6.891

Computer Vision and Applications

Prot. Trevor. Darrell

Lecture 16: Tracking
— Density propagation
— Linear Dynamic models / Kalman filter
— Data association
— Multiple models

Readings: F&P Ch 17
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Tracking Applications

Motion capture
Recognition from motion
Surveillance

Targeting



Things to consider 1n tracking

What are the
* Real world dynamics
« Approximate / assumed model

e Observation / measurement process



Density propogation

* Tracking == Inference over time

e Much simplification 1s possible with linear
dynamics and Gaussian probability models



Outline

Recursive filters
State abstraction
Density propagation

Linear Dynamic models / Kalman filter

Data association

Multiple models



Tracking and Recursive estimation

» Real-time / interactive imperative.

» Task: At each time point, re-compute estimate of
position or pose.
— At time n, fit model to data using time 0...n
— At time n+1, fit model to data using time 0...n+1

* Repeat batch fit every time?



Recursive estimation

Decompose estimation problem
— part that depends on new observation

— part that can be computed from previous history

E.g., running average:

a,=aa +(1-a)y,

Linear Gaussian models: Kalman Filter

First, general framework...



Tracking

* Very general model:

— We assume there are moving objects, which have an underlying
state X

— There are measurements Y, some of which are functions of this
state

— There is a clock
« at each tick, the state changes

« at each tick, we get a new observation

« Examples

— object 1s ball, state 1s 3D position+velocity, measurements are
stereo pairs

— object 1s person, state is body configuration, measurements are
frames, clock is in camera (30 fps)



Three main 1ssues 1n tracking

e Prediction: we have seen yg,...,Y; what state does this set of mea-
surements predict for the ¢’th frame? to solve this problem, we need to obtain
a representation of P(X;|Yo=vyq,....Yi 1 =Y, 1)

e Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P(X;|Yo =vyq,...,Yi—1 =
Yy, 1) to identify these measurements.

e Correction: now that we have y, — the relevant measurements — we need
to compute a representation of P(X;|Yo =vyq,.... Y =y.).
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Simplifying Assumptions

¢ Only the immediate past matters: formally, we require
P(X;|Xq,...,X; 1) =P(X;| X; 1)

This assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn’t terribly restrictive if we're clever about interpreting X;
as we shall show in the next section.

e Measurements depend only on the current state: we assume that Y;
is conditionally independent of all other measurements given X ;. This means
that

P(Y,Y;, .. YiX:) = P(Y|X)P(Y,,....Y X))

Again, this isn’t a particularly restrictive or controversial assumption, but it
yields important simplifications.
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Tracking as induction

 Assume data association 1s done

— we’ll talk about this later; a dangerous assumption
* Do correction for the 0’th frame

e Assume we have corrected estimate for 1’th frame

— show we can do prediction for 1+1, correction for 1+1

12



Base case

Firstly, we assume that we have P(X)

P Xo)P(X
P(Xo|Yo=1yy) = (yo| X0)P(X0o)

P(yy)

X P(y(J‘XU)P(X())

13



Induction step

Prediction

Prediction involves representing

P(Xf-|yu= R ’H-,:—L)

given
P(Xi—l|yﬂ! ey y-.i—L)'

Our independence assumptions make it possible to write

P{X1|y[}' L y'ﬁ.—l) — ‘/P(X“ X-,n'_—]_|yn, .o ?y'.".—l)dX?:—l
- fP(X.;|X.|;__1, Yoy o vy-i—l)P(X-i—L|ynv RN y-ﬁ.—lj‘dxvi—l
- [ PXX )P )X
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Induction step

Correction

Correction involves obtaining a representation of
P(X-::|y0, Ceey y?)

given
l)(Xé‘yg_, ceey yi—l)

Our independence assumptions make it possible to write

I)(_Xigy[}: .. ':yi)

I)(‘X‘i|y0.ﬂ . ':yé) —

IJ(yi|Xiﬁ? Yos-- - yi—l)l)(Xi|yU? R yi—l)j)(yﬂ: reoey yi—l)

Py, .-, y;)
P(yy, ... y, 1)
= P(y;| X)) P(Xilygs -+ Y; 1) 1’(; y)l
(IEIR - b}
P(y;| X)) P(Xilyo, - ¥i1)
fP(y,i|X.;,;)P(X@\yD, oY )d X




Linear dynamic models
* A linear dynamic model has the form

X; = N(Di—lxi—l;zdl- ]

Y, = N(Mixi;zmi)

 This 1s much, much more general than it looks, and extremely
powerful

16



EXamples X = N(Di—lxi_ﬁzdl. ]

s : yi:N(MiXi;zm~)
Drifting points |

— assume that the new position of the point 1s the old one,
plus noise

Hila-

L 2zb=tl
S

cic.nist.gov/lipman/sciviz/images/random3.gif 17
http://www.grunch.net/synergetics/images/random

3.Jpg



Constant velocity X =ND.x;%, )

 We have Yi~ N(Mixi;zm")

u,=u,  +Av,_ +¢

Vi =V, TG

— (the Greek letters denote noise terms)
« Stack (u, v) into a single state vector

0=l T, e
= + noise
v, N0 1J\v/

— which 1s the form we had above

18
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Constant acceleration %~V (Di_lx,-_l;zdl.]

