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Lecture 10: Projective SFM
Projective spaces
Cross ratio
Factorization algorithm
Euclidean upgrade

Readings: F&P 13.0, 13.1,13.4,13.5
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Last Time

Affine SFM
—Geometric Approach
—Algebraic Approach
—Tomasi/Kanade Factorization

Parallel projection —» “Affine camera”

“Affine geometry is, roughly speaking, what is left after all ability to
measure lengths, areas, angles, etc. has been removed from Euclidean
geometry. The concept of parallelism remains, however, as well as the
ability to measure the ratio of distances between collinear points.”

[Snapper and Troyer, 1989]

Projection
direction

FIGURE 13.2: Parallel projection preserves: (left) the ratio of signed distances between
collinear points and (right) the parallelism of lines.
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Affine Coordinates

c

Figure 12-1

An affine transformation of the plane. The points A, B, C, and D are transformed into the points A, B, C,
and D', The affine coordinates of D in the basis of the plane formed by A, B, and C are the same as those
of D' in the basis formed by A', B!, and C'—namely 2/3 and 1/2.
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Affine coordianate of

Q in basis AB,AC
same as

q’ina’b’,a’c’
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Affine Structure from Motion Theorem

Two affine views of four non co-planar points
are sufficient to compute the affine
coordinate of any other point P.

[Koenderink and Van Doorn, 1990]

Two affine views of four points are sufficient
to compute the affine coordinate of any
other point P...
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Given Affine Basis (A,B,C,D)
(e.g., A=(0,0,0), B=(0,0,1), C=(0,1,0),
D=(1,0,0)) ,
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Given Affine Basis (A,B,C,D)
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D=(1,0,0)) _F
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Given Affine Basis (A,B,C,D)
(e.g., A=(0,0,0), B=(0,0,1), C=(0,1,0),
D=(1,0,0)) -
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p’.p’’ uniquely determine the location of P in

the basis (A,B,C,D)...
D /d"
i I
A L T70 ‘%\\ - E
B - E
P=0AB+BAC+LAD

Find a,B,A ?

3

[F&p)

p’,p’’ uniquely determine the location of P in

the basis (A,B,C,D)...
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p’.p’’ uniquely determine the location of P in
the basis (A,B,C,D)...
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Find E and Q using
basis A,B,C
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p’.p’’ uniquely determine the location of P in
the basis (A,B,C,D)...
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Find o, ?
Find E and Q using (A,B,C)
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p’.p’’ uniquely determine the location of P in
the basis (A,B,C,D)...
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p’,p’’ uniquely determine the location of P in
the basis (A,B,C,D)...

QP?
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P=0AB+BAC+).AD
Find c,B, 2
Find E and Q using (A,B,C)
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p’.p’’ uniquely determine the location of P in
the basis (A,B,C,D)...
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p’,p’’ uniquely determine the location of P in
the basis (A,B,C,D)...

AP=AQ+QP

A

P=0tAB+BAC+AAD
Find o, ?

Find E and Q using (A,B,C)
Compute A=QP/ED=q""p’’/e

p’.p’’ uniquely determine the location of P in
the basis (A,B,C,D)...

AP=AQ+QP
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Review: Affine case

D = A P
Data-Matrix = Affine-Motions x 3-d-Points
(2mxn) = 2mx3) x (3xn)

P ]
n
2m =2m
Dis rank 3 in
affine case
3

Review: Factorization algorithm

Given a data matrix,

find Motion (A) and Shape (P) matrices that
generate that data. ..

Tomasi and Kanade Factorization algorithm
(1992):

Use Singular Value Decomposition to factor
D into appropriately sized A and P.

23

Review: SVD

Technique: Singular Value Decomposition Let A be an m X n matrix, with
m >, then A can always be written as

A=UwWVT,
‘where:

¢ U is an m X n column-orthogonal matrix, i.e., UTU = Idpm,

e W is a diagonal matrix whose diagonal entries w; (i = 1,..., n) are the singular
values of A with wi > w2 > ... >ws >0,

o and V is an n X n orthogonal matrix, i.e., VIV = VW7 =1Id..

The SVD of a matrix can also be used to characterize matrices that are rank-deficient:
suppose that 4 has rank p < 7, then the matrices L, W, and V can be written as

_ _O%T0] g e ]
U= Tlesy] wW=Pfg] wa v =[]
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Review: Affine Factorization
algorithm

-

. Compute the singular value decomposition D = UWVT.
2. Construct the matrices Us, Vi, and W; formed by the three leftmost
columns of the matrices I{ and V, and the corresponding 3 x 3 sub-matrix
of W.
3. Define
Ag=Us and Py=WsVi;
the 2m X 3 matrix Ag is an estimate of the camera motion, and the 3 x n
matrix Py is an estimate of the scene structure.

