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6.891
Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 14: 
– Unsupervised Category Learning
– Gestalt Principles
– Segmentation by Clustering

• K-Means
• Graph cuts

– Segmentation by Fitting
• Hough transform
• Fitting

Readings:  F&P Ch. 14, 15.1-15.2 2

(Un)Supervised Learning
• Methods in last two lectures presume:

– Segmentation
– Labeling
– Alignment

• What can we do with unsupervised (weakly 
supervised) data?

• Clustering / Generative Model Approach…
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Representation
Use a scale invariant, scale sensing feature 

keypoint detector (like the first steps of 
Lowe’s SIFT). 
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[Slide from Bradsky & Thrun, Stanford]
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Features for Category Learning

A direct appearance model is taken around 
each located key.  This is then normalized 
by it’s detected scale to an  11x11 window.  
PCA further reduces these features.
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Learning
• Fit with E-M (this example is a 3 part model)
• We start with the dual problem of what to fit and where to fit it.
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Assume that an object instance is the only
consistent thing somewhere in a scene.

We don’t know where to start, so we use
the initial random parameters.

1. (M) We find the best (consistent across 
images) assignment given the params.

2. (E) We refit the feature detector 
params. and repeat until converged.
• Note that there isn’t much 

consistency

3. This repeats until it converges at the 
most consistent assignment with 
maximized parameters across images.

[Slide from Bradsky & Thrun, Stanford]
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Data
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8

Learned
Model
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The shape model. The mean location is indicated by the cross, with 
the ellipse showing the uncertainty in location. The number by each 
part is the probability of that part being present. 
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Recognition

Fr
om

: R
ob

 F
er

gu
s 

ht
tp

://
w

w
w

.ro
bo

ts
.o

x.
ac

.u
k/

%
7E

fe
rg

us
/

10

Result: Unsupervised Learning
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11

Fr
om

: R
ob

 F
er

gu
s 

ht
tp

://
w

w
w

.ro
bo

ts
.o

x.
ac

.u
k/

%
7E

fe
rg

us
/

12

• Gestalt grouping
• Background subtraction
• K-Means
• Graph cuts
• Hough transform
• Iterative fitting

(Next time: Probabilistic segmentation)

Segmentation and Line Fitting
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Segmentation and Grouping

• Motivation: vision is often 
simple inference, but for 
segmentation

• Obtain a compact 
representation from an 
image/motion 
sequence/set of tokens

• Should support application
• Broad theory is absent at 

present

• Grouping (or clustering)
– collect together tokens that 

“belong together”

• Fitting
– associate a model with 

tokens
– issues

• which model?
• which token goes to which 

element?
• how many elements in the 

model?

14

General ideas

• Tokens
– whatever we need to 

group (pixels, points, 
surface elements, etc., 
etc.)

• Top down 
segmentation
– tokens belong together 

because they lie on the 
same object

• Bottom up 
segmentation
– tokens belong together 

because they are 
locally coherent

• These two are not 
mutually exclusive

15

Why do these tokens belong together?

16

What is the figure?

17

Basic ideas of grouping in 
humans

• Figure-ground 
discrimination
– grouping can be seen 

in terms of allocating 
some elements to a 
figure, some to ground

– impoverished theory

• Gestalt properties
– A series of factors 

affect whether 
elements should be 
grouped together

18
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19 20

21 22

23
Occlusion is an important cue in grouping.

24

Consequence:
Groupings by Invisible Completions

* Images from Steve Lehar’s Gestalt papers: http://cns-alumni.bu.edu/pub/slehar/Lehar.html
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And the famous…  

26

And the famous invisible dog eating 
under a tree:

27

Technique:  Background 
Subtraction

• If we know what the 
background looks like, 
it is easy to identify 
“interesting bits”

• Applications
– Person in an office
– Tracking cars on a road
– surveillance

• Approach:
– use a moving average 

to estimate background 
image

– subtract from current 
frame

– large absolute values 
are interesting pixels

• trick: use morphological 
operations to clean up 
pixels

28

29

low thresh high thresh

EM (later)

80x60

30

low thresh high thresh

EM (later)

160x120
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Static Background Modeling 
Examples

[MIT Media Lab Pfinder / ALIVE System]
32

Static Background Modeling 
Examples

[MIT Media Lab Pfinder / ALIVE System]

33

Static Background Modeling 
Examples

[MIT Media Lab Pfinder / ALIVE System]
34

BG Pixel distribution is non-stationary:

Dynamic Background

[MIT AI Lab VSAM]

35

Staufer and Grimson tracker:
Fit per-pixel mixture model to observed distrubution.

