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Note to Registrants

At press time these course notes were still in preparation and
contributed material from outside was still trickling in. Asa
conseguence this collection of didesis about 80% complete.

Final version of the course slides can be found at:

http://www.mer|.com/people/moghaddam/cvprOl.html

If you have any questions contact me at baback@mer|.com
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Sir Francis Galton (1822-1911)

e [Face Research

— “Personal identification and description,” Nature, 1888

— “Numeralized profiles for classification and recognition,”
Nature, 1910

* Eugenics Research

— "Hereditary talent and character." (Macmillan's 1865)
— Hereditary Genius (1869)

— "The possible improvement of the human breed under the
existing conditions of law and sentiment." (Annual Report
of the Smithsonian Institution, 1902)




Face Recognition Surveys

Samal & lyengar, “ Automatic Recognition and Analysis of Human
Faces and Facial Expressions,” Pattern Recognition, vol. 25, 1992

Valentin, Abdi, O’ Toole & Cottrdll, “Connectionist Models of Face
Processing: A Survey,” Pattern Recognition, vol. 27, 1994

Chellappa, Wilson & Sirohey, “Human and Machine Recognition of
Faces. A Survey,” Proc. |IEEE, vol. 83, 1995.

Grudin, “On Internal Representations in Face Recognition Systems,”
Pattern Recognition, vol. 33, 2000

Zhao, Chellappa, Rosenfeld & Phillips, “Face Recognition: A
Literature Survey”, UMD CS-TR-4167, 2000



Aspects of Face Processing

Recognition

— familiarity (membership)
|dentification

— who is it? (assign identity label)
Verification

Classification

— expression, gender, race, age, etc



Applications of Face Biometrics

* financial transactions

» check-in or boarding planes

e crossing borders

e casting votes

e security or surveillance

e identity fraud

 criminal justice & law enforcement

e access to facilities, databases or privileged information, etc



Face Publications by Category

(from F& G’ 95/96/98/2000)

Gender
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Why Face Recognition Is Easy!

* Itis not general object recognition!

 |tis a single-class object recognition task

A%TA%

— representation & matching can be optimized




Why Face Recognition is Hard!

“The variations between the images of the same face due to
Illumination and viewing direction are amost always larger
than image variations due to change in face identity.”

-- Moses, Adini, Ullman, ECCV ‘94



Computational Face Models

e Feature-based

— fiducial points
— distances, angles, areas, etc
— geometrical

e Template-based

— holistic
— appearance based, images
— statistical



Features. Profile




Features: Frontal




Templates

Whole Face

Brunelli & Poggio (1993)

ORL database -- pose/expression



Human Face Representation

 Feature-based or “configural”

— [Roberts & Bruce 1988]

 Prototypes or “schemas’

— [Goldstein & Chance 1980]



Human Face Representation

 PCA isagood model of human memory

[O'Toole et al 1994]

e Digtinctivenessrelatesto recall ability

e Recognitionisvery hard with

— line-drawings (with no shading)
— luminance negatives

— upside-down faces



|mpeded Face Perception

f_‘

“Mooney” faces

<«—— The*“Face Inversion”
effect (upside-down
faces) has been used
extensively asan
experimental tool!




The Human Brain

sensarimotor area
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The Visual System in Primates:
Two Pathways: “What” and “Where”

dorsal

/ Stream:

“Where

: ; \ ..-'-‘. / 3
TEO \,,._ _____ :
ventral stream: TE i |

“what” .

Tommi Poggio



Hemispheric Specialization

* Right hemisphereis biased for
face recognition

- Left hemisphere better at feature-
based processing (less at holistic)

A particular brain wave (N200)
occurs most strongly in fusiform
regions of the right hemisphere when
individuals view upright faces, but not
when viewing inverted (or scrambled)
faces (Allison et al., 1994).

Activation of the right fusiform
area (in the inferotemporal
cortex) during face processing
(Nakamura et al., 2000)



Face Perception in Humans

e Cortical locdlizationin IT/STS [Desimone et al. 1984]

 |ndependent face modules [Bruce et al. 1986]

[ Gender J [Expr on}

Age
[Familiarity}

{ Identity}




Gender Prototypes




Gender Shape Prototypes
O’ Toole et al (1998)

The average head plus versus minus the first eigenvector for the head surface data is shown. The analysis
was performed on 65 female and 65 male heads. Individual face projections onto this eigenvector were

highly correlated to the gender of the face.

“Sex classification is better with 3D head structure than with texture.
A.J. O'Toole, T. Vetter, N.F. Toje and H.H. Bulthoff, H. H. Perception, 26:75-84.



Humans vs. Machines

Number of Elements 10" synapses 10® gates

Size of Elements 10° meters 10™° meters
Power Consumption 30W 30 W (CPU)
Processing Speed 100 Hz 1 GHz
Computational Style parallel / distributed seria / centralized
Fault Tolerance yes no

L earning Potential yes no

| ntelligence/Consciousness usually not (yet)
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Human Face Per ception

courtesy of

Bradley C. Duchaine

Vision Sciences Laboratory
Department of Psychology

Harvard University



Face Recognition




| mportance of Faces

o| dentification—an ancient computational problem

*Emotion recognition—others provide information
regarding their situations on the face.

*Other information available:
--locus of attention.
--facial attractiveness.
--age.

--Sex.
--lipreading.
--personality types?




How Is Face
Recognition performed?

There are anumber of different possibilities:

*Domain-general object recognition procedures that operate
on all objects.

A face-specific procedure or procedures that operate solely
on faces.
--gpecialized either phylogenetically or ontogenetically.
--If specialized ontogenetically, it must be the product
of adomain-genera procedure that develops expertise.

*A mixture of domain-general & face-specific procedures.



Face Recognition Debate

For over 30 years, researchers have debated the scope
of the mechanisms of face recognition—excellent

example of the scientific process in psychology.

*Evidence from many sources.

*Debate has focused primarily on the question —
“Arefaces special ?’

In other words, do faces receive processing that differs from
the processing applied to other objects and does this
processing have a different neural substrate.



Holistic and/or
configural processing

Many have speculated that the special processis
holistic and/or configural.

Holistic—integration of information from the whole
face.

Configural—representation and recognition of the
spatial configuration of the parts of the face.




Processing of faces

*Generally, object recognition is considered to operate
viafeature recognition—in other words, recognition
of objects based on the shape of its parts.

*Thisisdifficult with faces, because they all share the
same features.

*One solution could involve recognizing the relations
between the parts of the face rather than the parts.

«Called configurational—computation of spatial config.
«Called holistic—integration over whole face.



Sour ces of evidencein debate

» Cognitive experiments/Psychophysics
* Neuroimaging (fMRI)

» Evoked response potentials

e Single-cell studies

 Studies of neuropsychological cases.



Cognitive &
Psychophysical studies

Many studies have compared whether faces appear to be
processed differently than other objects by normal subjects.

o|f there are different procedures used on faces this is powerful
evidence that faces are special.

eHowever, stimulus characteristics could activate
gpecial procedures, so one must choose stimuli carefully.

Inverted faces provide an ideal test case, because they are
Identical in terms within class similarity, complexity, and
configuration.



Yin'sstudies (1969)

Yin initiated the face recognition debate with his
studies of the effect of inversion on the recognition of
faces versus other types of objects.

«Stimuli were unfamiliar faces, airplanes, houses,
and stick figures—all typically seen only in upright
orientation.

*Presented in an old/new discrimination paradigm
--Present a set of target stimuli.
--Test with target stimuli and distracters.



Outcomeof Yin's studies

U pright—Subjects recognized the faces best.
| nverted—Subj ects recognized the faces worst.

Inversion dramatically decreased performance for
faces, but only modestly decreased performance for
other objects.

Y in speculated that holistic processing of facesled to
their advantage in upright condition. Within-class
similarity drove poor inverted performance.

Similar results with dogs, houses, familiar faces, &
unfamiliar faces.



Diamond & Carey study (1986)

Questioned uniqueness of faces. Believed that it was
not faces, per se, that evoked special processing.

Special properties of faces.

*Faces have the same parts & configuration—they are
superimposable.

*People have great exposure to faces, and so may
have devel oped expertise with faces.

Dogs are superimposable, and dog show judges have
great exposure to dogs. Thus, they decided to compare
the inversion effects for dogs for normal subjects and
dog show judges.



Diamond & Carey outcome

Predictions:
If superimposability & expertise drove the great face inversion
effect, then dog show judges should show alarge inversion

effect while normal subjects will not.

Qutcome:

*Both normals & judges showed aface inversion effec..

*Only judges showed a significant dog inversion effect.
However, judges were no better than normalsin the
upright dog condition. Normals showed no difference
between upright & inverted.

Diamond & Carey concluded that faces are not special, but
such strong inferences do not seem warranted by the results.



Bruyer & Crispeels (1992)

e Ran a study similar to Diamond & Carey,
but used handwriting as stimulus class.

e Compared normals & handwriting experts.

* Found large inversion effect only for experts.

W “”‘i@ It _elomith
Wb s Lo At




|nter pretation of both studies

o |t appears that large inversion effects can be found for non-
face classes. Thus, it may be that faces and other classes can
be recognized with specialized procedures.

*The developmental origin, however, isunclear. It seems
certain that the expertise for dogs & writing develop
ontogenetically. However, the face expertise could develop
ontogenetically or phylogenetically.

*The studies of the effect of inversion are equivocal.



Chimeric Faces
(Young et al. 1987)

A study using chimeric faces indicates the operation
of holistic processing.

» Chimeric faces created by combining the top half of
one individual’s face with the bottom half of another.

» Halves could be aligned or misaligned.

*Task: Recognize either only
the top half or only the
bottom half.




Outcomewith Chimeric Faces

« Upright performance significantly better for non-
composites than for composites.

* Inverted performance unaffected by alignment.

* Inverted famous face recognition was faster than
upright famous face recognition!

|nterpretation: Interference from representation
derived from whole face.
Holistic processing was
restricted to upright faces.




