6.891

Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 15: Fitting and Segmentation

Readings: F&P Ch 15.3-15.5,16

Last time: “Segmentation and Clustering (Ch. 14)”

* Supervised->Unsupervised Category Learning
needs segmentation

* K-Means

* Mean Shift

* Graph cuts

* Hough transform

Generative probabilistic model

Foreground model based on Burl, Weber et al, [ECCV ‘98,
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The shape model. The mean location is indicated by the cross, with
the ellipse showing the uncertainty in location. The number by each 4
part is the probab\litx of that part being present.
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From the Wallflower Paper




Mean Shift Algorithm

Mean Shift Algorithm

. Choose a search window size.

. Choose the initial location of the search window.

. Compute the mean location (centroid of the data) in the search window.
. Center the search window at the mean location computed in Step 3.

. Repeat Steps 3 and 4 until convergence.

AR WN =

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:

Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image
V:image pixels

E: connections between
pairs of nearby pixels

Eigenvectors and affinity clusters

« Simplest idea: we want a « This is an eigenvalue problem -
vector a giving the association choose the eigenvector of A
between each element and a with largest eigenvalue
cluster

+  We want elements within this
cluster to, on the whole, have
strong affinity with one another

*  We could maximize

* But need the constraint

a’Aa a'a=1

+ Shi/Malik, Scott/Longuet- | o
Higgens, Ng/Jordan/Weiss, etc. o ! 9

Hough transform

tokens

votes

Today “Fitting and
Segmentation (Ch. 15)”

* Robust estimation
* EM

* Model Selection
* RANSAC

(Maybe “Segmentation I” and “Segmentation II”
would be a better way to split these two lectures!)

Robustness

» Squared error can be a source of bias in the
presence of noise points
— One fix is EM - we’ll do this shortly
— Another is an M-estimator
* Square nearby, threshold far away
— A third is RANSAC

« Search for good points
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Robust Statistics Estimating the mean
» Recover the best fit to the majority of the data.
* Detect and reject outliers. Gaussian distribution
[
1T
0 234 6
Mean is the optimal solution to:
1 & N
H=— di 1 2
N min Y (d, - 42
L P P
residual
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Estimating the Mean

The mean maximizes this likelihood:
1 N 1 2, s
max p(d, | 1) =———] [exp(~~(d, ~ )’ I o)
“ N2ro 1:][ 2
The negative log gives (with sigma=1):
N
. 2
min » (d,—
) Z( L= )

“least squares” estimate

Estimating the mean

T
[
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Estimating the mean

What happens if we change just one measurement?

[
1
0 2 4 6+A

|_+A
H=p

With a single “bad” data point I can move the mean
arbitrarily far.

Influence

Breakdown point

* percentage of outliers required to make the solution
arbitrarily bad.

Least squares:
* influence of an outlier is linear (A/N)
* breakdown point is 0% -- not robust!
What about the median?
[ |

[ [
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What’s Wrong?

N
. _ 2
min 3. (d, )

Outliers (large residuals) have too much influence.

p(x)=" v (x)=2x

Approach

Influence is proportional to the derivative of the p function.

Want to give less influence to points beyond
some value.




Approach

N
. .
min > p(d, #:0)

i=1 &
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Robust error function J ™ Scale parameter

Replace x 2
p(xa O-) = (7)
(e

with something that gives less influence to outliers.

Approach

N
mlnzp(dt - lua O-)
AT #
\ /
\ /\
Robust error function J Scale parameter

No closed form solutions!

- Iteratively Reweighted Least Squares
- Gradient Descent

L1 Norm

p(x) = x| w (x) =sign(x)

Redescending Function

Tukey’s biweight. Beyond a point, the influence
begins to decrease.

Beyond where the second
derivative is zero — outlier points

28

Robust Estimation

Geman-McClure function works well.
Twice differentiable, redescending.

Influence function
(d/dr of norm):

- f

NN

"~ A\ A
" ~ Mgt
“, \ Y
o ‘t\l'yf /
: ',\\.\'*U'//'\




Robust scale
Scale is critical!

Popular choice:

o) = 1.4826 median; |r\"(z;; 677V

Too large
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Example: Motion

Assumption: Within a finite image region, there is only a
single motion present.

Violated by: motion discontinuities, shadows, transparency,
specular reflections. ..

Conservation

Violation of
Brightness Constancy

Violations of brightness constancy result in large residuals: 35

Estimating Flow

Minimize:

E(a)= Zp(lxu(x; a)+1v(x;a)+1,,0)

XeR

Parameterized models provide strong constraints:

* Hundred, or thousands, of constraints.
* Handful (e.g. six) unknowns.

Can be very accurate (when the model is good)!

36




Deterministic Annealing

Start with a “quadratic” optimization problem and
gradually reduce outliers.

