
 If we do, characteristic errors appear
— In the next few slides
— Typically, small phenomena look bigger; fast
phenomena can look slower
— Common phenomenon
« Wagon wheels rolling the wrong way in movies
« Checkerboards misrepresented in ray tracing
« Striped shirts look funny on colour television
97
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| = o
Resample the — "
checkerboard by taking III =
one sample at each circle . i -
In the case of the top left llIII
board, new representation I.III
is reasonable.
Top right also yields a %-:-:-:
reasonable representation. S

Bottom left is all black
(dubious) and bottom
right has checks that are
too big.

Constructing a pyramid by
taking every second pixel
leads to layers that badly
misrepresent the top layer

98

Smoothing as low-pass filtering

¢ The message of the FT is
that high frequencies lead
to trouble with sampling.
« Solution: suppress high
frequencies before
sampling
— multiply the FT of the
signal with something
that suppresses high
frequencies

— or convolve with a low-pass
filter

A filter whose FT is a

box is bad, because the

filter kernel has

infinite support

Common solution: use

a Gaussian

— multiplying FT by

Gaussian is equivalent

to convolving image
with Gaussian.

100

Sampling without smoothing. Top row shows the images,
sampled at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images

256x256  128x128 64x64 32x32 16x16

bl

n
.

Sampling with smoothing. Top row shows the images. We

get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row

shows the magnitude spectrum of these images.

256x256  128x128

64x64 ‘

[
&)
5o
2

X2 l6x16

Sampling with smoothing. Top row shows the images. We

get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,

then sampling at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images

256x256  128x128 64x64

16x16

[
[
)
2

X,

i

103
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Thought problem

Analyze crossed
gratings

Analyze crossed
gratings

Analyze crossed

gratings

Where does

perceived near
horizontal

grating come

from?

What is a good representation for

Analyze crossed

gratings

39

(textural properties), but not “where”.

image analysis?

* Fourier transform domain tells you “what”
* Pixel domain representation tells you

where” (pixel location), but not “what”.

113

* Want an image representation that gives

you a local descri

J

ption of image events

what is happening where.

108
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