Mixture of Gaussian BG model

[MIT AI Lab VSAM]
36

Background Subtraction Principles
Wallflower: Principles and Practice of Background Maintenance, by Kentaro
Toyama, John Krumm, Barry Brumitt, Brian Meyers.  

P1:

P2:

P3:

P4:

P5:
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Background Techniques Compared
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Segmentation as clustering

• Cluster together (pixels, tokens, etc.) that belong 
together…

• Agglomerative clustering
– attach closest to cluster it is closest to
– repeat

• Divisive clustering
– split cluster along best boundary
– repeat

• Dendrograms
– yield a picture of output as clustering process continues

39

Clustering Algorithms

40

41

K-Means

• Choose a fixed number of 
clusters

• Choose cluster centers and 
point-cluster allocations to 
minimize error 

• can’t do this by search, 
because there are too 
many possible allocations.

• Algorithm
– fix cluster centers; allocate 

points to closest cluster
– fix allocation; compute best 

cluster centers

• x could be any set of 
features for which we can 
compute a distance 
(careful about scaling)

x j − µ i

2

j∈elements of i'th cluster
∑

 
 
 

 
 
 i∈clusters

∑ 42

K-Means
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K-means clustering using intensity alone and color alone

Image Clusters on intensity (K=5) Clusters on color (K=5)

44

K-means using color alone, 11 segments

Image Clusters on color

45

K-means using
color alone,
11 segments.

Color alone
often will not 
yeild salient segments! 46

K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing segmentation!

Hard to pick K…

47

Mean Shift Segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

48

Mean Shift Algorithm
Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:
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49

Mean Shift Setmentation Algorithm
1. Convert the image into tokens (via color, gradients, texture measures etc).
2. Choose initial search window locations uniformly in the data.
3. Compute the mean shift window location for each initial position.
4. Merge windows that end up on the same “peak” or mode.
5. The data these merged windows traversed are clustered together.

*Image From: Dorin Comaniciu and Peter Meer, Distribution Free Decomposition of Multivariate 
Data, Pattern Analysis & Applications (1999)2:22–30

Mean Shift Segmentation

50

Mean Shift Segmentation
Results:

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

51

Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image

V: image pixels

E: connections between 
pairs of nearby pixels

region       
 same  the tobelong       
j& iy that probabilit :ijW

52

Graphs Representations

a

e

d

c

b























01101
10000
10000
00001
10010

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

53

Weighted Graphs and Their 
Representations

a

e

d

c

b























∞
∞∞

∞
∞∞

0172
106
76043
2401

310

Weight Matrix

6

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

54

Boundaries of image regions defined 
by a number of attributes

– Brightness/color
– Texture
– Motion
– Stereoscopic depth
– Familiar configuration

[Malik]
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Measuring Affinity
Intensity

Color

Distance

aff x, y( )= exp − 1
2σ i

2
 
 

 
 I x( )− I y( ) 2( ) 

 
 

 
 
 

aff x, y( )= exp − 1
2σ d

2
 
 

 
 x − y 2( ) 

 
 

 
 
 

aff x, y( )= exp − 1
2σ t

2
 
 

 
 c x( )− c y( ) 2( ) 

 
 

 
 
 

56

Eigenvectors and affinity clusters
• Simplest idea:  we want a 

vector a giving the 
association between each 
element and a cluster

• We want elements within 
this cluster to, on the 
whole, have strong affinity 
with one another

• We could maximize  

• But need the constraint 

• This is an eigenvalue
problem - choose the 
eigenvector of A with 
largest eigenvalue

aT Aa

aTa = 1

57

Example eigenvector

points

matrix

eigenvector

58

Example eigenvector

points

matrix

eigenvector

59

Scale affects affinity

σ=.2

σ=.1 σ=.2 σ=1 60

Scale affects affinity

σ=.1 σ=.2 σ=1
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Some Terminology for Graph 
Partitioning

• How do we bipartition a graph:

∅=∩

∈∈
∑=

 BAwith 

BA,

                     

),,W(B)A,(
vu

vucut

disjointy necessarilnot  A' andA 

A'A,

                     

),(W)A'A,( ∑
∈∈

=
vu

vuassoc

[Malik]
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Minimum Cut
A cut of a graph G is the set of 
edges S such that removal of 
S from G disconnects G.