Continuation method

GNC: Graduated Non-
Convexity

Fragmented Occlusion

Results

Results

Multiple Motions, again

Find the dominant motion while rejecting outliers.

Black & Anandan; Black & Jepson
n




Robust estimation models only a single
process explicitly

Robust norm:

E(a)= Zp(VITll(X; a)+1;0)

Xx,y€ER
Assumption:

Constraints that don’t fit the dominant motion
are treated as “outliers” (noise).

Problem?

They aren’t noise!

Alternative View

* There are two things going on simultaneously.

* We don’t know which constraint lines correspond to which
motion.

* If we knew this we could estimate the multiple motions.
- a type of “segmentation” problem

* If we knew the segmentation then estimating the motion
would be easy.

EM General framework

Estimate parameters from segmented data.

Consider segmentation labels to be missing data.

Missing variable problems

A missing data problem is a statistical problem
where some data is missing

There are two natural contexts in which missing
data are important:

* terms in a data vector are missing for some
instances and present for other (perhaps
someone responding to a survey was
embarrassed by a question)

 an inference problem can be made very much

simpler by rewriting it using some variables
whose values are unknown.

Missing variable problems

A missing data problem is a statistical problem
where some data is missing

There are two natural contexts in which missing
data are important:

* terms in a data vector are missing for some
instances and present for other (perhaps
someone responding to a survey was
embarrassed by a question)

* an inference problem can be made very much
simpler by rewriting it using some variables
whose values are unknown.

Missing variable problems

In many vision problems, if some variables were
known the maximum likelihood inference problem
would be easy

— fitting; if we knew which line each token came from, it
would be easy to determine line parameters

— segmentation; if we knew the segment each pixel came
from, it would be easy to determine the segment
parameters

— fundamental matrix estimation; if we knew which
feature corresponded to which, it would be easy to
determine the fundamental matrix

— etc.




Strategy

For each of our examples, if we knew the
missing data we could estimate the
parameters effectively.

If we knew the parameters, the missing data
would follow.

This suggests an iterative algorithm:

1. obtain some estimate of the missing data, using a
guess at the parameters;
2. now form a maximum likelihood estimate of the
free parameters using the estimate of the missing
49

Motion Segmentation

~ 7
7

The constraints at these pixels all “go together.”

Layered Representation

/ segmentation
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EM in Pictures
I(xy,t)
Given images at times t and t+1
containing two motions.
Ixv.t+1)

[Adelson]|
52
EM in Pictures
I(xy,0) w (%, )
Assume we know the
segmentation of pixels
into “layers”

Itxy.t+1) w, (x,))

m W 0<w(x,y)<1
ZWi(x,y)=1




EM in Pictures
Ix.y,0) wi (X, ) u(x,32,)
I(x,v,t+1) w,(x, ) u,(x,y;a,)
PP
i/ )/I. J/
PV

Then estimating the motion of each “layer” is easy.

EM in Equations

1(x,,1) W](x’y) u,(x,y3a,)

I(x,v,t+1)

E(a)= Z W (X)(V[T“(X;al) + It)z

x,yeR

EM in Pictures

Ok. So where do we get the weights?

EM in Equations
I(x,y,0)
E(a,)= Z W, (X)(V[T“(X;az) + It)2
X,yeR
Itxwa+1) wy (%, ) u,(x,y:a,)
s
‘/ '/" '.r’
Vv ayd
EM in Pictures
S
‘/ '/'. '."
Vavayd

The weights represent the probability that the
constraint “belongs” to a particular layer.

EM in Pictures

Assume we know the T
motion of the layers but - =
not the ownership - -
probabilities of the - o
pixels (weights).
P A
‘/ '/I. '."
P




EM in Pictures

Assume we know the
motion of the layers but
not the ownership
probabilities of the
pixels (weights).

Also assume we have a Py
likelihood at each pixel: Py

pI@),I(t+1)]a)~ \/%a exp(—%(VITu(a) +1)*/0%)

EM in Pictures

Given the flow, warp the
first image towards the
second.

Look at the residual error
(1,) (since the flow is now
Zero).

POV(I(1).2,).1(:+1)|0) = ﬁexp(—%w /o)

62

EM in Pictures

Given the flow, warp the
first image towards the
second.

Look at the residual error
(Z,) (since the flow is now
Z€ro).

pW(1),,), 1(t+1)[0) = \/%0 exp(—%(l,)2 /o%)
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EM in Pictures

Two “explanations” for
each pixel.

