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Computer Vision and Applications

Prot. Trevor. Darrell

Lecture 15: Fitting and Segmentation

Readings: F&P Ch 15.3-15.5,16



Last time: “Segmentation and Clustering (Ch. 14)”

» Supervised->Unsupervised Category Learning
needs segmentation

 K-Means

e Mean Shift

* Graph cuts

e Hough transform



Generative probabilistic model

Foreground model

based on Burl, Weber et al. [ECCV 98, '00]
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The shape model. The mean location is indicated by the cross, with
the ellipse showing the uncertainty in location. The number by each 4
part is the probability of that part being present.
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Background Techmques Compared
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Mean Shift Algorithm

Mean Shift Algorithm

Choose a search window size.

Choose the initial location of the search window.

Compute the mean location (centroid of the data) in the search window.
Center the search window at the mean location computed in Step 3.
Repeat Steps 3 and 4 until convergence.

koo~

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:




Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image
V:image pixels

E: connections between
pairs of nearby pixels




Eigenvectors and affinity clusters

Simplest idea: we want a
vector a giving the association
between each element and a
cluster

We want elements within this
cluster to, on the whole, have

strong affinity with one another. -

We could maximize

But need the constraint

This is an eigenvalue problem -
choose the eigenvector of A
with largest eigenvalue

Shi/Malik, Scott/Longuet-
Higgens, Ng/Jordan/Weiss, etc.

.............................




Hough transform

tokens

votes
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Today “Fitting and
Segmentation (Ch. 15)”

e Robust estimation
« EM

* Model Selection
RANSAC

(Maybe “Segmentation I’ and “Segmentation I1”
would be a better way to split these two lectures!)

11



Robustness

* Squared error can be a source of bias 1n the
presence of noise points
— One fix 1s EM - we’ll do this shortly

— Another 1s an M-estimator

* Square nearby, threshold far away

— A third 1is RANSAC

 Search for good points
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Robust Statistics

* Recover the best fit to the majority of the data.

* Detect and reject outliers.

17



Estimating the mean

Gaussian distribution

<

Ly
R
0 234 6

Mean 1s the optimal solution to:
u 1 i J N
= — ; . 2
N i=1 man(dl _IL[)

residual
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Estimating the Mean

The mean maximizes this likelihood:

Hexp<——<d - 1)/ 0%)

O =1

InfllXp(di | ,Ll) —

The negative log gives (with sigma=1):
N
- 2
min ) (d, - 4)
i=1

“least squares” estimate

19



<

Estimating the mean
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Estimating the mean

What happens if we change just one measurement?

<

I

I g

0 2 4 6+A
A

' 4=
H=pt

With a single “bad” data point I can move the mean
arbitrarily far.
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Influence

Breakdown point

* percentage of outliers required to make the solution
arbitrarily bad.

Least squares:
* influence of an outlier 1s linear (A/N)

* breakdown point 1s 0% -- not robust!

What about the median?
L |
T 1 1 e

0 2 4 6+A
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What’s Wrong?

N
. d— 2
m;n;( . — M)

Outliers (large residuals) have too much influence.

p(x)=x’ w(x)=2x
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Approach

Influence 1s proportional to the derivative of the p function.

1 EL s reos

Want to give less influence to points beyond
some value.

24



Approach

N
. I
m;n;p(, 14,0)

(

Robust error function 5 Scale parameter

Replace )
,O(X, J) — (_j

O

with something that gives less influence to outliers.
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Approach

N
] i
m;n;p(, 1,0)

(

Robust error function } Scale parameter

No closed form solutions!

- Iteratively Reweighted Least Squares
- Gradient Descent
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.1 Norm

p(x) = x|

w(x) = sign(x)
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Redescending Function

Tukey’s biweight.

Beyond a point, the influence
begins to decrease.

Beyond where the second
derivative is zero — outlier points

28




Robust Estimation

Geman-McClure function works well.
Twice differentiable, redescending.

Influence function
(d/dr of norm):

0.4

- k

2 2 1 3
0

4 2ro

r,0) = r,o) =
p( ) 02—|—]"2 W( ) (G2+r2)2
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Robust scale
Scale 1s critical!

Popular choice:

ol™) = 1.4826 median; \?“i(n)(xg; Q(H_l))\
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Too large
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Just right
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Example: Motion

Assumption: Within a finite image region, there 1s only a
single motion present.