Parts Recognition in Faces

Farah et al (1998) investigated the impact """
of the whole face on face part recognition.
They compared this to house part,
scrambled face and inverted face part
recognition.

For non-face, recognition of parts was the i o i
same for the isolated and whole -
conditions. E it
In contrast, face part recognition was e

much worse in the isolated condition. T ‘7

 Faces are represented more holistically.




Further Part Studies

Tanaka & Sengco (1997) investigated whether it isthe
presence of any facial configuration or the study configuration
that elevates performance.

Faces Houses

Features ~ Features
Eyes Nose Mouth M Big Window Small Window Door M

| o Experiment 3 o
Isolated parts 66 70 75 70 92 | 75 84 83

New configuration 79 = 71 76 75 92 76 -85 84

Old configuration 83 76 85 81 91 72 85 83
Experiment 4

- Isolated parts 72 61 75 69 82 78 74 78

New configuration 735 70 78 74 - 81 81 74 79

Old configuration 87 78 88 85 81 81 76 79

Performance is best with the old configuration, so it appears to
be the precise configuration seen rather than any configuration.



Part Recognition Caveat

* Since this whole condition advantage was shown for
faces, it shows that faces receive special processing.

« However, when subjects are trained to expert levels
on Greeble recognition, they show asimilar
advantage for Greeble part recognition.

» Thus, an effect that was thought to be
face-gpecific is not face-specific, but
can be attributed to expertise.

Tarr et a (1998)



Recognition via Configural
or Feature Differences

*The different processes applied to upright & inverted
faces was elegantly demonstrated by varying the
distinguishing information available to subjects.

*Two types of faces were created.
--Configural faces.
--Featural faces.

Task: Decide whether two simultaneoudly presented faces
were Same or Different.



Outcome

Featural faces. Facesthat differed in features but not
configuration.

Upright = 91%

Inverted = 88%
There are no significant differences for these faces.

Configural faces. Facesthat differed in configuration but
not features.

Upright = 81%

Inverted = 55% (almost at chance)




| nter pretation

* |nverted faces do not appear to be coded
configurally (or very coarsely).

» The feature recognition procedures that
operate on upright and inverted faces
appear to be the same.



Evidence from
Single-Cell Recordings

 Evidence from single-cell recording was critical
In understanding the organization of lower-level
visual areas.

* Researchers have been exploring higher visual
areas for the last 30 years in search of the neurons
Involved with object recognition.



Many types of face cells

Face-specific cells in temporal lobe, frontal lobe, and
the amygdala.

 Different cells selectively responsive to identity, pose, or
emotional expression.

* Response properties appear well-
suited for face recognition.
Invariant over size, color,
expression, lighting, etc.

 Large receptive field.
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Céellsin Infant Macagues
Rodman (1994)

*Response properties in infant macagques are quite
similar to adult neurons.

eI ndications that some prewiring of these areas for
face representation.

*However, these macagues were not isolated and so
had seen monkey & human faces.



Single-cell studiesin Humans

Areas in the temporal |obe and prefrontal cortex have
face specific cells. Vignal, Halgren (2000)

*Electrical stimulation of prefrontal areas produce face
hallucinations. However, this region may be involved with
fear recognition rather than identity recognition.

*Recordings from the fusiform gyrus and inferotemporal gyrus
have shown regions that respond to faces but not cars,
butterflies, or other control stimuli.

--Stimulation of this region produces temporary inability to
name famous faces.



Fusiform gyrus can be seen in green.



Koch single-cell study (2001)

Recordings in the hippocampus, entorhinal cortex, and the
amygdala have found many category-specific neurons.
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| mplications of face cells

*Face-specific cells are expected if there are face-specific
procedures, and as a result, they have been used to argue for
face-specific processes.

*However, any recognized object must be recognized
somewhere, so there must be cells responsive to every class.

*At present, we have little idea about specificity for other
classes.

_ogothetis have found cells specifically responsive to an
artificial stimulus class, and so specificity may be widespread.

*As aresult, single-cell recordings are unequivocal.



Neuroimaging Evidence

In the last decade, many neuroimaging studies have
compared activity in response to faces and other
obj ects.

Main finding has been that an area of extrastriate
cortex, a portion of the fusiform gyrus, is activein
response to faces.

Green areain brain.




Fusiform Gyrus

«Often referred to as Fusiform Face Area (FFA).

Post-mortems of prosopagnosics have found
lesions in the FFA.

«Same |location as face-specific cell responses.

*Near areas involved with color vision &
achromatopsia cooccurs with prosopagnosia.

*A prosopagnosic showed no activity in FFA In
response to faces.



What activatesthe FFA?

Kanwisher & her colleagues have probed the type
of stimuli that activate this region.

«Strong response: Frontal shots, profiles, cartoon faces,
Inverted faces?!, inverted cartoon faces, cat faces, faces
with no eyes, & eyes alone.

*\Weak response: Schematic faces, animal bodies, houses,
back of head.

*FFA appears broadly tuned.




Neurolmaging, Binocular
Rivalry, Faces, & Places

Basics of binocular rivalry: Tong & Nakayama (1998)

In adisplay inducing binocular rivalry, a different image
IS provided to each eye.

*Rather than fusing the images, the visual system often
cycles between images so that the observer isonly aware
of one at atime.

*Thus, by presenting two imagesin arivalrous display,
one can hold the stimulus constant while the contents of
awareness vary.



| mpact of Awareness

Rivalrous display presented houses to one eye and
faces to the other eye.

Faces chosen because of consistent FFA response.

Places chosen because of consistent response in
Parahippocampal Place Area (PPA).

Subjects were scanned and reported whether they
saw a house or aface.






Per ception strongly correlated
with Awareness

Perception of houses positively correlated with PPA
activity while perception of faces positively correlated
with FFA activity.

*Thus, more support for face-specificity.

*More interestingly, awareness appears to be necessary for
activity in the FFA or the PPA. Presumably, thereis some
ProCess occurring prior to processing in these areas that
determines what reaches awareness.

*Doesn’'t demonstrate that FFA or PPA activity is necessary
or sufficient for awareness.



Neur opsychological evidence

The most persuasive evidence regarding whether there
are face-specific procedures has come from studies of
individuals with neuropsychological conditions that
selectively impair certain aspects of visual recognition.

«Cases of acquired damage are most common (stroke,
head trauma, etc.)

*More cases of congenital impairments have
documented recently.

*Many varieties of neuropsychological
Impairments affecting face recognition.



Face Perception Disorders

*Prosopagnosia, the inability to recognize faces, will be
the main focus of our discussion.

M etamorphosia—perceptual distortions affecting the
face. ex—One woman noticed that the parts of faces did
not appear to move together when the face moved.

*Palinopsia— “pasting” of aface onto the wrong head.
ex—one woman pastes faces associated with the face she

IS percelving and gets faces “ stuck” and pastes them on
everyone.



Poodle Face Palinopsia




Facial Neglect

Y oung, Andrew (1990)

*Neglect is most commonly seen for half of =
the visual field but sometimes it is restricted é’_’:

to objects. ‘

In facial neglect, one case reported
neglected the left-side of faces
(perceiver’sleft) regardless of the
orientation;

unimpaired on line bisection tasks, word
reading, or car front recognition.




Synthaesthesia &
Delusional Misidentifications

*Synaesthesiatypically refersto a condition in which
percepts in one modality evoke percepts in another.
eX.— T he man who tasted shapes.

*Recent report of a patient who sees faces when seeing
other objects.

Delusional Misidentification Syndromes

*Capgras—Dbelieve that acquaintances have been replaced
by replicas.

*Fregoli—Dbelieve that famous people are disguised as
others.



Characteristics of Prosopagnosia

 Often unable to recognize close friends, relatives, and self from
facial information.

 Often, though not necessarily, accompanied by impairmentsin
the recognition of other info from the faces such as emotion,
gender, attractiveness, age, race, gaze direction, etc.

 Perception of the face is often compromised, but this may not
always be the case.

» Acquired cases usually have bilateral damage, but it is
sometimes restricted to the right hemisphere.

« Sometimes cooccurs with achromatopsia, autism/ Asperger
syndrome, and topographagnosia.



* Prosopagnosics are usually able to discern identity via
other channels such as voice, gait, hair, or clothing.

» Often develop expert recognition for
other features.
--BC uses hair, facial hair, and jeans.
--Another uses sunglasses.

* Not surprisingly, face blindness often
results in severe social problems.




Explanations of prosopagnosia

There have been four major hypotheses to explain
prosopagnosia. These hypotheses posit problems with
hypothetical perceptual processes. Such processes are
assumed to exist in normal subjects, but not operate
normally in prosopagnosics.

As aresult, evidence against a particular hypothesisis
also evidence against a particular design for human
object recognition.



Four explanations

Each explanation proposes that prosopagnosiais a
manifestation of damage or improperly development of a
particular process. Here are the four proposals:

e Evolved face-specific procedures.
« Domain-genera individuation recognition procedures.
 Domain-genera configural processing procedures.

« Domain-general expertise procedures.

* Hypotheses 3 & 4 are not mutually exclusive.



Evolved face-specific hypothesis

Claims that there are procedures that are activated by
stimuli that have the geometric properties (or whatever
other qualifying criteria may exist) of upright faces.

For the system to be face-specific, and not domain-
general, these procedures must be activated only by faces.

*Prediction: Prosopagnosia should sometimes be found
without any other accompanying recognition deficit (pure
Prosopagnosia)

*There are no cases that can falsify this hypothesis, so
testing must focus on falsification of the other hypotheses.



|ndividuation hypothess

* Proposes that there are procedures specialized for the
recognition of individual items from within a category
(Bob'sface, Bob's car, Bob's wallet).

 Prosopagnosia is simply the most obvious manifestation of
this impairment, because of the ubiquity and difficulty of face
recognition.

e Many prosopagnosics do have agnosias for other types of
obj ects.

