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Computer Vision and Applications

Prof. Trevor. Darrell

Lecture 12: (Face) Detection
— Template matching
— Backprop
- SVM
— Boosting

Face Detection Example

- User Interfaces

- Interactive Agents

- Security Systems

- Video Compression

- Image Database Analysis

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Why Face Detection is Difficult?

Pose: Variation due to the relative camera-face pose (frontal, 45 degree,
profile, upside down), and some facial features such as an eye or the nose
may become partially or wholly occluded.

Presence or absence of structural components: Facial features such as
beards, mustaches, and glasses may or may not be present, and there is a
great deal of variability amongst these components including shape, color,
and size.

Facial expression: The appearance of faces are directly affected by a
person's facial expression.

Occlusion: Faces may be partially occluded by other objects. In an image
with a group of people, some faces may partially occlude other faces.
Image orientation: Face images directly vary for different rotations about
the camera's optical axis.

Imaging conditions: When the image is formed, factors such as lighting
(spectra, source distribution and intensity) and camera characteristics
(sensor response, lenses) affect the appearance of a face. 3

Face Detection Methods

Approach Representative Works

Rnowledge-based
Multiresolution rule-based method [170]
Feature invariant

— Facial Features CGirouping of edges [87] [178]
~ Texture Space Giray-Level Dependence matrix (SGLD) of face pattern [32]
— Skin Color Mixture of Caussian [172] [98]
— Multiple Features Integration of skin color, size and shape [79]
Template matching
~ Predefined face templates Shape template [28]
- Deformable Templates Active Shape Model (ASM) [86]
Appearance-based method
- Eigenface i d ition and clustering [163]
- Distribution-based Claussian distribution and multilayer perceptron [154]
- Neural Network Ensemble of nenral networks and arbitration schemes [128]
— Support Vector Machine (SVM)  $VM with polynomial kernel [107]
~ Naive Bayes Classifier Joint statistics of local appearance and position [140]

- Hidden Markov Model (HMM) Higher order statistics with HMM [123]
— Information-Theoretical Approach Kullback relative information [89] [24]

M.H. Yang, D. Kriegman, N. Ahuja, Detecting faces in images, a
survey”, PAMI vol.24,n0.1, January, 2002. 4

Detecting Human Faces in Color Images

Template Matching
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Too many templates...

Image templates (simplest view-based method — straw man)
= keep an image of every object from different viewing directions,
lighting conditions, etc.
= nearest neighbor cross-correlation matching with images in model
database (or robust matching for clutter & occlusion)

Obvious problems:
= storage and computation costs become unreasonable as the number of
objects increases
= may require very large ensemble of ‘training’ images

1
Fleet & Szeliksi

Multi-scale search

* Search at multiple scales (and pose)
* Multiple templates ‘
* Single template, multiple sca

* Image Pyramid
— decimate image by constant fa:

Sbsampiin

— efficient search

Learning approach

» Learn Classifier Parameters

* Benefits:
— no human domain experience necessary
— parameters can be derived from large data sets,
and thus be more reliable

— opportunity to improve performance by
correcting mistakes and including in training set

Subspace Methods

How can we find more efficient representations for the ensemble of
views, and more efficient methods for matching?
= Idea: images are not random... especially images of the same
object that have similar appearance

E.g., let images be represented as points
in a high-dimensional space (e.g., one
dimension per pixel)

v

Fleet & Szeliksi
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Linear Dimension Reduction

Given that differences are structured, we can use ‘basis images’ to
transform images into other images in the same space.

Fleet & Szeliksi
13

Linear Dimension Reduction

What linear transformations of the images can be
used to define a lower-dimensional subspace that
captures most of the structure in the image
ensemble?

Fleet & Szeliksi
14

Observation

Approximation X, Error

‘Want the M bases that minimize the mean squared error over
the training data

Intuition
e A
B &%

If I give you the mean and one vector
to represent the data, what vector
would you choose?

Why?