Violated by: motion discontinuities, shadows, transparency,
specular reflections...

Conservation

Violation of
Brightness Constancy

Violations of brightness constancy result in large residuals: 3



Estimating Flow

Minimize:

E(a)=) p(Lu(x;a)+1v(x;a)+1,,0)

XeR

Parameterized models provide strong constraints:

* Hundred, or thousands, of constraints.
* Handful (e.g. six) unknowns.

Can be very accurate (when the model is good)!

36



Deterministic Annealing

Start with a “quadratic” optimization problem and
gradually reduce outliers.
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Continuation method

GNC: Graduated Non-
Convexity
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Fragmented Occlusion
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Results
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Multiple Motions, again

Find the dominant motion while rejecting outliers.

Black & Anandan; Black & Jepson
42



Robust estimation models only a single
process explicitly

Robust norm:

E(a)= ) p(VI'u(x;a)+1,;0)

X,VER
Assumption:

Constraints that don’t fit the dominant motion
are treated as “outliers” (noise).

Problem?

They aren’t noise!

43



Alternative View

* There are two things going on simultaneously.

* We don’t know which constraint lines correspond to which
motion.

* If we knew this we could estimate the multiple motions.
- a type of “segmentation” problem

* If we knew the segmentation then estimating the motion
would be easy.
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EM General framework

Estimate parameters from segmented data.

Consider segmentation labels to be missing data.
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Missing variable problems

A missing data problem is a statistical problem
where some data is missing

There are two natural contexts in which missing
data are important:

* terms in a data vector are missing for some
instances and present for other (perhaps
someone responding to a survey was
embarrassed by a question)

* an inference problem can be made very much
simpler by rewriting it using some variables

whose values are unknown. y



Missing variable problems

A missing data problem is a statistical problem
where some data is missing

There are two natural contexts in which missing
data are important:

* terms in a data vector are missing for some
instances and present for other (perhaps
someone responding to a survey was
embarrassed by a question)

* an inference problem can be made very much
simpler by rewriting it using some variables

whose values are unknown. .




Missing variable problems

In many vision problems, 1f some variables were
known the maximum likelihood inference problem
would be easy

— fitting; 1f we knew which line each token came from, it
would be easy to determine line parameters

— segmentation; 1f we knew the segment each pixel came
from, 1t would be easy to determine the segment
parameters

— fundamental matrix estimation; if we knew which
feature corresponded to which, 1t would be easy to
determine the fundamental matrix

— etc.
48



Strategy

For each of our examples, if we knew the
missing data we could estimate the

parameters etfectively.

If we knew the parameters, the missing data
would follow.

This suggests an iterative algorithm:
1. obtain some estimate of the missing data, using a
guess at the parameters;

2. now form a maximum likelihood estimate of the
free parameters using the estimate of the missing

data.

49



Motion Segmentation

“What goes with what?”

50
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Layered Representation
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Frame 1 Frames 2 Frame 3 [Adelson]
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I(xy,1)

Ixv.t+1)

EM 1n Pictures

Given images at times t and t+1
containing two motions.
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EM 1n Pictures

I(X’y’t) Wl (X, y)

Assume we know the
segmentation of pixels
into “layers”

I(xv,t+1) w,(x,y)

O0<w/(x,y)<1
ZWZ-()C,)/):I

v
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EM 1n Pictures

I(x,y,t) W (X, y) u,(x,y;a,)

I(x,v.t+1) w, (X, ) u, (x, y:a,)
A
.!:rf J:f.lf ﬁf
s

Then estimating the motion of each “layer” is easy.



EM in Equations

I(x,y,t) W, (X, y) u,(x,y;a,)
I(x,v,t+1)

E(a)= Y w(x)(VI u(x;a,)+1,)’

X,VER
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EM in Equations

I(x,y,1)

E(ay))= > w,(x)(VI'u(x;a,)+1,)’

X,VER
I(x,v.t+1) W, (X, ) u, (x, y:a,)
A
.!:rf J:f.lf ﬁf
s
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EM 1n Pictures

VIV
4 LV

Ok. So where do we get the weights?
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EM 1n Pictures

VIV
4 LV

The weights represent the probability that the
constraint “belongs” to a particular layer.
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EM 1n Pictures

Assume we know the
motion of the layers but
not the ownership
probabilities of the
pixels (weights).
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EM 1n Pictures

Assume we know the — T —
motion of the layers but - T
not the ownership T .
probabilities of the -
pixels (weights).
;.// ﬁ-/ J-'-/
Also assume we have a S L
likelihood at each pixel: S S

pU(@),I(t+1)|a)= exp(—%(V]Tu(a)Jrlt)2 /o°)

N2mo
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EM 1n Pictures

Given the flow, warp the
first image towards the
second.