Two likelihoods:
pU(x,t+1)|u(a,))
pU(x,t+1)|u(a,))

EM in Pictures

Compute total likelihood
and normalize:

pU(x,r+1)|u(a,))

w; (X) =

2. pU(x,+D)]u(a,))

Motion segmentation Example

* Model image pair (or video sequence) as consisting of
regions of parametric motion

— affine motion is popular
)
+
t,
« iterate E/M...

v,) \e d\y
— determine which pixels belong to which region

¥y
— estimate parameters




Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE

67

Grey level shows region no. with highest probability

Segments and motion fields associated with them
Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE

If we use multiple frames to estimate the appearance
of a segment, we can fill in occlusions; so we can
re-render the sequence with some segments removed.

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, ¢ 1994, IEEE

Lines

* Simple case: we have one  * We wish to determine
line, and n points — line parameters

+ Some come from the line, — p(comes from line)
some from “noise”

¢ This is a mixture model:

P(point | line and noise params )= P(point | line)P(comes from line)+
P(point | noise )P(comes from noise)
= P(point | line )4 + P(point | noise 1 — A
. eg,

— allocate each point to a line with a weight, which is the probability
of the point given the line

— refit lines to the weighted set of points 70

Line fitting review

* In case of single line and normal i.i.d. errors,
maximum likelihood estimation reduces to least-
squares:

min,, > (ax, +b-y,) =min,, > 7’
* The line parameters (a,b) are solutions to the
system:
Zixf zix1 a _ Z‘ X Vi
i)

The E Step

* Compute residuals:
r()=ax;+b -y,

rn(i)=k (uniform noise model)

» Compute soft assignments:

) e—rﬁu)/a‘
MO =, e
e*"zz(r)/a2
w, (i) =

e*l‘lz(l)/gz e*l‘zz(l)/J:

+




The M Step

Weighted least squares system is solved for (a;,b;)

S owx! Y w)x (alj_ > owixy,
Sowlx, Y ow@ b)) [ X w,

The expected values of the deltas at the maximum
(notice the one value close to zero).
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Closeup of the fit
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Issues with EM

* Local maxima
— can be a serious nuisance in some problems
— no guarantee that we have reached the “right”
maximum
« Starting
— k means to cluster the points is often a good idea

Local maximum




which is an excellent fit to some points

and the deltas for this maximum

Choosing parameters

* What about the noise parameter, and the sigma for
the line?

— several methods

« from first principles knowledge of the problem (seldom really
possible)

« play around with a few examples and choose (usually quite
effective, as precise choice doesn’t matter much)

— notice that if k, is large, this says that points very
seldom come from noise, however far from the line
they lie

« usually biases the fit, by pushing outliers into the line

« rule of thumby its better to fit to the better fitting points, within
reason; if this is hard to do, then the model could be a problem

81

Estimating the number of models

In weighted scenario, additional models will not
necessarily reduce the total error.

The optimal number of models is a function of the
o parameter — how well we expect the model to fit
the data.

Algorithm: start with many models. redundant
models will collapse.

Fitting 2 lines to data points

? (Xpy)

« Input:
— Data points that where generated
by 2 lines
with Gaussian noise.
« Output:
— The parameters of
the 2 lines.
— The assignment of
each point to its line.

y=a,xtb,tov  y=a,x+b,+oV|
v=N(0,1) *“

The E Step

Compute residuals assuming known lines:
() =ayx; +b —y,
(i) =a,x; +b, -y,

Compute soft assignments:

-2 (i)l o?

2 +ef/-§(ii’o'z
) 67"22“”62
w, (i) =

efrﬁm/az eﬂ'}m/a?

+




The M Step

* In the weighted case we find
min,,, (3, @)+ X, w, (073 ()
+ Weighted least squares system is solved twice for
(a;,by) and (ay,b,).

> owmx Y wi)x, [al]_ > w)x.y,
S owm@x, > () 2wy,

2w Y wx, [GZJ_ PRI GERS
ziwz(i)xl Z‘_wz(i) B Ziwz(i)y, .

IMlustrations
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Color segmentation Example

Parameters include mixing weights and

meang/caovars:
0 = (o1, ...,0560,...,0,) G = (u, L)

yielding
plz|®) = Za (=|8h)

with i \
(B — . ATl )
mlx|éh) (2m)2 det ()17 cxp{ 2(.1: ) N _u,]}
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I=log(likelil = -14353 I= 2979
EM for Mixture models

If log-likelihood is linear in missing variables we can
replace missing variables with expectations. E.g.,

=3 mplylar) Z (Z 215 log ply;|as })

o jeobservations M=1
mixture model complete data log-likelihood
1. (E-step) estimate complete data (e.g, z;’s) using
previous parameters
2. (M-step) maximize complete log-likelihood
using estimated complete data
u* ! = arg max L.(x*;u)

= ar xL[y,Z;u .
algm&\ Alw,zu)




Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

Estimating segment parameters from small
blocks of pixels, s ng welghts
using the E-step;

Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

Estimsting sgm tery from small
blocks of pixels, s puting weights L
using the Erstep; Initialize

Randomly sllocsting values to the support maps.