N 2
minE,, :Z‘fc" -x"
n=1
Intuition
M D
X"x Yzl + Y b,
i=1 =M+

Projecting onto %, captures the majority of
the variance and hence projecting onto it
minimizes the error

Principal Component Analysis
« Sample mean and covariance:
N N
x= > c-—L Y E-0E -%"
N-1:5
« Let the eigenvectors and eigenvalues of C be €. and A
fork<D (e, Ce, =Ae, withi >4,>---21,)

+ In matrix form: C E=FE L, where L =diag(4,...,4,)
and E =[e,,...e,]

. . .. . o T
* Because C is symmetric positive-definite, we know E~ =E
Fleet & Szeliski
18




Principal Component Analysis
« Eigenvectors are the principal directions, and the eigenvalues

represent the variance of the data along each principal direction

* 2, is the marginal variance along the principal direction €,
*1 1 Ae
M i

Fleet & Szeliski
19

Principal Component Analysis

« The first principal direction €1 is the direction along
which the variance of the data is maximal, i.e. it
maximizes

elcg v ele =1

The second principal direction maximizes the variance
of the data in the orthogonal complement of the first
eigenvector.

¢ etc.

Fleet & Szeliski
20

Principal Component Analysis

* PCA Approximate Basis: If A; =0 for k> M for some

M<< D, then we can approximate the data using only M of
the principal directions (basis vectors):

- If B=[e,,...,e,], then for all points
X"~Ba"+x

h - —\T =
where (1: :(xn —x)Tek

Fleet & Szeliksi

PCA

—Over all rank M bases, B minimizes the MSE of
approximation D

2
j=M+1

*Choosing subspace dimension M: cigenvalues A
— look at decay of the eigenvalues as a
function of M
— Larger M means lower expected error in
the subspace data approximation

7

D
Fleet & Szeliski
22

Computing using SVD
Let X =[%'-- %]
_1&
Compute the mean column vector: X = B Z x'
i=1

Subtract the mean from each column.
A=X-x=[F-%)F"-X)]
Singular Value Decomposition allows us to write 4 as:

A=UzV"

23

SVD and PCA

A=UV’
A o, 0 0 0
Orthonormal columns 0 o 0 0
0o . 0
0 0 0 o

Diagonal matrix of singular
values




SVD and PCA

Note:
C= i 44" In other words
D
2
1 T T\T = o -
=S Uz’ Cu,-:Eu,-
= l uzvTysu’ i.e. the singular vectors of 4
D are the eigenvectors of the
1 s covariance matrix C.
D

25

SVD and PCA

* So the columns of U are the eigenvectors
* And the eigenvalues are just

The benefit of eigenfaces over nearest neighbor

.y - 2_ - - \T (- —_
ERSARICESA RSS!
image differences eigenyalues

=AU, (U, - UR,)

basis functions
=(¥UT - U" U, - UR, )

-  =T= =T= =T =
=X X XX XX, +X2X2
= (xl X Xxl _xz)

= 2

=[x, —x

cigenvalue %\iffemnccs

Subspace Face Detector

« PCA-based Density Estimation p(x)
* Maximum-likelihood face detection based on DIFS + DFFS

Eigenvalue spectrum

28
Moghaddam & Pentland, “Probabilistic Visual Learning for Object Detection,” ICCV’95.

Subspace Face Detector

* Multiscale Face and Facial Feature Detection & Rectification

Feature
Search

Eigenfaces

- -

i Dl 5 Bt 4 29
Moghaddam & Pentland, “Probabilistic Visual Learning for Object Detection,” ICCV’95.

s

Sung and Poggio

* Density learning approach
* Mixture of Gaussians for face and not-face

* One of the first applications of learning for
face detection with large training sets.

— Kah-Kay Sung and Tomaso Poggio, Example-
Based Learning for View-based Human Face
Detection, IEEE Trans. PAMI 20(1), January
1998

— MIT AI TR 1572, 1996

30




Face detector architecture

Test
1- Patterm =”

Pre-process| | Canonical
& Resize Face Wodel

4

"Ihfference” measurements |

| Face/Mot-Face Classifier |

(multi-layer perceptron)

[ Sung and Poggio ] .