Minimum cut is the cut of 
minimum weight, where 
weight of cut <A,B> is given 
as

( ) ( )∑ ∈∈
=

ByAx
yxwBAw

,
,,

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

63

Minimum Cut and Clustering

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

64

Drawbacks of Minimum Cut

• Weight of cut is directly proportional to the 
number of edges in the cut.

Ideal Cut

Cuts with 
lesser weight
than the 
ideal cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

65

Normalized cuts

• First eigenvector of affinity 
matrix captures within cluster 
similarity, but not across cluster 
difference

• Min-cut can find degenerate 
clusters

• Instead, we’d like to maximize 
the within cluster similarity 
compared to the across cluster 
difference

• Write graph as V, one cluster as 
A and the other as B

• Maximize

where cut(A,B) is sum of weights 
that straddle A,B; assoc(A,V) is 
sum of all edges with one end 
in A.

I.e. construct A, B such that their 
within cluster similarity is high 
compared to their association 
with the rest of the graph

cut(A,B)
assoc(A,V)

cut(A,B)
assoc(B,V)

+

66

Solving the Normalized Cut problem

• Exact discrete solution to Ncut is NP-complete 
even on regular grid,
– [Papadimitriou’97]

• Drawing on spectral graph theory, good 
approximation can be obtained by solving a 
generalized eigenvalue problem.

[Malik]
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Normalized Cut As Generalized 
Eigenvalue problem

• after simplification, we get
...                    

),(

),(
  ;

11)1(
)1)(()1(

11
)1)(()1(                   

)VB,(
)BA,(

)VA,(
B)A,(B)A,(

0
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=
−

−−−
+

+−+
=

+=
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∑ >
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x
T

T

T

T

iiD
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k
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cut
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cutNcut

i
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[Malik]
68

Normalized cuts
• Instead, solve the generalized eigenvalue problem

• which gives

• Now look for a quantization threshold that maximizes the criterion ---
i.e all components of y above that threshold go to one, all below go to -
b

max y yT D − W( )y( ) subject to yT Dy = 1( )

D − W( )y = λDy

69

Brightness Image Segmentation

70

Brightness Image Segmentation

71 72

Results on color segmentation
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Motion Segmentation with Normalized Cuts

• Networks of spatial-temporal connections:

• Motion “proto-volume” in space-time

74

75

Comparison of Methods

Normalizes A. Finds k 
eigenvectors, forms X. 
Normalizes X, clusters rows 

Affinity A,
User inputs k

Ng, Jordan, Weiss

Finds k eigenvectors of A, forms 
V.  Normalizes rows of V. Forms 
Q = VV’. Segments by Q. 
Q(i,j)=1 -> same cluster

Affinity A,
User inputs k

Scott/
Longuet-Higgins

2nd smallest generalized
eigenvector
Also recursive

D-A with D a
degree matrix

Shi/Malik

1st x: 
Recursive procedure

Affinity APerona/ Freeman

Procedure/Eigenvectors usedMatrix usedAuthors

Ax xλ=

( , ) ( , )
j

D i i A i j= ∑
( )D A x Dxλ− =

Nugent, Stanberry UW STAT 593E

76

Advantages/Disadvantages

• Perona/Freeman
– For block diagonal affinity matrices, the first 

eigenvector finds points in the 
“dominant”cluster; not very consistent

• Shi/Malik
– 2nd generalized eigenvector minimizes affinity 

between groups by affinity within each group; 
no guarantee, constraints

Nugent, Stanberry UW STAT 593E

77

Advantages/Disadvantages

• Scott/Longuet-Higgins
– Depends largely on choice of k
– Good results

• Ng, Jordan, Weiss
– Again depends on choice of k
– Claim: effectively handles clusters whose 

overlap or connectedness varies across clusters

Nugent, Stanberry UW STAT 593E

Affinity Matrix       Perona/Freeman      Shi/Malik Scott/Lon.Higg

1st eigenv. 2nd gen. eigenv.         Q matrix

Affinity Matrix Perona/Freeman      Shi/Malik Scott/Lon.Higg

1st eigenv. 2nd gen. eigenv.         Q matrix

Affinity Matrix Perona/Freeman      Shi/Malik             Scott/Lon.Higg

1st eigenv. 2nd gen. eigenv.         Q matrixNugent, Stanberry UW STAT 593E
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79

• Gestalt grouping
• Background subtraction
• K-Means
• Graph cuts
• Hough transform
• Iterative fitting

Segmentation and Line Fitting

80

Fitting

• Choose a parametric 
object/some objects to 
represent a set of tokens

• Most interesting case is 
when criterion is not local
– can’t tell whether a set of 

points lies on a line by 
looking only at each point 
and the next.