Color segmentation

* At each pixel in an image, we compute a d-

dimensional feature vector x, which
encapsulates position, colour and texture
information.

* Pixel is generated by one of G segments, each

Gaussian, chosen with probability 7:

plz) = X;‘?(ﬂ‘l o)m

Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

Initialize

Rapdomly sllocstine valyes to the supporh map

Color segmentation with EM

Algorithm 17.1: Colour and texture segmentation with EM

using the E-step; Initialize

Randomly sllocsting values to the support maps.

E-step

Estimate support maps:

__ olpaa)

p(mlz:,0..)) - _
=1 C“J(c )Pk(mé“gf ))

Algorithm 17.2: Colour and texture segmentation with EM: - the E-step

the support map m
pvalues to obt




M-step
Update mean’s, covar’s, and mixing coef.’s using
support map:

Algorithm 17.8: Colow and texture segmentation with EM: - the Mostep

For each segment m
Form new values of the segroent paramiters
using the expreslons:

altt) = LT ol 80)

gt o D PmIE 8 (- gl - a7}
“m S FlmiT @)

b plrn]zi, ©,)) is the value
In the m'th support msp for pixel locatlon [
and 97

| v o'.‘l*

FIGURE 17.1: The image of the sebes in (8) b amootbed at varying scales to yield (b).
hiis ing isdone using local et sesle, These scale messurements sxsentislly
measue the scale of the change around a pixel; st ed ges, the scale is nacrow, sed in stripey
regions it is brosd, for example. The features that result are shown in (c); the top thres
images show the smoothed colour coordinates and the bottom thres show the texture
features (ac, po and ¢ — the soale and anisotropy festures are weighted by contrast).

Segmentation with EM
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O
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FIGURE 872 Bach pieel of (ke 2ebra brmage (whick & Lba same s thal in B 17.4) &
Iubalied with She value of m for whi 24, %) bs & macimum, 1o yiekd u segmentaticn.
“Th Lshiges L2 sbewe bha ramult of \bis process boe B = 3,3,4, 5. Ench lmage haa K grep-lovel
valum coermmpending to Lbe sagonh Indee.  Pigers from *Celer ind Thetors Based
Imape Segmentason Usng EM ind 1ty Agpiication te Content Bused Insge Retrievsl”,
S Betorgie #\al, Proc. ot Conf. Compaer Vision, 1995 ) 1998 IEEE

Model Selection

We wish to choose a o Issue
model to fit to data

— e.g.isitaline or a circle?

— In general, models with
more parameters will fit a
dataset better, but are

— e.g is this a perspective or o
poorer at prediction

orthographic camera?
— e.g. is there an aeroplane
there or is it noise?

— This means we can’t simply
look at the negative log-
likelihood (or fitting error)

100

Top is not necessarily a better
fit than bottom
(actually, almost always worse)

101

Negative log-likelihood (or fitting emor)

Y

Number of parameters in mode|

102




Operating point

lihcod (or fitting errcr)

gative log-i

N,

Y

Number of parameters in model

We can discount the fitting error with some term in the number
of parameters in the model.
103

Discounts

¢ AIC (an information
criterion)
— choose model with smallest
value of

—2L(D;6" )+ 2p

— p is the number of
parameters

» BIC (Bayes information
criterion)
— choose model with smallest
value of

72L(D; o )+ plogN

— N is the number of data
points
* Minimum description
length
— same criterion as BIC, but

derived in a completely
different way

104

Cross-validation

» Split data set into two
pieces, fit to one, and
compute negative log-
likelihood on the other

» Average over multiple
different splits

* Choose the model with the
smallest value of this
average

« The difference in averages
for two different models is
an estimate of the
difference in KL
divergence of the models
from the source of the data

105

Extreme segmentation

What if more than half the points are noise?

106

RANSAC

 [terate:
— Sample
— Fit
— Test
» Keep best estimate; refit on inliers

107

RANSAC

* Choose a small subset
uniformly at random

« Fit to that

« Anything that is close to
result is signal; all others
are noise

* Refit

* Do this many times and
choose the best

» Issues
— How many times?
« Often enough that we are
likely to have a good line
— How big a subset?
* Smallest possible
— What does close mean?
* Depends on the problem
— What is a good line?
+ One where the number of

nearby points is so big it is
unlikely to be all outliers




Algorithm 15.4: RANSAC: ftting lines wsing random sample consensus

poim that fits well
aquired

rolnts close to the line
Refit the line using all

llectbon, using the

109

RANSAC applications

* Fundamental Matricies
— estimate F from 7 points
— test agreement with all other points
* Direct motion
— estimate affine (or rigid motion) from small match
— see what other parts of image are consistent

110

Fitting and Probabilistic
Segmentation

Robust estimation
EM

Model Selection
RANSAC

[Slides from Micheal Black and F&P]
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