Distribution-Based Face Detector

« Learn face and nonface models from examples [Sung and Poggio 95]

« Cluster and project the examples to a lower dimensional space using
Gaussian distributions and PCA

« Detect faces using distance metric to face and nonface clusters

¥y Centoid
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Distribution-Based Face Detector

« Learn face and nonface models from examples [Sung and Poggio 95]

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern

Neural Network-Based Face Detector

Explicit generative model was too slow...

Train a set of multilayer perceptrons and arbitrate
a decision among all outputs [Rowley et al. 98]
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From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/
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The basic algorithm used for face detection
Ioput imoge pyramid  Extocted window  Correct lighting ‘Histogr am equalization Receptive fields
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Preprocessing Neusal network

35

Ovwal mask for ignoring
background pixels:

Original window:

Best fit linear function:

Lighting corrected window:
(linear fanction subtracted}

Histogram equalized window:

The steps in preprocessing a window. First, a linear function is fit to the intensity values in the window,
and then subtracted out, correcting for some extreme lighting conditions. Then, | is
applied, to correct for different camera gains and to improve contrast. For each of these steps, the mapping
is computed based on pixels inside the oval mask, while the mapping is applied to the entire window.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/ 36




The basic algorithm used for face detection

Tuputirmage pyrorid  Bxwacted window  Comect lighting  Fistograrn equalization Receptive fields

Hidden usits

Prepiccessing

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/

Example face images, randomly mirrored,
rotated, translated, and scaled by small
amounts (photos are of the three authors).

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/ 38

During training, the partially-trained system is applied to images of scenery which do not
contain faces (like the one on the left). Any regions in the image detected as faces (which
are expanded and shown on the right) are errors, which can be added into the set of
negative training examples.

Images with all the above threshold detections indicated by boxes.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/ 40

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/ 39
Input g pyremi. OUpUr pyamio:  Gpreacing ot cetcten 0olapas clusiats.  fets il fac eatora Al AU st mrioving
smmol o 3 ar por s
-~
20
A
e 3 & L *
[Fawe oeteat f
&
N

Fate batlonaaroacsies  GerioKs (InpoaenaMe Scak)  OVerIapping artEEtoe
prege maq by cantioks

N 7 2 s c o e

Firal mauit

The framework used for merging multiple detections from a single network: A) The detections
are recorded in an image pyramid. B) The detections are “'spread out” and a threshold is
applied. C) The centroids in scale and position are computed, and the regions contributing to
each centroid are collapsed to single points. In the example shown, this leaves only two
detections in the output pyramid. D) The final step is to check the proposed face locations for
overlaps, and E) to remove overlapping detections if they exist. In this example, removing the
overlapping detection eliminates what would otherwise be a false positive.

41
From: http://www.ius.cs.cmu.cdu/IUS/har2/har/www/CMU-CS-95-158R/
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ANDing together the outputs from two networks over different positions and 42
scales can improve detection accuracy.




ROC (receiver operating
characteristic) curve
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http://www.1ius.cs.cmu.edu/demos/facedemo.html

CMU's Face Detector Demo

This is the front page for an interactive WWW demonstration of a face detector developed here at CMU. A detailed
description of the system is available. The face detector
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camera in

Since the system does not run in real time, this demonstration is organized as follows. First, you can submit an image to be
processed by the system. Your image may be located anywhere on the WWW. After your image is processed, you will be
informed via an e-mail message.

After your image is processed, you may view it in the gallery (gallery with inlined images). There, you can see your image,
with green outlines around each location that the system thinks contains a face. You can also look at the results of the system
on images supplied by other people.

Henry A. Rowley (har@cs.cmu.edu)
Shumeet Baluja (bal uja@cs.cmu.edu)
Takeo Kanade (tk@es.cmu.cdu)
47
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Example CMU face detector results

input

All images from: http:/www.ius.cs.cmu.edu/demos/facedemo.hitml

output

53
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Network 1

Face at Same Scale Netwark 2
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=

za 20

Error rates (vertical axis) on a small test resulting from adding noise to various portions of the input image
(horizontal plane), for two networks. Network 1 has two copics of the hidden units shown in Figure 1 (a
total of 58 hidden units and 2905 connections), while Network 2 has three copies (a total of 78 hidden
units and 4357 connections).