 Prediction: prosopagnosics should show impairments with
any recognition task that requires individual item recognition.




Evidence &
theindividuation hypothesis

* There are afew cases that appear to show normal
Individual item recognition with impaired face recognition.

* There are anumber of cases showing a dissociation
between face recognition & place recognition, but we will
not discuss these because place recognition may be
performed by specialized procedures. We are interested
In face & objects at this point.



De Renzi’s patient

» 72-year-old lawyer who had a stroke.

» Unable to recognize individuals viatheir faces.

* Ableto identify personal belongings from among 6-10
similar items.

e Could identify his handwriting from others.

 According to the patient & hiswife, he only had agnosia
for faces.

* Problem: Difficult to compare to others; few categories
tested.




W J:
Human faces vs sheep faces

WJ suffered a stroke and became a sheep farmer
due to his prosopagnosia.

He was severely impaired
with human faces, but
was better than controls
with sheep faces.

Thus, hisimparment is
not an impairment with
individuation.




LH: Inverted |nverted
Faces Effect

Other evidence indicates that upright & inverted faces are
processed differently. This has been powerfully
demonstrated in experiments with LH (damage dueto a
car accident).

Normals: Upright Faces 94%; Inverted Faces 82%
oH: Upright Faces 58%; Inverted Faces 72%

Although the stimuli are identical (aside from orientation),
LH was much better with inverted faces! It appears that
upright faces cannot be rerouted to the procedures that

are performing recognition of the inverted faces.



|nverted | nverted Shoe Effect

L H’sinverted inverted face effect was considered very
powerful evidence for the existence of face-specific
procedures.

*However, this interpretation was undercut by an
experiment showing that LH also showed an inverted
Inverted shoe effect. He was better with inverted shoes
than upright shoes whereas normal subjects showed a
normal inversion effect.

*Are there specialized procedures
for shoe recognition?




Henke' s subject

A German group tested two prosopagnosics on their
identification of cars & fruit/vegetables.

*One of the patients showed normal performance on both
tasks.

*Problem: Not clear that thisisindividuation in the same
sense that faces are. Toyota or Apple versus OJ Simpson.

Scores of WF., M. and of Control Participanis in the Exemplar Recogenition Testy

Case | (W.F.) Case 2 (M. T.) Control Mean/5.D.
Cars: Brand (max = 31) 16 28 277037
Model (max = 31) §] 21 20.6/64

Fruit and Vegetables (max = 34) 14 29 31.1/2.0




Two problems

There are two problems with all of the reports of spared
object recognition with prosopagnosia.

*Response time was not measured for any of these tests.

--Possible that prosopagnosics were able to achieve
normal accuracy performance due to especially long
latencies.

--Measurement of RTs can rule out speed/accuracy
trade-offs.

*Measures of accuracy were not bias-free.
--Discrimination may have been normal, but varying
criterions make such measures gquestionable.



Double Dissociation

» Double dissociation: report of at least two different
neuropsychological cases with opposite patterns of
normal and impaired abilities.

e Double dissociations are powerful evidence for the
existence of two independent mechanisms for the two
tasks.

* For example:
--Bill Cholsser—prosopagnosic with normal object
recognition (so far)
--CK—object agnosic with normal face recognition.

e Difficult for the individuation hypothesis to explain.



Bill Choisser
eBorn in 1946.

*No history of head trauma.

*Recognized his prosopagnosiain his late 40s.

*Produced a very detailed web site about prosopagnosia

( )

*Recognizes people using hair, facial hair, & jeans.

Very intelligent (1Q 131), MIT student, lawyer, engineer.

*Reports no other visual difficulties—no topographagnosia.

*Other neurological problems: CAPD
& dlight motor problems.

*Genetic root of CAPD & motor 1Ssues.

sFamily stories indicate presence in
males on paternal side.




Bill’sLow Level Abilities

BORB tasks Controls BC
Length Match 26.9 (1.6) 29
Size Match 27.3(2.4) 29
Orientation Match 24.8 (2.6) 27
Position of Gap Match 35.1 (4.0) 38
Overlapping Figures Normal
Kit Tasks

Hidden Figures 14.0 (6.0) 23
Hidden Patterns 148 (38) 193
Copying 25.9 (9.3) 52

Thus, he does not appear to have any low-level deficits
that contribute to his recognition difficulties.



Bill’s Face Recognition

Test Controls BC
Profiles 27.1(1.3) 24(z=-2.53
— = =
o ddd
OneinTen
d’ 3.61(.49) 2.15(z=-3.0)

YesRT (msec) 774(121) 1399 (z=5.17)

e

Famous People

Famous Faces 23.6 (1.4)
Famous Names 25/25




Bill’s Object Recognition

Controls BC
S& V drawings 256/259
o
Minimal Feature Match 23.3 (2.2) 25

Foreshortened Match 21.6 (2.6) 25

Object Decision Task 27.0(2.2) 26




FaceOIT vs. ShoeOIT

Bill manifested an impairment on the Face Onein Ten
task. The individuation hypothesis predicts that he
should show similar impairments with shoe recognition.

11 ]

B Control mean +/- 1 SD

1.0

———= Bill's score

Faces Shoes



Face OIT vs. Shoe OIT

Controls Bill Controls Bill Controls Bill
d' o RT--Y (msec) RT-Yes RT--Mo RT--Mo
[-154d, +154d) [-15d, +1s5.4d.] [-15d, +154d]
] ] |
3.5 215 774 13859 530 1012
Face QIT
[313 4.10] p=.00&7 [653, 895]) p=.0002 [443, 817] p=.0001
| A
Shoe OIT 3 46 1280, 785 812 T33.4T24
[2.77, 4.15) [939 212?] [601, 1024]

Bill shows no impairment in
discrimination or RT with shoes.



Face Old/New Discrimination

Does Bill show impairments on old/new discrimination
tasks with faces?

Controls Bill Controls Bill Controls Bill
d' d' RT--Hits (msec) RT-Hits RT--CR RT--CR
[1 s.d., +1 5.d.] [1 s.d., +1 5.d.] [1 s.d., +1 5.d.]
] ] |
Faces #1 3.06 1.79 962 1278 948 1022
[2.51,3.61] p=.021 [735,1189] p=.099 [734, 1163]
2.91 2.25 977 1345 975 1141
Faces #2
[2.561,3.31] p=.065 [775, 1178] p = .046 [778, 1172]

Bill shows consistent impairments on face old/new
discrimination tests. Next we will compare his object
recognition using this paradigm.



ODbject Old/New Discrimination

Controls Bill Controls Bill Controls Bill
d d’ RT-Hits (msec) RT-Hits RT--CR RT--CR
[-1s.d., +1s.d.] [-1s.d., +1s.d.] [-1s.d., +1s.d.]
|
Horses 2 .66 2.36 1198 951 1151 1088
[2.16, 3.16] [870, 1525] [922, 1381]

Cars 2.78 1196 1143

[2.18, 3.37] [790, 1602] [749, 1537]
Houses 2.99 1099 793 1086

[2.45, 3.54] [629, 1368] [874, 1297]
Scenes 3.27 1037 801 1006 846

[3.08, 3.46] [799, 1275] [768, 1240]

Bill shows no impairments with object recognition or
place recognition. Hisd’ scoresand hisRTsareall in
the normal range.



Faces vs. Non-Faces

4.0 Faces | Non-faces
41 Tz 717
d. — i
2.0 S I
I B Control mean +/- 1 SD
1.0
I —— Bill's score

Faces #1 Faces #2 Horses Houses Cars Scenes

Bill’ s datais inconsistent with the individuation hypothesis.



CK: Object agnosia
without prosopagnosia

*Mr. CK sustained brain damage when he was struck by
a car while jogging.

*Born in 1961.

*Has adapted well since his accident.

*Completed MA degree.

*Great difficult with basic level object recognition.
*Perception of objectsisvery piecemeal.

*Deficit appears to extend to body parts.

«Can copy objects, albeit in a piecemeal fashion.

| ntegretative agnosia but can read normally and
recognize faces.



CK: Upright vs. Inverted

CK'’s face recognition has been tested with alarge
variety of face types.

*Upright famous face recognition: Normal.
| nverted famous face recognition: Severely impaired.

This data demonstrates two things:

*CK’ s difficulty with individuation does not extend to
upright faces, and so isinconsistent with the individuation
hypothesis.

*Upright & inverted faces are processed by different
procedures.



|ndividuation hypothess

» The individuation hypothesis is not capable of
accounting for the double dissociation between
face & object recognition seen in Bill Choisser &
CK.

* Next we will discuss the evidence regarding the
other two hypotheses: the Configural Processing
hypothesis & the Expertise hypothesis.



Configural Processing Hypothesis

CPH proposes that prosopagnosia is a manifestation of
damage to procedures specialized for the recognition of
obj ects based on the configuration of their parts.

It predicts that all prosopagnosics should show
Impairments with tasks tapping configural processing.

The originators of the CPH clams that tests of visual

closure depend on configural processing.

*Require structuring of a percept based on individually
meaningless parts.

*Recent review showed no reports of prosopagnosics who
have performed normally on these tasks.



Testing the CPH

CPH predicts that Bill should be unable to perform
normally on tests of visual closure. 3

.’
Gestalt Completion 15.2 (3.6) 18 -
Concealed Words 23.6 (6.4) 23
Snowy Pictures 5.7 (3.0 13

Bill’ s has no difficulties with these tasks. Thisresult is
inconsistent with the CPH. Thus, if these tasks require
configural processing, adeficit in CP does not explain
Bill’ s prosopagnosia.



Expertise Hypothes's

People are capable of developing expert abilities for classes
of stimuli that they are required to recognize.

Researchers have found that many of the putatively face-
specific effects can also be found for stimulus classes that
people have developed expertise with.

It is plausible that faces are smply one of many classes for
which people develop expertise.