Look at the residual error
(1)) (since the flow 1s now
ZEero).

POV 1+ D]0)~ exp(- (1) /%)
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EM 1n Pictures

Given the flow, warp the
first image towards the
second.

Look at the residual error
(1)) (since the flow 1s now
ZEero).

pOVUL().2,).1+D] 0%~ exp(- (1)} /%)
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EM 1n Pictures

each pixel.

Two likelihoods:

p(L(x,t+1)
pI(x,t+1)

Two “explanations” for

u(a,))
u(a,))
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EM 1n Pictures

Compute total likelihood
and normalize:

pU(x,t+1)[u(a,))

Wi (X) —

2 pU(x,t+1)|u(a,))

65



Motion segmentation Example

* Model image pair (or video sequence) as consisting of

regions of parametric motion
(vxj (a bj(xj (txj
= +
v, c d/\y t,
* iterate E/M...

— determine which pixels belong to which region

— affine motion 1s popular

— estimate parameters

66



Three frames from the MPEG “flower garden™ sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE
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Grey level shows region no. with highest probability

= =k = == B * * ko

i3 B L

=7 4 4 4 % 4 4 4 4 4
i

a & % & 4 &% & £ & W

Segments and motion fields associated with them

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE
68



If we use multiple frames to estimate the appearance
of a segment, we can fill in occlusions; so we can
re-render the sequence with some segments removed.

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE

69



Lines

« Simple case: we have one  * We wish to determine
line, and n points — line parameters

e Some come from the line, — p(comes from line)
some from ‘“noise”

 This 1s a mixture model:

P(point | line and noise params )= P(point | line )P(comes from line)+
P(point | noise )P(comes from noise)
= P(point | line)A + P(point | noise X1 — A)
- e.g.,

— allocate each point to a line with a weight, which is the probability
of the point given the line

— refit lines to the weighted set of points 70



Line fitting review

 In case of single line and normal 1.1.d. errors,
maximum likelihood estimation reduces to least-
squares:

mlan(ax +b - y —mmabZr

e The line parameters (a,b) are solutions to the
system:

=R E

71



The E Step

e Compute residuals:
I”l(i) = diX; +b1 —

()= k (uniform noise model)
« Compute soft assignments:

—rt (i) o*

e

—r*(i)/ o

Wl (l) — 0 _rzz (i)/c72

+e

—rf (i)/ o

e

—r7(i)/ o?

W2 (l) — _rzz (i)/c72

e + e

72



The M Step

Weighted least squares system 1s solved for (a;,b,)

> w@)x; Y w ), m_ 2 Wi (@0)x,,
> om@x Y w0 2wy,

bl
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The expected values of the deltas at the maximum
(notice the one value close to zero).
g A ——F————F ¥
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Closeup of the fit

76



Issues with EM

e Local maxima
— can be a serious nuisance in some problems

— no guarantee that we have reached the “right”
maximum

e Starting

— k means to cluster the points 1s often a good idea

77



L.ocal maximum
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which 1s an excellent fit to some points

* ¥
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Choosing parameters

* What about the noise parameter, and the sigma for
the line?

— several methods

 from first principles knowledge of the problem (seldom really
possible)

 play around with a few examples and choose (usually quite
effective, as precise choice doesn’t matter much)

— notice that if k 1s large, this says that points very
seldom come from noise, however far from the line
they lie

« usually biases the fit, by pushing outliers into the line

* rule of thumb; its better to fit to the better fitting points, within
reason,; if this is hard to do, then the model could be a problem

81



Estimating the number of models

* In weighted scenario, additional models will not
necessarily reduce the total error.

* The optimal number of models is a function of the
c parameter — how well we expect the model to fit
the data.

* Algorithm: start with many models. redundant
models will collapse.

82



Fitting 2 lines to data points

e Input:
— Data points that where generated
by 2 lines
with Gaussian noise.
e Output:

— The parameters of
the 2 lines.