The networks rely most heavily on the eyes, then on the nose, and then on the mouth (Figure 9).
Anccdotally, we have seen this behavior on several real test images. Even in cases in which only one eye
is visible, detection of a face is possible, though less reliable, than when the entire face is visible. The
system is less sensitive to the ocelusion of features such as the nose or mouth.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/

Support vector machines (SVM’s)

* The 3 good ideas of SVM’s

Good idea #1: Classify rather than
model probability distributions.

* Advantages:

— Focuses the computational resources on the task at
hand.

* Disadvantages:
— Don’t know how probable the classification is

— Lose the probabilistic model for each object class;
can’t draw samples from each object class.

Good idea #2: Wide margin
classification

* For better generalization, you want to use
the weakest function you can.
— Remember polynomial fitting.

* There are fewer ways a wide-margin
hyperplane classifier can split the data than
an ordinary hyperplane classifier.

Too weak

Figure 1.6. An example of a set of 11 data points obtained by sampling the
function h(z), defined by (1.4), at equal intervals of = and adding random noise.
The dashed curve shows the function h(z), while the solid curve shows the
rather poor approximation obtained with a linear polynomial, corresponding
to M =1in (12).

Bishop, neural networks for pattern recognition, 1995

Just right

Figure 1.7. This shows the same data set as in Figure 1.6, but this time fitted by
a cubic (M = 3) polynomial, showing the significantly improved approximation
to h(z) achieved by this more flexible function.

Bishop, neural networks for pattern recognition, 1995

13



Too strong

0.0 .
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Figure 1.8. The result of fitting the same data set as in Figure 1.6 using a 10th-
order (M = 10) polynomial. This gives a perfect fit to the training data, but
at the expense of a function which has large oscillations, and which therefore
gives a poorer representation of the generator function h(x) than did the cubic
polynomial of Figure 1.7

Bishop, neural networks for pattern recognition, 1995
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Figure 15 A binary classification toy problem: separate balls from diamonds. The optimal
hyperplane (1.23) is shown as a solid line. The problem being separable, there exists a weight
vector w and a threshold b such that y;((w,x) +b) > 0 (i = 1,...,m). Rescaling w and
b such that the point(s) closest to the hyperplane satisfy | (w,x;) -+ b| = 1, we obtain a
canonical form (w,b) of the hyperplane, satisfying y:((w,x)) + b) > 1. Note that in this
case, the margin (the distance of the closest point to the hyperplane) equals 1/[|w]|. This
can be seen by considering two points x;,X; on opposite sides of the margin, that is,
(w,x1) +b=1,{w,%) +b = —1, and projecting them onto the hyperplane normal vector
w/||w]l.

Leaming with Kcn(!\a ‘échclkopfand Smola, 2002

Finding the wide-margin separating hyperplane: a quadratic

programming problem, involving inner products of data vectors

Good idea #3: The kernel trick

Non-separable by a hyperplane in 2-d
[ ] L]

Separable by a hyperplane in 3-d

[ ]
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Figure 1.6  The idea of SVMs: map the training data into a higher-dimensional feature
space via @, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of a kernel function (1.2), it
is possible to compute the separating hyperplane without explicitly carrying out the map
into the feature space.

Learning with Kemels, Scholkopf and Smola, 2002
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The idea

* There are many embeddings were the dot product
in the high dimensional space is just the kernel
function applied to the dot product in the low-
dimensional space.

« For example:

— K(x,X") = (<x,x> + 1)d

¢ Then you “forget” about the high dimensional
embedding, and just play with different kernel
functions.

Example kernel functions

* Polynomials

» Gaussians

* Sigmoids

* Radial basis functions
* Etc...