If an individual didn’t have the ability to develop expertise,
they would not develop expert procedures for faces and so
would manifest face recognition deficits.



Expertise Hypothesis Prediction

*According to the EH, developmental prosopagnosics do
not have the procedures necessary to develop expert face
recognition.

*Prediction: Prosopagnosics should be unable to develop
expertise for non-face stimulus classes.

Gauthier shown that individuals develop expertise after
participating in a Greeble training
procedure. Thus, prosopagnosics
should not be capable of developing
expert Greeble recognition.




Face-specificity conclusions

*The evidence for specialized procedures for faces seems
uneguivocal. Much of the strongest evidence comes from
dissociations of upright & inverted faces.

*The open question seems to be the developmental process
that results in this specialization.

*Because Bill is a developmental prosopagnosic, this
Indicates that the specialization has been designed by natural
selection rather than through domain-general expertise
development procedures.

However, this debate will continue for some time.



What Is a face?

*\What types of stimuli activate the
face-specific procedures?

*This question can be approached by
determining the stimuli that are (Eaz. L Y
processed by face-specific procedures.

*This data can come from any hallmarks of face-specific
process, but presently the best evidence comes from
neuropsychological cases and psychological experiments.



L essons from CK

It appears that the only recognition procedures that are
unimpaired in CK are face-specific procedures. Thus,

If he can recognize a stimulus, it is probably being sent to
his face recognition system.

Normal recognition: Upright faces, cartoon faces, half
faces cut vertically, caricatures, composite faces

made of common objects, faces with just the internal facial
features.

|mpaired recognition: Inverted faces of any kind, half
faces cut horizontally, external facial features (hair, jaw
line, ears), fractured faces.




Facesfor CK Non-faces for CK




Other experiments discussed?

» Appears that the sheep faces viewed by WJ didn't
satisfy requirements of hisface recognition system.

e Imaging & neurophysiology results indicate
stimuli that are not faces.

 However, not all of these results are consistent,
and much more work needs to be done.



Bruce & Young (1986)

A cognitive model of face processing has been
proposed based on neuropsychological and
psychological evidence.

At this point, the processes at each stage are not
well understood, but the divisions of the model are
well supported by the data.
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Face Phenomena

There are anumber of interesting phenomena
Involving faces that haven't been discussed.

 Cross-race recognition deficit.
* Robust representations of faces.

e and one more.



Cross-Race Recognition Deficit

Many experiments have found that people have
more difficulty recognizing individuals from
other races.

*Contact hypothesis. Because people view more
same race (SR) faces, they develop expertise for
a particular type of face. Thisexpertiseisnot as
effective with cross-race (CR) faces, and so there
Isa CR deficit.

Prediction: Exposure to faces of other races should
lessen the CR deficit, but thisis not always the case.




Feature Selection Hypothesis
Levin, Daniel (2000)

*Feature selection hypothesis claims that the CR
deficit results from observers focus on different
types of information in SR and CR faces.

--SR faces are processed for individuating info.
--CR faces are processed for race classifying info.

*These different emphases result in the selection of
different facial features depending of the race of
the face.



Featur e Selection Hypothesis

Predictions differ for white individuals with the
CR deficit and those who do not show it.

CR deficit:

e Better at searching for black faces among white
faces, but not vice versa.

o Better at discriminating the race of black faces.

No CR deficit:
o Similar performance on search task.
o Similar at discriminating race regardless of race.




Visual Search for Race

Stimuli: Sets of 2-8 faces were presented. Target
and distractor stimuli were from different races.

Task: Determine whether aface from a particular
race Is present (For example, isthere awnhite face
present?)

Results:
CR deficit—Faster detecting black targets, slower
with white targets.

No CR deficit—Very small difference.



Racial Discrimination

Stimuli: Morphs between an average black and white
faces were created.

Task: Decide which of two facesis closer to an end of the
continuum.

Results:
CR deficit—Dbetter at discriminating at black end!
No deficit—Iittle difference at either end.




Robust Representations
Tong & Nakayama (1999)

 Visual search tasks were used to compare representations
of highly overlearned faces.

Task: Determine presence or absence of own face
or an unfamiliar face.

Stimuli: Shots from three different
angles:
e front
o 3/4 profile
o full profile




Results of Face Search
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Set Size

Trial

Subjects are faster detecting own face photos than photos

of astranger. Note that even after 144 trialsat set size 1,
thereis still adifference.

There is along-term component to face representations.






What about hair!?
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Face Detection Survey

courtesy of

Ming-Hsuan Y ang
Honda Fundamental Research Labs



Face Detection

Goal: Identify and locate human facesin an
Image (usually gray scale) regardless of their
position, scale, in plane rotation, orientation,
pose and illumination

Thefirst step for any automatic face recognition
system
A very difficult problem!

First aim to detect upright frontal faces with N
certain ability to detect faces with different pose,
scale, and illumination

One step towards Automatic Target Recognition
or generic object recognition Where are the faces, if any?




Why Face Detection 1s Difficult?

Pose: Variation due to the relative camera-face pose (frontal, 45 degree,
profile, upside down), and some facial features such as an eye or the nose
may become partially or wholly occluded.

Presence or absence of structural components. Facial features such as
beards, mustaches, and glasses may or may not be present, and thereisa
great deal of variability amongst these components including shape, color,
and size.

Facial expression: The appearance of faces are directly affected by a
person's facial expression.

Occlusion: Faces may be partially occluded by other objects. In an image
with a group of people, some faces may partially occlude other faces.

| mage orientation: Face images directly vary for different rotations about
the camerds optical axis.

| maging conditions: When the image is formed, factors such as lighting
(spectra, source distribution and intensity) and camera characteristics
(sensor response, lenses) affect the appearance of aface.




Related Problems

« Facelocalization: aim to determine the image
position of asingle face; thisisasmplified
detection problem with the assumption that an
Input Image contains only one face

e Facial feature detection: to detect the presence
and location of features such as eyes, nose,
nostrils, eyebrow, mouth, lips, ears, etc. with the
assumption that there is only one face in an image



Methods to Detect/L ocate Faces

K nowledge-based methods:

— encode human knowledge of what constitutes atypical face
(usually, the relationships between facial features).

Feature invariant approaches.
— amto find structural features that exist even when the pose,
viewpoint, or lighting conditions vary
Template matching methods:

— Severa standard patterns stored to describe the face as a whole or
the facial features separately.

— The correlations between an input image and the stored patterns
are computed for detection.
Appearance-based methods:

— the models (or templates) are learned from a set of training images
which capture the representative variability of facial appearance.




Knowledge-Based Methods

e Pros.

Easy to come up with ssimple rules to describe the features of aface and
their relationships.

E.g.: aface often appears in an image with two eyes that are symmetric to
each other, a nose and a mouth (in terms of relative locations and distance) .

Facial features in an input image are extracted first, and face candidates are
identified based on the coded rules.

A verification processis usually applied to reduce fal se detections.
Work well for face localization (single face) in uncluttered background

e Cons

Difficult to translate human knowledge into rules precisely: Detailed rules
fail to detect faces and general rules may find many false positives.

Difficult to extend this approach to detect faces in different posessinceit is
challenging to enumerate all the possible cases.



Knowledge-Based Method: Example

o [Yang and Huang 94].
3-level rules based on the
Intensity distribution and
difference of multi-
resolution images and edges
detection

» [Kotropoulos and Pitas 94]:
horizontal/vertical
projection to locate features
and then apply rules for
localization 3 Y




Feature Invariant Approach

Detect facial features (eyes, nose, mouth, etc)
Group features into candidates and verify them
Facial features. edge, intensity, shape, texture,
color

Pros:
— Can locate faces in different pose and orientation

Cons:;

— Difficult to locate facial features due to several
corruption (illumination, noise, occlusion)

— Difficult to detect features in complex background



Feature Invariant Approach:
Examples

e [Leung and Perona 95]: probabilistic method based on
feature detectors and random graph matching

e [Yow and Cipolla 90]: Bayesian network of face models
and components

Face TopPEG BottomPE G LeftPEG RightPEG

Hpairl Hpair2 Vpairl Vpair? Vpaic3

Face model and component _ _
Apply interest point operator and

edge detector to search for features



Template Matching Methods

Store atemplate
— Predefined: based on edges or regions
— Deformable: based on facial contours (e.g. snakes)

Find correlation to locate faces
Pros.

— Simple
Cons.

— Expensive computation (due to correlation)

— Difficult to enumerate good templates (similar to
knowledge-based methods)



Template Matching Method.

Example

« [Sinha 94]:

— Userelative pair-wise

ratios of the brightness of

facial regions (isone
region darker than the
other?)

— Been applied to Kismet
project




Appearance-Based M ethods

» Use positive (and possibly negative examples) of facesto
train the classifier, or to estimate a probabilistic distribution
using statistics or machine learning methods

— Neural network: Multilayer Perceptrons

— Eigenface or PCA, Factor Analysis

— Support Vector Machine: Polynominal kernels

— Mixture of PCA, mixture of factor analyzers

— Distribution-based method

— Naive Bayes classifier

— Hidden Markov Model

— Sparse Network of Winnows

— Information-Theoretical Approach: Kullback Relative Information
— Inductive Learning: C4.5



Subspace Face Detector

o PCA-based Density Estimation p(x)
« Maximum-likelihood face detection based on DIFS + DFFS

WF
* Eigenvalue spectrum
'DFFS |
| F @ F
DIFS i
F L
1 M N

Moghaddam & Pentland, “Probabilistic Visual Learning for Object Detection,” 1CCV’95.



Subspace Face Detector

 Multiscale Face and Facial Feature Detection & Rectification

— w] Multiscale
Head Search

>l Scale }

Moghaddam & Pentland, “ Probabilistic Visual Learning for Object Detection,” |CCV’95.