— The assignment of
each point to its line.

y=a,xtb,+ov  y=a,xtb,tov
v~N(0,1) >



The E Step

« Compute residuals assuming known lines:
n(i)=ax, +b -y,
n (i) =a,x, +b, -y,

e Compute soft assignments:

—rt (i) o*

. e
W =
1(1) e—rlz(i)/a2 _|_e—r22(i)/c72
e—rf(z’)/a2
w, (1) =
2(1) e—rlz(i)/a2 _|_e—r22(i)/c72
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The M Step

 In the weighted case we find
min,, (3w, ()2 () + > w, (i) ()

* Weighted least squares system 1s solved twice for
(alabl) and (a29b2)'

> m@x Y w)x, U_ 2 mDxy,
>owm@x, Y ow@) J\b ) 2 w6y,

Zi w, (i)xiz Zl- w,(D)x; |( a,
Zi w, (I)x, Zl- w, (i) b,

_[ ZiWZ(i)yi J s
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I=log(likelil

aaF

-1

! = 27.6501

I =14.506

= —143.53

asF

I =2.0229




Color segmentation Example

Parameters include mixing weights and

INeans /Pﬂ‘fﬂ.T‘Q’

0 = (C}flw**?{:}fgﬁglﬁ“’?gﬁr)' 0 = (HE?EE)

yielding
p(z[O) Zﬂfapa z|6;)

with . .
pg(ﬁ?‘&g) — (Q?T)CWQ det(Et)UQ €Xp {2($ o Ht)Tz;l(m o H’t)}
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EM for Mixture models

If log-likelihood 1s linear in missing variables we can
replace missing variables with expectations. E.g.,

p(y) = > mp(yla) > (Z 215 10gp(yj|aa))
!

| jeobservations \i=1
mixture model complete data log-likelihood

1. (E-step) estimate complete data (e.g, z,’s) using
previous parameters

2. (M-step) maximize complete log-likelihood
using estimated complete data

w* T = arg max L.(Z°;u)
= argmax Ly, z°];u) 0



Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

Choose a number of sepments
Construct a set of support maps, one per segment,
containing one element per pixel. These support maps
will contain the weight associating a pixel with a sepment
Initialize the support maps by either:
Estimating seprment parameters from small
blocks of pixels, and then computing weights
using the E-step;
or
Randomly allocating values to the support maps.
Until convergence
Update the support maps with an E-Step
Update the sepment parameters with an M-Step
end
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Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

Choose a number of sepments
Construct a set of support maps, one per segment,
containing one element per pixel. These support maps
will contain the weight associating a pixel with a sepment
Initialize the support maps by either:
Estimating seprment parameters from small
blocks of pixels, and then computing weights
using the E-step; Initialize
or
Randomly alloeating values to the support maps.

Until convergence
Update the support maps with an E-Step
Update the sepment parameters with an M-Step
end
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Color segmentation

* At each pixel in an image, we compute a d-

dimensional feature vector x, which
encapsulates position, colour and texture
information.

 Pixel 1s generated by one of G segments, each
Gaussian, chosen with probability 7:

plx) = ZP(?B\QE)?TE
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Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

Choose a number of sepments
Construct a set of support maps, one per segment,
containing one element per pixel. These support maps
will contain the weight associating a pixel with a sepment
Initialize the support maps by either:
Estimating seprment parameters from small
blocks of pixels, and then computing weights
using the E-step; Initialize
or
Randomly alloeating values to the support maps.

Intil converpence
Update the support maps with an E-Step E
Update the sepment parameters with an M-Step

erd
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Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

Choose a number of sepments
Construct a set of support maps, one per segment,
containing one element per pixel. These support maps
will contain the weight associating a pixel with a sepment
Initialize the support maps by either:
Estimating seprment parameters from small
blocks of pixels, and then computing weights
using the E-step; Initialize
or
Randomly alloeating values to the support maps.