Figure 1.7 Example of an SV classifier found using a radial basis function kernel k(x, x') =
exp(—|x — ¥'|])) (here, the input space is X = [~1, 1]?). Circles and disks are two classes of
training examples; the middle line s the decision surface; the outer lines precisely meet the
constraint (1.25). Note that the SVs found by the algorithm (marked by extra circles) are not
centers of clusters, but examples which are critical for the given classification task. Gray
values code | £, y;aik(x,x;) + b|, the modulus of the argument of the decision function
(1.35). The top and the bottom lines indicate places where it takes the value 1 (from [471]).

Learning with Kemels, Scholkopf and Smola, 2002

Discriminative approaches:
e.g., Support Vector Machines

NON-FACES

Key Properties of Face Detection

+ Each image contains 10 - 50 thousand
locs/scales

* Faces are rare 0 - 50 per image
— 1000 times as many non-faces as faces
* Extremely small # of false positives: 106

» Complex operation on each window (e.g.,
SVM, NN) ==> very slow detector!

Key Properties of Face Detection

* In practice, many ad-hoc prefilter
approaches for speed (flesh color, etc)

* Viola-Jones: develop principled approach to
fast detection
— start with large library of local features
— integral image for efficient computation
— adaboost to find optimal combination
— cascade architecture for fast detection

90

15



Huge “Library” of Filters
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Constructing Classifiers

* Feature set is very large and rich
 Perceptron yields a sufficiently powerful classifier

C(x)= 0[20411,():) +bj

* 6,000,000 Features & 10,000 Examples
— 60,000,000,000 feature values!

 Classical feature selection is infeasible
— Wrapper methods
— Exponential Gradient (Winnow - Roth, et al.)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Image Features

“Rectangle filters”

Similar to Haar wavelets

Differences between sums ﬁ] f

of pixels in adjacent
rectangles ¢ D

160,000 %100 =16,000,000
Unique Features

hx) = { +1if £(x)> 0,

-1 otherwise

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Integral Image

¢ Define the Integral Image
I'(ey) =D 1(x',)")

x'<x
V<y

x.y)

* Any rectangular sum can be
computed in constant time:
D=1+4-(2+3)
=A+(A+B+C+D)—(A+C+A4+B)
= D C D l
J&l 4
¢ Rectangle features can be computed
as differences between rectangles

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Boosting

A weak learner is a classifier with accuracy
only slightly better than chance.

Boosting: combine a number of simple
classifiers so that the ensemble is arbitrarily
accurate.

Allows the use of simple (fast) classifiers
without sacrificing accuracy.

95

Example

X,

X




X3

X

Select a subset of the data from D without replacement.

97

X3

X

Imagine we have a simple linear classifier, C,.
It need only perform better than chance.

Example

X3

X

Chose a new set D2 that is “most informative”.

99

Example
X
Flip a coin: X

Heads: sample from D and present them to C, until it
fails, then add that sample to D,

100

Example
X3
D,
—
Flip a coin: Xi

Tails: sample from D and present them to C, until it
classifies correctly, then add that sample to D,

101

Example

X,

X
Train a new classifier C,.

102

17



X3

Repeat this now using both classifiers in a cascade.
Train a new classifier on data where the other two disagree.

103

X3

X
Repeat this now using both classifiers in a cascade.
Train a new classifier on data where the other two disagree.

104

Example

X3

Repeat this now using both classifiers in a cascade.

Adaboost

+ Same basic idea but give each data element a
weight that determines its probability of being
selected.

+ Ifthe element is accurately classified then it has a
low probability of being selected again.

» Focuses resources on the difficult data.

Classification based on the weighted sum of the
output of the component classifiers. Weight of
each classifier is related to its training error.

106

Initial uniform weight .
AdaBOOSt on training examples ® @
(Freund & Shapire *95) (] - _._ .
e
@
f(x)=0 (Z a,h, (x)] —— ® o
t

error. Incorrect classifications _'___,’.
= Tt -weighted heavil 1
a, =0.5log re-weighted more cawy§ o

1-error,

K classifier 2 '
i weak classifier \\. [
w e G X 1
Wegt— I~ @
i oy (x)
w_e
i ™

weak classifier 3

Final classifier is weighted .
combination of weak classifiers

\
- . . )\
Viola and Jones, Robust object detection using a boosted cascade of simple features, CPR " @

AdaBoost for Efficient Feature
Selection

» Image Features = Weak Classifiers
* For each round of boosting:
— Evaluate each rectangle filter on each example
— Sort examples by filter values
— Select best threshold for each filter (min error)
« Sorted list can be quickly scanned for the optimal threshold
— Select best filter/threshold combination
— Weight on this feature is a simple function of error rate
— Reweight examples
— (There are many tricks to make this more efficient.)