Distribution-Based Face Detector

» Learn face and nonface models from examples [Sung and Poggio 95]

o Cluster and project the examplesto alower dimensional space using
Gauss an distributions and PCA

» Detect faces using distance metric to face and nonface clusters

Frontal Face Pattemn

sarnples to approximate
wector subspace of
canonical face views

Special Mon-Face Pattem
sarnples to refine vector
subspace boundanes of

canonical face views

¥3  Face Sample
&  Distdbudon
Lt ik

%ZSB\I,J‘
bl

%3 Mon-Face Sample
~ Dismbution
e

%3 Approximation with
4 Gaussian clusters

L

x3 Approximation with
4 Gamssizn custers

Mon-Face Centroids

IMullspace of

‘-\Jf T4 Largest Eigensecto

5

Test Pattern

Centroid




Distribution-Based Face Detector

» Learn face and nonface models from examples [Sung and Poggio 95]

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern




I
¥

Neural Network-Based Face Detector

o Train aset of multilayer perceptrons and arbitrate
a decision among all outputs [Rowley et al. 98]
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Standard Test Sets

MIT Test Set (http://www.cs.cmu.edu/~har): subsumed by
CMU Test Set.

CMU Test Set (http://www.cs.cmu.edu/~har) (de facto
benchmark): 130 gray scale images with atotal of 507
frontal faces.

CMU Profile Face Test Set
(http://eyes.ius.cs.cmu.edu/usr20/ftp/testing_face images.tar.gz) -

208 gray scale images with facesin profile views

Kodak Data Set (Eastman Kodak Corp): Faces of multiple
size, pose and varying lighting conditions in color images.




Research | ssues

Detect faces under varying pose, orientation,
occlusion, expression, and lighting conditions

Performance evaluation

Standardized Testing

Fast and real time face detectors
— Violaand Jones CVPR'01



References

e M.-H. Yang, D. J. Kriegman, and N. Ahuja,
“Detecting Facesin Images. A Survey”, to appear
in |EEE PAMI.

M. Panticand L. J. M. Rothkrantz, “ Automatic
Analysis of Facial Expressions: The State of the
Art”, IEEE PAMI 22 (12), pp. 1424-1445.
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Auto-associative Memory (CAM)

Anderson et al 1977 Kohonen 1979 Kohonen & Oja 1981

X —» X

Widrow-Hoff (Hebbian) Learning:
W <« W+n(X-WX)X'
W « XX' =X

W =ULU" with L = |



Auto-encoder Network

Cottrell et al 1987 Cottrell & Fleming 1990 Golomb et al 1991

y = f(W;x) X y X

%= (W,y) e e

f(X) =

1
—ax

1-e

MLP: “Backpropagation” Learning (Werbos 1974)

W, “receptivefield” Y = principal components

W, “projectivefield” L» identification & classification
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Brunelli & Poggio 1993 pami-1510)

Features vs.  Templates

-----------------




R. Brunelli & T.Poggio, Face Recognition: Features vs. T emplates

Psychological studies of human face recognition
suggest that virtually every type of information is
used.

Two ways can be distinguis hed to get a one-to-
one corres pondence between the stimulus (face to
be recognized) and the stored repres entation (face
in the databas e).

lgeometric, feature-bas ed matching relying on a
restricted set of numbers des aibing position and
shape of face features

Jiconic, template-matching using bidmensional
array of values providing a dens e repres entation of
faces




R. Brunelli & T.Poggio, Face Recognition: Features vs. T emplates

. geometric, feature-bas ed matching

Ferfarmance

0 10 20 30
Nr. of components

After scale and rotation normalization of the eye-to-eye segment 35
numbers are computed through edge projection analysis: principal
component analysis shows that al of them are necessary to get optimal
performance with aBayes dassifier under the assumjption of Gaussian
distribution for the feature vectors of asingle person.

W TEV



R. Brunelli & T.Poggio, Face Recognition: Features vs. T emplates

0.3

0.6

Carrect recognitian (%)

. template matching

o Al added
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T emplate matching is bas ed on the average normalized correlation of

several face patches.

Using multiple features (and examples) provides increas ed robus tness
and performance even at very low res olution.
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R. Brunelli & T.Poggio, Face Recognition: Features vs. T emplates

. template matching

1.0 —r——pr—r e O /<>
- I P Eiinnd s S S B o8
= R R e IR

- Y P i SoeE = ] aD()
G 0.9 Fagr o DD(
fpad F § - 1

— i

g .'jf!g

© 0.5 L0

- - r-'l.u

45 :i'i;’

oY

O !

u G?_GI """

10 20 30 40 50 60
Interocular distance

S everda preprocessing techniques have been compared to optimize
correlation performance against illumination variations and best
results were obtained with gradient intensity
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R. Brunelli & T.Poggio, Face Recognition: Features vs. T emplates

... template matching

O Ma Mormalizatian
1 ol/<i
1 oD

Carr. x 100

IR

Degrees

Correlation matching performance decreases markedy with rotation if
only frontal templates are available.

S cale variations als o adversely affect performance if not managed
properly.

i IEVY
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R. Brunelli & T.Poggio, Face Recognition: Features vs. T emplates

...andthewnneris: TEMPLATE MAT CHING

O Carrect 1.0

0.8F

HBBE-ELEH;I{J < Error

0.6}

0.4}

* 4 o
r 5 }9@%—) ’

1T g g T g

0 S 10 15 20
Rejection threshold

Geometrical features

O Carract

;' %%w e

i  © Errars

7

|

0.6}
?Z '

1

/

|

0.0+

e e S R R a= ===
i ikl i Taycwr o ch

o 20 40 &0 80 100

Correlation threshold

T emplate Matching

T he approach based on template matching provides the best
performance with or without rejection.
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R. Brunelli & T.Poggio, Face Recognition: Features vs. T emplates

.andthewnner is: TEMPLATE MATCHING

O Performance [ 7 O Recogn

1.6} A 1 o Min/Max I :\ | o MIN/Max
j \ j 1.4 ]
1.4 I MHQ\@-—%F@ ] ;\G\E}WF—Q
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0.8! '
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MNr., of clogsses MNyr. of classes
Geometrical features T emplate Matching

T he template matching approach aso provides better scalability as
recognition experiments with subsets of different cardinality show (the
average MINMMAX ratiois arough estimate of how easy it s

dis aiminating different people).
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R. Brunelli & O.Mich & D. Giordani, S potit! An Interactive Face Compositing S ystem

Spotits

http://spotit.itc.it

T he feature bas ed approach has
been applied to the problem of joint

Jﬁ?ﬁ image synthes.is .and recognition

it bas ed on prindpal components:

F ol

sicl the resultis anovel face

sl compositing system where the user

“-j'g can build images interactively
moving sliders related to prinapal

projections while getting immediate
feedbacdk from the system showing
the most similar images in the
databas e.
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Subspace Methods

PCA (“Eigenfaces’)

“Dual PCA”
— Bayesian matching

LDA/FLD (“Fisherfaces’)
|CA

LFA



Principal Component Analysis
Joliffe (1986)

- datamodeling & visualization tool

e discrete (partial) Karhunen-L oeve expansion
» dimensionality reduction tool R"“ - R"

e makes no assumption about p(Xx)

e if p(X) is Gaussian, then  p(x) = H N(y;;0,4)



Eigenfaces (PCA)

Kirby & Sirovich (1990), Turk & Pentland (1991)
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1=1 @
S:ULUT Pixel 1 ® ®

2
y:UT(X—IL[) | Pixel 2



Elgenfaces
Turk & Pentland (1992)




Elgenfaces
Photobook (MIT)

Display mode W
Configure display mode...

E-'l:hm-hil:pir.hm-wr— ' o L1 : E Symbols,,

LahaL..

|Configure search metric.. -
] 6 i E Haooks...

BdE3

Working Set: 7561

Left button to selact
Middle button to search
Right buttan for info




Elgenfaces
Moghaddam & Pentland (1995)

— | Multiscale | Feature
Head Search Search

Normalized Eigenfaces




FERET Photobook

Moghaddam & Pentland (1995)

Tatabase | bark — J Initializs
i ShuFFle
1 Load Qusry

Dizplay meds 1 image—orig
If'a:mflgra dizplay mode, .,

Search weteic | norm-edes-ew 7

Conflogsre saarch matrlc, ..

i Resize
P.afmm Cache
Left button to select :

Hiddie button to search 0047 TFS010,_ 340519 OIZESF 5010, 940422 OO2BEFBOL0, 3404227 OOZBEFS0L0, 940452 Fage Up/Town
Right button For info

I | Ouit Phatoboak



FERET “Elgenfaces’

Moghaddam & Pentland (1995)

Projects all faces

onto a universal
elgenspace to “encode’
viaprincipal components

Uses inverse-distance
as asimilarity measure
for matching & recognition




Appearance-Based Models: Parametric Eigenspaces
Murase & Nayar (1995)

Columbia“COIL” Object Database (Pose)



Appearance-Based Models: Parametric Eigenspaces
Murase & Nayar (1995)

Columbia“COIL” Object Database (Pose)



Bayesian Face Recognition
Moghaddam et al (1996)

Intrapersonal Q,
Extrapersonal Q.

Q) =18 =% =X, 1 L0g) = LX)}
Qe ={A=X% =% 1L(%) # L(x))}

_ P(A]Q,)P(Q))

P(A|Q,)P(Q)+P(A[Qg)P(Qg) ‘Eilfi)) H

!
P(A|Q) — [Moghaddam ICCV’95] S(p.g)



Linear Discriminant Analysis
LDA or “Fisherfaces’

Etemad & Chellappa (1994)
Swets & Yang (1996)

Belhumeur et al (1997)



“The variations between the images of the same face due to
Illumination and viewing direction are amost always larger
than image variations due to change in face identity.”

-- Moses, Adini, Ullman, ECCV ‘94



Fisherfaces. Class specific linear projection

P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces. Recognition
Using Class Soecific Linear Projection, PAMI, July 1997, pp. 711--720.