 We have Yi~ N(Mixi;zm")

u,=u,  +Av,_ +¢
Vv, =V, +Ata,_, +g,
a,=a;_,+g,
— (the Greek letters denote noise terms)
« Stack (u, v) into a single state vector

(w) (1 At 0V u)

PR

— which is the form we had above
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X; = N(Di—lxi—l;zdi]
y, = N(Ml.xl.;Zmi)
Assume we have a point, moving on a line with

a periodic movement defined with a
differential eq:

Periodic motion

can be defined as

du (0 1\ _
dt_ 1 0 U =ou

with state defined as stacked position and
velocity u=(p, v) 2



Periodic motion X; =N (Df—lxi—l;zdf ]

Y, = N(Mixi;zmi)

d;u_ 0 1 u=38u
d \ -1 0 - ©

Take discrete approximation....(e.g., forward
Euler integration with At stepsize.)

= u;—1 + AtSu;

(1 Aty
S\ -At 1 !
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Higher order models

* Independence assumption
Plx;|xy,...,xi—1) = P(x;|x;—1)

* Velocity and/or acceleration augmented position

» Constant velocity model equivalent to

P(p;|pis--spi1) = Npi—1 + (Pi_1 — Ps_0), 2d,)

— velocity == Pi—1 — Pi—2
— acceleration== (P;_1 — P;_2) — (P;_2 — P;_3)

— could also use P;_,4 etc.

24



The Kalman Filter

« Key ideas:
— Linear models interact uniquely well with Gaussian

noise - make the prior Gaussian, everything else
Gaussian and the calculations are easy

— Gaussians are really easy to represent --- once you
know the mean and covariance, you’re done

25



Recall the three main 1ssues 1n tracking

e Prediction: we have seen yg,...,Y; what state does this set of mea-
surements predict for the ¢’th frame? to solve this problem, we need to obtain
a representation of P(X;|Yo=vyq,....Yi 1 =Y, 1)

e Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P(X;|Yo =vyq,...,Yi—1 =
Yy, 1) to identify these measurements.

e Correction: now that we have y, — the relevant measurements — we need
to compute a representation of P(X;|Yo =vyq,.... Y =y.).

(Ignore data association for now)

26



The Kalman Filter

Time Update Measurement Update
(“Predict’™) (*Correct™)

27

[figure from http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html]



The Kalman Filter in 1D

e Dynamic Model

- 2
i ~ N(dix;_1,03)

 Notation

2
Tk

Yy ~ N{mir; o

mean of P(X;|yo,...,y;—1)as X, <« Predicted mean
% —

mean of P(X; yg. ..., y;) as X, < Corrected mean

the standard deviation of P(X; yg, ..., yi—1) as o,

of P(X;|yo, ..., ¥i) as o)

28



The Kalman Filter

Time Update Measurement Update
(“Predict’™) (*Correct™)
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Prediction for 1D Kalman filter

o T

* The new state is obtained by r; ~ N{dizi—1,05,)

— multiplying old state by known constant

— adding zero-mean noise

e Therefore, predicted mean for new state 1s

— constant times mean for old state

e OId variance 1s normal random variable

— variance is multiplied by square of constant

— and variance of noise 1s added.

— 2

X, =d; X, , (07 ) =05, + (dic}})*
30



Dvnamic Model:
xi ~ Nidizi_1,04;)
Yyi ~ Nz, om, )

Start Assumptions: T, and o, are known
Update Equations: Prediction

T, diT; 4
_ [ ; + 3
T \/ O, (dio,” )

31



The Kalman Filter

Time Update Measurement Update
(“Predict’™) (*Correct™)
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Correction for 1D Kalman filter

)

S ¢ _— 0

- [T o, +muyilo])
I'E- o 3 ¢ — % 1
Om; + MG(0; )7

I
:. F S '\'u':l
| Om,; \ 05 )7
g, = ;0 D —
\T +m; T, 7

Notice:

— 1f measurement noise 1s small,

we rely mainly on the measurement,
— 1f 1it’s large, mainly on the
prediction

— o does not depend on y
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Dvnamic Model:
xi ~ Nidizi_1,04;)
Yyi ~ Nz, om, )

Start Assumptions: T, and o, are known
Update Equations: Prediction

T, diT; 4
- 2 ; + 43
ﬂ'! '||' Crl.'ll | digj_l |

Update Equations: Correction

Time Update
(“Predict™)

Measurement Update
(*Correct™)

— 2 — 2
+ Ti Oy, — Milfil0; )
‘Ez' o 2 — 7
T, + 105 (07 )
2 (o2
n | ':rm.. '-G-z' |
a; 2 - -
;3 2 — 3
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Smoothing

e |Jdea

— We don’t have the best estimate of state - what about
the future?