Intil converpence
Update the support maps with an E-Step E
Update the sepment parameters with an M-Step

erd
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E-step

Estimate support maps:

_ *j-’g?i]pm(ﬂjﬂggsj]
Zf:i H;EEJPE(IHQ.;(E]:'

plm|x, O4))

Algorithm 17.2: Colour and texture segmentation with EM: - the E-step

For each pixel location !
For each segment m
Insert, argijpm{:c,ﬂﬁgsjj
in pixel location ! in the support map m
end Add the support map values to obtain
i o (a6
and divide the value in location [ in each support map by this term
and
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M-step

Update mean’s, covar’s, and mixing coef.’s using
support map:

Algorithm 17.3: Colour and texture segmentation with EM: - the M-step

For each seprnent m
Forrn new values of the seprment parameters
using the expressions:

HE::H) = % Z;:i plm|x, 9(5))

(1) _ Dopy Eap(m|Z:00%)
Hrn S p(m[%,00)

Syl _ Doy P12 O (= ) (a—pr0)7 }
" S plm|x:,00)

Where p(m|z;, ©,y) is the value
in the m’th support map for pixel location I
end
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FIGURE 17.1: The image of the zebra in (a) is smoothed at varying scales to yield (b).
This smoothing is done using local estimates of scale. Thess scale measurements essentially

measurs the scale of the chanpe around a pixal; at edges, the scale is narrow, and in stripey
regions it is broad, for example. The features that result are shown in (c); the top three
images show the smoothed colour coordinates and the bottom three show the texture
features (ae, pc and ¢ — the scale and anisotropy features are weighted by contrast).
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Segmentation with EM

FIGURE 17 .2: Bach pitel of the zebra image (which iz the same ag that in figure 17.1) iz
labelled with the value of we for which plws|e:, ©°) iz a maximmumn, to yield a segmentation.
The images inshos the result of this process for K = 2,3, 4, 5. Bach image hag K grey-level
values corresponding to the segment indexes. Figure from "COolor and Thxbure Based
Image Segmentafion Using BM and Tis Application fo Content Based Imege Redrieoal”
& Belongee et al,, Proc, Int Conf Compuler Vesion, 18780 1755 IEEE
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Model Selection

* We wish to choose a * Issue
model to fit to data — In general, models with
— e.g. is it a line or a circle? more parameters will fit a

dataset better, but are

— e.g 1s this a perspective or o
poorer at prediction

orthographic camera?
— This means we can’t simply

look at the negative log-
likelihood (or fitting error)

— e.g. 1s there an aeroplane
there or 1s it noise?
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JJ Top is not necessarily a better

fit than bottom
(actually, almost always worse)

101



«

(1oua buin 1o) pooyliayi-bo) aainebay

Number of parameters in model
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Operating point

Negative log-likelihood (or fitting error)

NMumber of parameters in model

We can discount the fitting error with some term in the number
of parameters in the model.
103



Discounts

AIC (an information
criterion)

— choose model with smallest
value of

—2L(D;0 )+2p

— p is the number of
parameters

BIC (Bayes information
criterion)

— choose model with smallest
value of

—2L(D; g )+ plogN
— N 1s the number of data
points
Minimum description
length

— same criterion as BIC, but
derived in a completely
different way
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Cross-validation

« Split data set into two

pieces, fit to one, and
compute negative log-
likelithood on the other

Average over multiple
different splits

Choose the model with the
smallest value of this
average

* The difference 1n averages

for two different models is
an estimate of the
difference in KL
divergence of the models
from the source of the data
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Extreme segmentation

What if more than half the points are noise?
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RANSAC

* [terate:
— Sample
— Fit
— Test
« Keep best estimate; refit on inliers

107



RANSAC

Choose a small subset
uniformly at random

Fit to that

Anything that 1s close to
result 1s signal; all others
are noise

Refit

Do this many times and
choose the best

e [ssues

How many times?

» Often enough that we are
likely to have a good line

How big a subset?

» Smallest possible
What does close mean?

* Depends on the problem
What is a good line?

* One where the number of
nearby points is so big it is
unlikely to be all outliers
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Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:

n — the smallest number of points required

k the number of iterations required

t the threshold used to identify a point that fits well

d — the mumber of nearby points required
to assert a model fits well

Until k iterations have oceurred

Draw a sample of n points from the data
uniformly and at random

Fit to that set of n points

For each data point outside the sample
Test the distance from the point to the line

against #; if the distance from the point to the line
is less than £, the point is close

end

[f there are d or more points close to the line
then there is a good fit. Refit the line using all
these points.

end
Use the best fit from this collection, using the

ftting error as a criterion
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RANSAC applications

 Fundamental Matricies
— estimate F from 7 points

— test agreement with all other points

* Direct motion
— estimate affine (or rigid motion) from small match

— see what other parts of image are consistent
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Fitting and Probabilistic
Segmentation

Robust estimation
EM

Model Selection
RANSAC

[Slides from Micheal Black and F&P]
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