* An n-pixel image xOR" can be
projected to alow-dimensional
feature space yOOR™ by o

—_— \/\/)( A AR,
— Rl P ol R R R
y iR Al
Lo o o o rd

£
. . rr oy o
where Wis an n by m matrix
. T T e T P e T T B
F AL A A A A

* Recognition is performed using
nearest neighbor in R™.

* How do we choose a good W?




PCA & Fisher’'sLinear Discriminant

Between-class scatter

S = Z‘Xi‘(,ui — 1) (Y, -u)'

Within-class scatter

Sy = Z&%{i(xk — 1) (%~ 1)’

Total scatter

S = ixgx(xk ~ 1) (%~ )" =S+ Sy

Where

— cisthe number of classes
— W, iIsthemean of class;
— | x; | is number of samples of x; .

X X2
i A
“' A HZA
o® O]
o A,
B B
oo S
o0
Pixel 1 ‘
o O o
Pixel 2
Pixel 3



I

PCA & Fisher’'sLinear Discriminant

* PCA (Eigenfaces)

M aximizes projected total scatter Weca = arg mvff‘X’WT SrW‘

e Fisher’'s Linear Discriminant

WTSW
WS,

Maximizes ratio of projected
between-class to projected
within-class scatter

W, , =argmax
W



I

" PCA & Fisher’sLinear Discriminant




I

Fisherfaces
W =W, W, » Since S, isrank N-c, project
training set to subspace
W =aramax\W' S.\W spanned by first N-c principal
pea — G ’W S ‘ components of the training set.

T\AsT * Apply FLD to N-c
’W WPCASBWPCAW‘ dimensional subspace yielding
’\/\/TWPTCA SNWPCAW‘ c-1 dimensional feature space.

W, , = argmax
W

 Fisher’s Linear Discriminant projects away the
within-class variation (lighting, expressions) found in
training set.

* Fisher’s Linear Discriminant preservesthe
separability of the classes.
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|
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e 10 individuals

* 66 IMages per person
« Trainon 6imagesat 15° 60°
e Test on remaining images
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X/

45 degrees

30 degrees
Light Direction
Correlation —#—Eigenfaces —&—Eigenfaces (w/o 1st 3) =< Fisherface

0-15 degrees




|ndependent Component Analysis
|CA: Bartlett (1998)

(PhD Thesis, UCSD)

second PC

_~ First PC

>

Pixel 1
Pixel 2

Pixel 3 First IC_

A

ta gt 'a.'-.--_--g-'-r-.-n.-f.w.-l.-il'-q;!'-n'-_ -

PCA Projection ICA Pl'l']_]'-ﬂ_.L_"['lf}]'l_'_ | R



|CA: Bartlett (1998)
Motivation

Successful face recognition based on learning structure
from the dependencies among pixels

o Eigenfaces (Turk & Pentland, 1991)

The more dependencies that are learned, the more
structure that is learned

| CA can be more robust to noise than PCA

Phase is contained in the high order statistics



ICA: Bartlett (1998)

Scrambled  Amplitude A
Face A Phase Phase B

. Wy

Scrambled Ampl Itude B

The phase spectrum, not the power spectrum, contains the structural information
that drives drives human perception. Phase is contained in the high order statistics.



ICA: Bartlett (1998)
| nfomax Method

_—
y =glx)
- - | - X
— i [0
= 4
|_|_|".H"' E_.:{:"-’.:J
T X I"'""Igj_ﬂt W

Figure 2.1 Optimal mformaton Bow i stgmoidal nearons, The tnpat 3 15 passed through @ oon-
linear function, gix). The information in the ouput density fu0y] depends on matching the mean
anl variance of £ (23 W the slope and threshold of g{x). Right: }'z,-ij,'_} 15 plotted tor different val-
unes of the weight, @, The optimal weight, wepe ransmits the most information, Figure from Bell
& mejuowskn {1V reprimted wath permission fronm Nepral Compaetation. copynght 1995, MI

Pross,



ICA: Bartlett (1998)

NEEE-
o=

Sources  Unknown Face Learned  Separated
Mixing Images Weights  Outputs
Process

Figure 2.3; Tmage svothesis model, For finding a set of independent component images, the im-
ages i X oare considered o be i linear combination of statstcally imdependent basis images. 5.
where A is an unknown mixing matrix, The basis images were recovered by a matrix of learned
filters, Ty, that prodeced statsocally imdependent outpats, T



|CA: Bartlett (1998)

u] ”z un

ICA representation = (by, ba, ..., by )

Figure 2.4; The independent basis image representation consisted of the coefficients. b. for the
lineir combanation of ndependent basis tages, 0. that comprised each Tace mage x.



ICA: Bartlett (1998)

A
L]
S U
—| 2 e
— |2
Unknown Unknown Face Learned  Separated
Sources Basis Images Images Filters Sources

Figure 2.6 Image synthesis model for Architecture 2, hased on Olshauwsen & Field (14¥4%) and
Bell & Semowsk (1997 Each image in the dataset was considered 1o be a hnear combianation
of underlying basis images in the marix 4. The basis images were each associated with a sel
of incdependent “canses”. given by aovector of coefficients in . The causes were recoverad by
d matnix of leammed flters, W, which attempts 1o invert the unknoswn basis functions o produce
statistically independent curputs. U7



ICA: Bartlett (1998)

a, a, a,

ICA factorial representation = (uy, us, ..., up )

Fieure 2.7 The factomal code representation consisted of the imdependent coefMlcents, W, Tor the
lingar combination of basis images in A that comprised each face image x.



ICA: Bartlett (1998)

FLLA
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Hik

Fercent Correct
- |
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1K E =% -
il
Same Day WfE Day Diff Dy
TestSet 1 i pnr 2 Game Expr 3 1% Expr

| i';un: 214 l-it-..'ﬂ';niliqln ]'-;:l'l'llrln.ln-.'-.' il the factowtal coule 100A ]'I."|'|D..".'-.-.."]Z||il|i-i|[I (10 A2 11:1'1'115 ull
2000 coefhicients, comparad 1o the 1A independent basis representation (1AL, and the PCA
I prescniatio. alsor with MUY coedficients.



ICA: Bartlett (1998)

100 T T

T '
=
T
m s
S S 5
=8 = v
Same Day Diff Day Diff Day
TestSet 1 Diff Expr 2 Same Expr 3 Diff Expr

| mprovement in recognition performance by selecting subsets of components by
class discriminability. Gray extensions show improvement.



|CA: Bartlett (1998)
See also:

; Bartlett, M.S. Face Image Analysis by
Face Image Analysis , )
by Unsupervised Learning LJnS-“lperVI$d Learni ng Kluwer (2001)

» Foreword by Terrence J. Sgnowski

e For more information, see
http://inc.ucsd.edu/~marni

Maran Stewart Bartle tt

Foreword by Terrence 1. Sejnowski




Local Feature Analysis (LFA)

Atick & Penev (1996)

PCA

* Global
* No Topology
* Dense

LFA

* Local
* Topographic
* Sparse

positi
a b c d

WWW.VISIionics.com

e




Subspace Modeling

ICA NLPCA

x=Uy X= Ay y = f(X)
UTu = ATAZ | x=g(y)
R R i O N




Subspace Modeling

100

FCA | A NLFCA K PCA Bayes

Moghaddam ICCV'99 + PAMI (to appear)



Elastic Bunch Graphs (EBG)

Wiskott et al (1997)

convolution result
Crabor wavelets  imaginary part  magnibude

onginal mmage




Face Modeling with EBGs




Course Outline

Brief History
Introduction to Key Problems
Face Perception in Humans

Automatic Face Recognition
— face detection

— neural network methods

— features vs. templates

— Subspace methods

— FERET test protocol

— lighting/pose techniques

— 2D/3D models

Future Directions




NISTI

The FERET Evauations

courtesy of

P. Jonathon Phillips
National Institute of Standards and Technology

jonathon@nist.gov



NIST
FERET Publications

August 1994 and March 1995 Tests:

FERET (face recognition technology) recognition algorithm development and test
report, Phillips, Rauss, and Der, Tech. Report ARL-995, 1996

The FERET database and evaluation procedure for face recognition algorithms,
Phillips, Wechsler, Huang, and Rauss, Image and Vision Computing J. 16(5):295-
306, 1998.

September 1996 Test:

The FERET evaluation methodology for face recognition algorithms,

Phillips, Moon, Rauss, and Rizvi, |EEE trans. PAMI 22(10):1090-1104 October
2000

A verification protocol and statistical performance analysis for face recognition
algorithms, Rizvi, Phillips, and Moon, CVPR' 98; Invited paper, Spoecial Issue of
Image and Vision Computing J. on face and gesture recognition.