108
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

18



Building a Classifier from Features

Use a single rectangle feature as weak learner
A weak learner consists of a feature f,, a threshold 6,,
and a parity p, = {-1,1}:

1 if pfi(x) <p, 0,
hx) = { 0 otherwise

Picking a weak learner amounts to finding the rectangle
feature with lowest weighted error

109

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Final Classifier is a Perceptron
The classifier learned by AdaBoost is a perceptron:
1if lE;(x‘ hy(x) > 0.5 Zzlu(
s {U otherwise

oo = 1 pf<p,
0 otherwise

Each feature f(x) can be represented as a list of coordinates
and a weight: (X, y;, W), (X5, Y5, W), ...

To apply the classifier to larger image sub-windows,

we simply scale up each feature.
110

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

Not quite competitive...

o
M @ E 02 oree o e
ot poste -

ROC curve for 200 feature classifien 11
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Trading Speed for Accuracy

* Given a nested set of classifier

% False Pos

hypothesis classes

50

% Detection

50

» Computational Risk Minimization

T T T
IMAGE .
SUB-WINDOW @ @ FACE
LF Lr F

NON-FACE NON-FACE NON-FACE 12
Viola and Jones, Robust object detection using a boosted cascade of simple features. CVPR 2001

Cascaded Classifier
50%, 20%, 2%
R ) B (o e "
Fooor

NONFACE NON-FACE NON-FACE

¢ A1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

¢ A5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)
— using data from previous stage.

¢ A 20 feature classifier achieve 100% detection
rate with 10% false positive rate (2% cumulative), ,

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Experiment: Simple Cascaded Classifier

RO cumvee -

corractdetaction e

—— Cacoadd sat of 1020 featus oEmeiier
200 feature classifar
o

114

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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A Real-time Face Detection System

faces

Training non-faces: 350 million sub-
windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,
25,25, 50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features. 11

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001

Accuracy of Face Detector

Performance on MIT+CMU test set containing 130 images with
507 faces and about 75 million sub-windows.

ROC curve for face detector wih step size =1.0

corectdetection rate
S

I R R . R
false positves
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Comparison to Other Systems

False Detections | 10 | 3] 50 |65 78 95 110 | 167
Detector
Viola-Jones 76.1 |88.4 |91.4]92.0 [92.1 |92.993.1|93.9
Viola-Jones 81.1 [89.7 |92.193.1 |93.1 |93.293.7|93.7
(voting)
Rowley-Baluja- 83.2 | 86.0 89.2 90.1
Kanade
Schneiderman- 94.4
Kanade
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Output of Face Detector on Test Images

Speed of Face Detector

Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium IIl, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

118
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More Examples
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Viola/Jones

Three contributions with broad applicability
— Cascaded classifier yields rapid classification
— AdaBoost as an extremely efficient feature
selector
— Rectangle Features + Integral Image can be
used for rapid image analysis

121
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Goal: Detect Pedestrians.

Viola, Jones and Snow, ICCV’03
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Training Data

Some positive
training examples.

Viola, Jones and Snow, ICCV’03

Simple Features

1l

24x24 windows applied at
multiple scales.

45,396 possible features in
each window.

h
p |

E

Examples of simple linear filters.
Many many different possible filters of this type.

Viola, Jones and Snow, ICCV’03
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Using Motion Information

A u D L R

Frame 1  Frame 2

Viola, Jones and Snow, ICCV’03
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Pedestrian Filters

filter 1
- m ! m ' E
filter 3

filter 4

filter 5

Viola, Jones and Snow, ICCV’03
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Viola, Jones and Snow, ICCV’03
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Viola, Jones and Snow, ICCV’03
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