— Run two filters, one moving forward, the other
backward in time.

— Now combine state estimates

 The crucial point here is that we can obtain a smoothed
estimate by viewing the backward filter’s prediction as yet
another measurement for the forward filter

40
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n-D

Generalization to n-D i1s straightforward but more complex.

44



n-D

Generalization to n-D i1s straightforward but more complex.

N

Time Update Measurement Update
(“Predict”) (“Correct™)

N

45



n-D Prediction

Generalization to n-D i1s straightforward but more complex.

N

Time Update Measurement Update
(“Predict”) (“Correct™)

Prediction: v

e Multiply estimate at prior time with forward model:

x, =Dz,

i p—

* Propagate covariance through model and add new noise:

E; — Edi -+ DEJ:__lpt

46



n-D Correction

Generalization to n-D i1s straightforward but more complex.

-

Time Update Measurement Update
(“Predict”) (“Correct™)

Correction: v

« Update a priori estimate with measurement to form a
posteriori




n-D correction

Find linear filter on innovations

T, =%, + K|y, — Mz ]

which minimizes a posteriori error covariance:

£ b+ =)

K 1s the Kalman Gain matrix. A solution is

Ko = ME M ME 48,

48



Kalman Gain Matrix

T, =%, + K|y, — Mz ]

i

=2 ME (M ME £,

As measurement becomes more reliable, K weights residual
more heavily,

lim K, =M~

m

As prior covariance approaches 0, measurements are 1gnored:

lim K, =0

2, —0 49



Dvnamic Model:

£y _'ﬂ"rrl_ﬂg'mf_l . "'.:-f |

y; ~ NiMizi, Y, )

Start Assumptions: T, and ¥ are known
Update Equations: Prediction

Update Equations: Correction

Ki =Y M (MY MT

TS T+ K|y, - M

it = [Id — KoM, 7

s —1
E .-:In.
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox

14
12}

10}

ra -da =™~ &=~ O]

—=— true
ohsersed
= filtered
e 10 20 30 .

“r [figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox
 MSE of filtered estimate is 4.9; of smoothed estimate. 3.2.

* Not only 1s the smoothed estimate better, but we know that it 1s better,
as 1llustrated by the smaller uncertainty ellipses

« Note how the smoothed ellipses are larger at the ends, because these
points have seen less data.

« Also, note how rapidly the filtered ellipses reach their steady-state
(“Ricatt1”) values. 5

[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]



Data Association

In real world y, have clutter as well as data...

E.g., match radar returns to set of aircraft
trajectories.

53



Data Association

Approaches:
* Nearest neighbours

— choose the measurement with highest probability given
predicted state

— popular, but can lead to catastrophe

 Probabilistic Data Association

— combine measurements, weighting by probability given
predicted state

— gate using predicted state

54
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Abrupt changes

What if environment 1s sometimes unpredictable?
Do people move with constant velocity?

Test several models of assumed dynamics, use the
best.
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Multiple model filters

Test several models of assumed dynamics

[figure from Welsh and Bishop 20001]



MM estimate

Two models: Position (P), Position+Velocity (PV)

y [meters]

0 20 é 1IE] 1l5 EIEII 2|5 30
Time [seconds]

[figure from Welsh and Bishop 2001]
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[figure from Welsh and Bishop 2001]
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[figure from Welsh and Bishop 2001]



Smooth when still
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[figure from Welsh and Bishop 2001]



Resources

« Kalman filter homepage
http://www.cs.unc.edu/~welch/kalman/

* Kevin Murphy’s Matlab toolbox:

http://www.a1.mit.edu/~murphyk/Software/Kalman/k
alman.html
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(KF) Distribution propogation
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Distribution propogation

deterministic dreift
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stochastic diffusion
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EKF

Linearize system at each time point to form an
Extended Kalman Filter (EKF)

— Compute Jacobian matrix

J(g; ;)
whose (I,m)’th value 1s 5 evaluated at
!

. D, .
— use this for forward mo... .. 2ach step in KF

L ;

Useful 1n many engineering applications, but not as
successful in computer vision....
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Representing non-linear Distributions

70



Representing non-linear Distributions

Unimodal parametric models fail to capture real-
world densities...

71



Representing non-linear Distributions

Mixture models are appealing, but very hard to
propagate analytically!

[ but see Cham and Rehg’s MHT approach]
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Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:

73



Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:

74



Outline

Recursive filters

State abstraction

Density propagation

Linear Dynamic models / Kalman filter
Data association

Multiple models

Next time:
— Sampling densities
— Particle filtering
[Figures from F&P except as noted]
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