FERET Database

George Mason U. / ARL
September 1993 - August 1996
Standard database for developing and testing

Development portion

— Gilven to researchers

Sequestered portion
— Used for testing

NISTI



FERET Database
Sample image set

NISTI




NIST
Size of FERET Database

Images in the FERET database as of September 1996

14,126 lmages
1,564 Sets of Images
1,199 Individuals
365 Duplicate sets
503 Sets of images in the development portion

)
e

Variations among duplicate images




NIST
FERET Evaluations

 Independent evaluation of face recognition algorithms

e Test alows

— Assessment of state-of-the-art
— ldentification of future research directions

e Seriesto advance face recognition

— Each test more advanced
— Supported by data collections
— Based on previous tests



Three Evaluations

e Aug 94 test
— August 1994

e Mar 95 test
— March 1995
— November 1995
— August 1996

¢ Sep 96
— September 1996
— March 1997

NISTI



Face Recognition
State-of-the-art: September 93

 No method to assess state-of-the-art
— Algorithm results reported on small (<50) internal databases

o Algorithms NOT fully automatic

 Leading researchers reported on following databases

— Pentland
= Database of 7,500
= Collected in abooth, eyes registered

— Wilder
= Database of 250 images
= Very controlled conditions, chin registered

— von der Malsburg

= Database of 100 images
= Controlled size, some variation in rotation and pose

NISTI



NISTI

Groups Tested

Test date
Version of test Group Aug Mar Nov Aug Sep Mar
U 5 95 % % 97
Fully automatic MT * * * *
Rockefeller U. *
Rutgers *
TASC *
USC * * *
Eye coordinates given Baseline PCA *
Excalibur *
VSU *
Rutgers *

UVD




NISTI

Test Size

Gallery FB probes Duplicate |  Duplicate Il fc probes
images probes probes
Aug 94 test 316 50 0 0
Mar 95 test 780 463 0 0
Sep 96 test 1195 122 234 194




Best score

NISTI

Best Scores by Image Type

M ar-95 Nov-95*
Test dates

Same day, same camera,
same lighting, different
expression

Same day, different
camera, different lighting

Different day, different
camera, similar lighting

Different day over a year
later, different camera,

similar lighting



Average score

NISTI

Average Scores by Image Type

Same day, same camera,
same lighting, different

4_&/ @™ expression

Same day, different

camera, different lighting

Different day, different

camera, similar lighting

Different day over a year

M ar-95 Nov-95* Sep-96
Test dates

_ 9 later, different camera, similar
S| lighting




- - . ler
| dentification Performance

|dentification rate for FB and duplicate probes
(gallery: 1196, FB probes. 1195, Dup | probes. 722)

100

80

Identification 60
rate

(%) 40

20

MIT Mar95
MIT Sep96
M SU
Rutgers
UMD Sen96

C -
S 28 3
a . — —
s BT 8
—g m & w
(&]
m

UMD Mar97
USC Mar97

Algorithm



NIST
Conclusions from FERET

® Further research directions:

™ 7 e Sl ) o

i N ; =

G o

S A -2 =
! < -~ k B
i & -
A - 4 ; =
R &

Lighting changes Image taken 1+ years apart Pose changes

« What are the critical factors that influence performance?
— Gallery and probe sets
— Algorithm design
— Algorithm implementation
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From Few To Many:

lllumination Conesfor Recognition  Yale#

I

Image variability confounds recognition:
Images of asingle person under variable lighting and viewpoint

B

kﬁ;’ . !

using a small number of captured images.
(Georghiades, Belhumeur, Kriegman, PAMI, June 2001, pp. 643--660)



I

What is the set of n-pixel images of an object under all
possible lighting conditions (but fixed pose)?

Proposition: Due to the superposition of images, the set of images
ISa convex cone in the image space.

(Belhumeur and Kriegman, 1JCV, July ‘98)

The lllumination Cone  Yaleg=

llHlumination Cone

2-light source
Image

Single light source |mages
N-dimensional
Image Space

XN

[Georghiades, Belhumeur, Kriegman, PAMI, June 2001]



ASsume:;

Objects have Lambertian
(matte) reflectance functions.

Objects have convex shape.
Point light sources at infinity.
Orthographic projection.

At image location (X,y) the intensity of apixel 1(x,y) is
I(xy) = 5 max( a(xy) n(xy) *s,0)

where
* a(x,y) isthe abedo of the surface f (x,y) projecting to (X,y).

o n(xy)=[f(xy)f,(x y),—l]/\/ fe(xy)+ f7(x,y)+1 istheunit
surface normal.

« 5 arethedirections and strengths of the light sources.

[Georghiades, Belhumeur, Kriegman, PAMI, June 2001]



Generating the | llumination Cone(l1) Yale

« For Lambertian surfaces, the illumination cone is determined by the 3D linear
subspace (of the function space) B(x,y), where

B(X,Y)

0cy) =y max([atey) nexy)] +s:,0)

 When no shadows, then I(xy) = Z B(X,y)*s

* With asmall number of captured (single light source) images with no shadows,
use least-squares to find best 3D linear subspace B(X,y), subject to the constraint
f=Tyx- (The constraint forces the estimated B(x,y) to correspond to a surface.)

A &
3D linear subspace, B(x,y)

Surface, f(xy)

Original (Training) Images
[Georghiades, Belhumeur, Kriegman, PAMI, June 2001]



j[ Synthesizing Illumination Cone I mages

Use estimated 3D linear subspace B(x,y) and surface f (X,y) to generate
synthetic images under variable lighting and viewpoint.

Use synthetic images for recognition.

Variable Lighting Movie Variable Viewpoint Movie

[Georghiades, Belhumeur, Kriegman, PAMI, June 2001]



I

Face Recognition Algorithm  Yales=

For fixed viewpoint:

- Use reconstructed surface f(x,y) and linear subspace B(X,y) to synthesize
extreme rays (images) of the illumination cones.

- Since a cone lies near alow-dimensional linear subspace, then
approximate cone by a subspace.

- Classification is performed by computing distance to cone or distance to
linear subspace.

For variable viewpoint:
- Systematically sample the viewpoint space generating alinear subspace
(cone approximation) per sample viewpoint.
- The union of the linear subspaces forms the face representation.

- Classification is performed by computing distance to the union of
subspaces. This distance is equal to distance to nearest subspacein
the representation.

[Georghiades, Belhumeur, Kriegman, PAMI, June 2001]



« 5760 (single light source) images. 10 subjects,
576 images/subject

e 64 lighting directions (frontal to 90° off-center)
9 poses(frontal to 24° off-center)

http://cvc.ya e.edu/projects/val efacesB/yal ef acesB .htmi

[Georghiades, Belhumeur, Kriegman, PAMI, June 2001]



Face Recognition:
Experimental Protocol

Training: Train on 70 images of Subset 1
(7/person) where lighting is within
12° of the camera’s optical axis and
viewpoint is frontal.

Testing: Test on 4050 images (405/person):
10 persons X 45 lighting directions
ranging from frontal to 77° X 9
viewpoints ranging from frontal to
24°.

Classification Method: Nearest Neighbor
(i.e., assign to test image the identity
of the nearest face representation.)

Test images divided into 4 subsets with
Increasing extremity in illumination.

[Georghiades, Belhumeur, Kriegman, PAMI, June 2001]



Face Recognition Results:
Variable Lighting

I

Comparison of [llumination Cones (with and without cast shadows) against Normalized
Cross-Correlation and Eigenfaces (w/out the 1st 3 principal components).

90 Chance

80

70 - Tested on 450 images
s - Infixed (frontal) pose

y; Correlation
/ Eigenfaces w/o 1st 3

“ /
o /
30 /
. Wi

/

Error Rate

10 / Cones (w/out cast)
0 Cones{(w/ecasty—
12 degrees 25 degrees 50 degrees 77 degrees

Lighting Direction Subset

—Correlation Eigenfaces (w/o 1st 3) —— Cones (w/out cast)
——Cones (w/ cast) —Chance

[Georghiades, Belhnumeur, Kriegman, PAMI, June 2001]



Face Recognition Results:
Variable Lighting and Viewpoint

Test of theunion of linear subspaces with all 9 viewpoints

Error Rate

14

12 —

10

8
6
4
2
o)

Overall Error Rate: , 24° (3 viewpoints)
3.41% on 4050 test /
Images
/ y All Poses

/ // 12° (5 viewpoints)

/

/t///

/ // _~ Frontal
/g

12 degrees

25 degrees 50 degrees 77 degrees
Lighting Direction Subset

— Frontal — 12°

24° All Poses

[Georghiades, Belhumeur, Kriegman, PAMI, June 2001]



Dealing with Pose

e “View-Based”
— multiple view-tuned models

» Use components

— less sensitive

e Use 3D models



2D View-Based Models

il

; a T
! r i
. = y ™ -

Form specific (“ view-tuned”) models

for each view/pose (orientation)
Note: memory-based technique!




2D View-Based Models

Compute an Eigenspace
for each view (column)

Pentland, Moghaddam, Starner, “View-Based and Modular Eigenspaces for Face Recognition”
|EEE Conf. on Computer Vision & Pattern Recognition, CVPR’ 94, Seattle, WA, July 1994.



Virtual Viewsvia Morphing

Beymer & Poggio (1995)

' (O)
' mapped
| prototype

virtual view
(a) ()

Figure 7. (a): [n paralle] deformation, (A)a 2D deformation representing a transformation
i measured by finding orrespondence among prototype images.  [n this example, the
transformation s mtation and optical flow was wsed Lo find a dense set of correspondences.
Next, m (B}, the flow & mapped onte the novel face, and (C) the novel [ace s 210 warpsad
Lo a “virtwal® view., From Beymer and Poggio (1996b) . (b): A real view (center)
s rrownded by virtwal views derved Trom i€ wEng parallel ddormation. From Beymer and
Poggio (100G |



Component-Based SVM Face Recognition

Hierarchical SVMs based on
automatically learned
components (14 here) yield a
robust trainable object
detection system tolerant to
significant rotations with a
ROC performance better than
any of the existing systems
(on the test data we used)

Heisele, Poggio, 2000



Component-Based SVM Face Recognition

e Recognition of rotated
faces up to about 45°

* Robust against changes
In illumination and
background

e Frame rate of 15 Hz

Ho, Heisele, Poggio et al., 2000



Face Recognition with Support Vector Machines: Global vs. Component-based Approach

Bernd Heisele’, Purdy P. Ho¥, Tomaso Poggio
Massachusetts Institute of Technology
Center for Biological and Computational Learning
THonda R&D Americas Inc., ¥ Hewlett-Packard

1 Support Vector Machine

1.2 Multi-class Classification with SVMs

1.1 Principle

st 3

[
-
[

Torasea 1

The SVM is a maximum margin classifier. It performs pattern
recognition between two classes by finding a decision surface
that has maximum distance to the closest points in the training
set which are termed support vectors.

Decision function:

f

Vit
X
N:

N
(x)=sign Yy, a, X‘B—DE
O

Label{-1,3,
Support vector X:
Nb. of support vectors b:

Q

Lagrange multiplier
Feature vector
Constant

A) Bottom-Up

B) 1-vs-All

pairwise

AorBorCorD

¢ > Y (o
Y ()
’ J (as)
Training: L (L-1)/ Training:
2 L )
Run-time : L-1 Run-time :

A) Pairwise approach:
Each SVM separates a pair of classes. The pairwise classifiers are
arranged in trees.