• Three main questions:
– what object represents this 

set of tokens best?
– which of several objects 

gets which token?
– how many objects are 

there?

(you could read line for object 
here, or circle, or ellipse 
or...)

81

Fitting and the Hough Transform
• Purports to answer all three 

questions
– in practice, answer isn’t 

usually all that much help
• We do for lines only
• A line is the set of points (x, y) 

such that

• Different choices of θ, d>0 give 
different lines

• For any (x, y) there is a one 
parameter family of lines 
through this point, given by

• Each point gets to vote for each 
line in the family; if there is a 
line that has lots of votes, that 
should be the line passing 
through the points

sinθ( )x + cosθ( )y + d = 0
sinθ( )x + cosθ( )y + d = 0

82

tokens
votes

83

Mechanics of the Hough transform

• Construct an array 
representing θ, d

• For each point, render the 
curve (θ, d) into this array, 
adding one at each cell

• Difficulties
– how big should the cells be? 

(too big, and we cannot 
distinguish between quite 
different lines; too small, 
and noise causes lines to be 
missed) 

• How many lines?
– count the peaks in the 

Hough array

• Who belongs to which 
line?
– tag the votes

• Hardly ever satisfactory in 
practice, because 
problems with noise and 
cell size defeat it

84

tokens votes
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85 86

87 88

What criteria to optimize when fitting a line to 
a set of points?

Line fitting

89

Line fitting can be max.
likelihood - but choice of
model is important

“Total Least Squares”

“Least Squares”

90

Who came from which line?

• Assume we know how many lines there are 
- but which lines are they?
– easy, if we know who came  from which line

• Three strategies
– Incremental line fitting
– K-means
– Probabilistic (later!)



16
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Incremental line fitting

93

Incremental line fitting

94

Incremental line fitting

95

Incremental line fitting

96

Incremental line fitting
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97 98

K-means line fitting

99

K-means line fitting

100

K-means line fitting

101

K-means line fitting

102

K-means line fitting
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103

K-means line fitting

104

K-means line fitting

105

Robustness

• As we have seen, squared error can be a source of 
bias in the presence of noise points
– One fix is EM  - we’ll do this shortly
– Another is an M-estimator

• Square nearby, threshold far away

– A third is RANSAC
• Search for good points

(Next lecture….)

106

Lecture 14: 
– Unsupervised Category Learning
– Gestalt Principles
– Segmentation by Clustering

• K-Means
• Graph cuts

– Segmentation by Fitting
• Hough transform
• Fitting

Readings:  F&P Ch. 14, 15.1-15.2

(Next time: Finish fitting, Probabilistic segmentation;         
FP 15.4-5, 16)

Segmentation and Line Fitting

107

Visual learning is inefficient
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This guy is wearing a haircutThis guy is wearing a haircut
called a “Mullet”called a “Mullet”

[Slide from Bradsky & Thrun, Stanford]
110

Find the Mullets…

One-Shot Learning
[Slide from Bradsky & Thrun, Stanford]

111

One-Shot Learning

“The appearance of the categories we know and … the 
variability in their appearance, gives us important 
information on what to expect in a new category”

1. L. Fei-Fei, R. Fergus and P. Perona, “A Bayesian Approach to 
Unsupervised One-Shot Learning of Object Categories” ICCV 03.

2. R. Fergus, P. Perona and A.Zisserman, “Object Class Recognition by 
Unsupervised Scale-Invariant Learning”, CVPR 03.

• http://www.vision.caltech.edu/html-files/publications.html

[Slide from Bradsky & Thrun, Stanford]
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Learn meta-parameters
set to 1.0

Shape

Training set Shape Appearance

Training set Appearance

Model Params

Learn

[Slide from Bradsky & Thrun, Stanford]

[Fei Fei et al. 2003]