B) 1-vs-all approach:
Each of the SVMs separates a single class from all remaining classes.
The decision is based on the maximum distance to the hyperplane.

We opted for the 1-vs-all strategy where the number of SVMs is linear with
the number of classes L.

2 Component-based Face Detection

2.1 System Overview

Eyes  Nose Mouth

AR

X (Ao

maximum response
of each component
classifier + x, y location

1st Level:
Component
classifiers

2nd Level:
Geometrical
classifiers

On the first level, windows of the size of the components
(solid lined boxes) are shifted over the face image and
classified by the component classifiers. On the second level,
the maximum outputs of the component classifiers within
predefined search regions (dotted lined boxes) and the
positions of the detected components are fed into the
geometrical configuration classifier.

2.2 The 14 Component System

The shapes and positions of the components have been
automatically learned from synthetic face images in order to
provide maximum discrimination between face and non-face
images. Overall 14 components have been learned.

Examples of component-based detection applied to
real face images.

3 Face Identification

3.1 Global Approach

Global Face Detector

SVME@SVM il SVM @ SVM
A B C D

Max Operation

A global face detector localizes and extracts the
face. The pixel values of the face pattern are
combined into a feature vector which is then fed
into L linear SVMs. The classification is based on
the maximum distance to the hyperplane.

3.2 Component-based Approach

r.

Component-based Face Detector

—
SVMESVM @l SVMll SVM
A B (o] D

A component-based face detector localizes the face and
extracts the components. The components are normalized
in size and their pixel values are into a feature vector which
is then fed into L linear SVMs. The classification is based on
the maximum distance to the hyperplane.

3.2 Global Approach with Clustering
B

Global Face Detector

ESVIVE ES\VIVE 2

SVM @ SVM @ SVM
B1 C1 D1

The training data is split into N view-
dependent clusters by a divisive clustering
algorithm. A linear SVM is trained on each
cluster.

A global face detector extracts the face.
The pixel values of the face pattern are
combined into a feature vector which is
then fed into N « L linear SVMs. The
classification is based on the maximum
distance to the hyperplane.

3.3 Results

WA e

wn eyl

ROC curves when trained on frontal
faces and tested on frontal and rotated
faces.

ROC curves when trained and tested
on frontal and rotated faces.

Examples of component-based face recognition. The people in the first four images
(green boxes) could be identified by the system. The last two images (red box)
show misclassifications due to strong rotation and facial expression.
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2D Shape + Texture

. Beier & Neely (SIGGRAPH 92)

e Craw et a (F&G 1995)

e Bichsel (F&G 1995-6) Thomas V etter
e 2.5D models & “morphing”

 Lanitis, Cootes & Taylor (1997)
 “ Active Appearance Models’




Active Appearance Models

Cootes et.al. University of Manchester, UK

Inter pret Images using gener ative model's of

appearance — ‘explain’ the image

Model

Parameters




Appearance Models

Cootes et.al. University of Manchester, UK

From atraining set learn model of Shape
shape and texture variation Texture

o b
S EE'
k E e .-I '.I

Ll i o ]

Shape: X =X ean T QsC

Texture: g = gpean + QqC

Varying one
parameter of model:




Face I nterpretation with AAMSs

Cootes et.al. University of Manchester, UK

Appearance models encode face in a small number
of parameters

Match to new image using Active Appearance
Model (fast iterative algorithm)

Model parameters can then estimate

— ldentity

— Head pose

— EXpression etc
Can aso use model to manipulate face images
(change expression, lighting etc)



Shape Matching with AAMs

Cootes et.al. University of Manchester, UK

Initialized 5 iterations converged




Shape Deformations with AAMs

Cootes et.al. University of Manchester, UK

Mode 1 Mode 2 Mode 3
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Face Interpretation with AAMs

Cootes et.al. University of Manchester, UK




Flexible Appearance Models

Baker & Mathews (CVPR’01)

Reconstruction



Building 3D Models



Jebara (1995)

“ 3D Pose Estimation and Normalization for Face Recognition”
MS Thesis, McGill University, 1995

MYy i N
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Jebara (1995)

“ 3D Pose Estimation and Normalization for Face Recognition”

virtua “ mugshot”




Jebara (1995)

“ 3D Pose Estimation and Normalization for Face Recognition”

(£)

Figure 4.5: A gallery of face normalization results. (a) (b) (¢) (d) (¢) The original
facea. (f) (g) (h) (i) (i) The corrcaponding synthesized nmug-shots.



“Elgenheads’

Atick, Griffin, Redlich (1996)

Model prior on 3D head shape and
use it to for shape-from-shading

r=1(06,2
r=1,(0, Z)+Zaiwi (6,2)

Assume face is a Lambertian surface, with constant
albedo and no self-shadowing:

I(rsin(8),z2) = L[H(@8,2)

Estimate 3D shape (eigenhead expansion coefficients) and the light source from asingle
2D image using prior shape construct (eigenhead surface normals), by minimizing:

J(a,L) = [f0 - L @, )% d8dz



3D Modédsfrom Multiple Views

Pighin et al (1998)

Frederic Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, and David Salesin. Synthesizing Realistic Facial Expressions
from Photographs. Proceedings of SIGGRAPH 98, in Computer Graphics Proceedings, Annual Conference Series, 1998.



3D Modédsfrom Multiple Views

Pighin et al (1998)

3D shape 2D texture

Frederic Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, and David Salesin. Synthesizing Realistic Facial Expressions
from Photographs. Proceedings of SIGGRAPH 98, in Computer Graphics Proceedings, Annual Conference Series, 1998.



3D Laser Scans

Combines 3D geometry
with skin texture map.
Use compute graphics

to render views under
arbitrary lighting and pose

www.cyberware.com



3D Shape + Texture




Shape & Texture Norms

O'Toole et al (2001)

Original  Shape-norm  Texture-norm




Advanced Modeling *



3D Modds from Shading (SFS)

Zhao & Chellappa (2000)

| nput Surface  Virtual Real




3D Morphable Models

Brand (CVPR’01)

INPUT: Raw Video + 3D Morphable Model

Marker-less Tracking



3D Morphable Models

Brand (CVPR’01)

. Heccwered motion from “seqc” sequence, full uncertainty modeding
OUTPUT : 3D Mot T
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3D Morphable Models

Brand (CVPR’01)

3D animation models & control parameters from casual video

Video re-write with extracted 3D shape

|nput video

=)




Transformation-lnvariant Clustering
Frey & Jojic, CVPR/NIPS/PAMI 1999-2001, www.psi.toronto.edu
Goal: Unsupervised clustering of images/videos that
contain objects that are transformed (eg, translated)

Standard clustering fails!

Mixture of Gaussians Model size

Input wideo Learmned cluster centers # rlasses

-1 1 class
BN
I -
-




Transformation-lnvariant Clustering
Frey & Jojic, CVPR/NIPS/PAMI 1999-2001, www.psi.toronto.edu

TMG: Transformation-invariant Mixture of Gaussians
* Works for video and unordered images
« User specifies input video and number of classes

MG - Frey & Jojic, 1999.2001 i
T rey & Jojic, Model size

Input wideo Leamed cluster centers # rlasses
4 - .

1 class
Vaii? 2 classes
% 3 classes



Transformation-Invariant Clustering
Frey & Jojic, CVPR/NIPS/PAMI 1999-2001, www.psi.toronto.edu

Class, C
Generative model: l

Latent Image, LI Transformation, T

. S

Observed Image, Ol

P(C,LI, T,OI|0) = P(C)P(LI|C)P(T)P(OI'| LI, T)

0 = model parameters: mean and cov of each class, prob
of class, prob of transformation, cov of observation noise

Inference: Compute P(C, LI, T|Ol, 0)
Learning, E-step: Compute suff stats using P(C,LI,T | Ol, 0)
Learning, M-step: Modify 0



Transformation-lnvariant Clustering
Frey & Jojic, CVPR/NIPS/PAMI 1999-2001, www.psi.toronto.edu

i TG - Frey & Jojic, 1999-2001
After training, TMG can be

used to process video

Input video
P(C,LI,T|Ol,0) is used to
stabilize the input INW(T™)
E[z]x]

remove snow from face 3 = 1075

E[z]x]

remove background 3=




Teaser: Flexible, Layered Sprites

Locating and “filling in” occluded faces
Jojic & Frey, CVPR 2001, www.psi.toronto.edu

o User specifies # classes, # layers, input video/images
| ayered sprites, Jojic & Frey 2001

Learned sprites Leamed masks  Sprite stabilization
o R o T S o Tl (-

Al 1R {i’ BT
ol e = i S

Original video

Sprite removal
& 5 '

B T
N A

« Algorithm learns a flexible appearance model and a
flexible transparency map for each class

o After training, the algorithm can infer the position,
depth, appearance, and opacity of each subject




PAUSE



Future Directions

e Better manifold models Tennenbaum’s “Isomap”
e Decision-theoretic methods

— entropy, probability Frey, Penev, Moghaddam
e Pose 2D/3D Heisele, Poggio, Vetter
e |llumination Belhumeur & Kriegman
e Anatomical models Essa, Waters, Terzopoulis

Survelllancein Unconstrained Environments!




Face Recognition Resources

Face Recognition Home Page:
* http://www.cs.rug.nl/~peterkr/FA CE/face.html

PAMI Special Issue on Face & Gesture (July ‘97)
FERET

* http://www.dodcounterdrug.com/facial recognition/Feret/feret.htm

Face-Recognition Vendor Test (FRVT 2000)

* http://www.dodcounterdrug.com/facial recognition/FRV T 2000/frvt2000.htm

Biometrics Consortium

* http://www.biometrics.orqg
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