25
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Review: Affine Factorization
algorithm

result

Input

comparision
Far

Today

Projective SFM
Projective spaces
Cross ratio
Factorization algorithm
Euclidean upgrade
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Projective transformations

Definition:

A projectivity is an invertible mapping h from P2 to itself
such that three points x,,x,.X, lie on the same line if and
only if A(x,),h(x,),h(x;) do.

Theorem:

A mapping 7:P>—P? is a projectivity if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P2 reprented by a vector x it is true that /(x)=Hx

Definition: Projective transformation
X hy by by (X
X'y = by hy hy | x, or  x'=Hx
X)Ly by by (X 8DOF
projectivity=collineation=projective transformation=homography 28
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Homography

Avc /

Scene plane

Projective transform:
bijective linear map
a.k.a. Homography

[P

Review: Perspective Projection

p=-MP, where M=K(R t)
z

or
~my - P
u7m3~P
_my- P
Uimg'.p

where m%, m% and m% denote the rows of the 3 x 4

projection matrix M
30




(Projective) SFM

Goal: Estimate M and P from (uij,vij

uu':m“'Pj

mig~Pj
o mi2 By
Y myg - P

for i=1,...,m and j=1,...,n,

Projective Geometry

The means of measurement available in projective
geometry are even more primitive than those
available in affine geometry

— no notions of lengths, areas and angles (Euclidean)

— no notions of ratios of lengths along parallel lines
(Affine)

— no notion of parallelism (Affine)

The concepts of points, lines and planes remain (and
incidence).
And a weaker scalar measure of the arrangement

of collinear points, the cross-ratio... »

CA DB
ABCDYEZL 22
{4,B;C,D} =5 D2

The value of this cross ratio is independent of
the intersecting line or plane:

35

Projective Ambiguity

if P; and 9, are solutions to the SFM
equations, then so are
M = M;Q

P, =07'P;

where Q is a projective transformation matrix
(arbitrary nonsingular 4x4 matrix, defined
up to scale)

The Cross-ratio

The non-homogeneous projective coordinates of a
point can be defined geometrically in terms of
cross-ratios.

Given four collinear points A,B, C,D such that A, B
and C are distinct, we define the cross-ratio of
these points as:

wCA DB

{A,B;C, D} ==« =
¢B " DA

[F&p]

{A4,B;C,D} % cA % bB
CB DA

The value of this cross ratio is independent of
the intersecting line or plane:

[F&p]




Projective Plane

/
\: A ‘{C ! * Rays R,, R and R associated
-——— .
B D with the vectors v, vy and v
Projective plane can be mapped onto the points
AB,C

The vectors v,, vy and v are
linearly independent, and thus
so are the points A,B,C

As a ray becomes close to
parallel to IT the point where it
intersects I1 moves to infinity

Projective plane can be
modeled by adding set of
points at infinity to 2-D 13_71

an affine plane I of R®

[F&p)

Projective Spaces: (Semi-Formal) Definition

X a vector space of dimension n + 1
Rov the ray {kv, k € R}, where v € X

X = P(X) the set of rays {Rw, v € X\0}

the projective space of dimension

n associated with X

——> the set of points {p(v) = Rv, v € X\0}

[Ponce]

Projective SFM approach

Ignoring at first the Euclidean constraints associated
with calibrated cameras will linearize the
recovery of scene structure and camera motion
from point correspondences

Decompose motion analysis into two stages

1. recovery of the projective shape of the scene and the
estimation of the corresponding projection matrices.

2. exploit the geometric constraints associated with
(partially or fully) calibrated perspective cameras to
upgrade the projective reconstruction to a Euclidean
one. 3

Projective SFM approach

‘
XX

Original scene X;

Projective, affine, similarity reconstruction
= reconstruction that is identical to original up to
projective, affine, similarity transformation

Literature: Metric and Euclidean reconstruction
= gimilarity reconstruction

s une edu/~marc v

40

3D reconstruction of cameras and structure

reconstruction problem:

given x;<>x; , compute P,P‘ and X;

x,=PX, Xx!=PX| foralli

without additional information
possible up to projective ambiguity

41

I ¢ edu-marcimve]

Reconstruction ambiguities
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Two-frame reconstruction

(i) Compute F from correspondences

(ii) Compute camera matrices from F

(iii) Compute 3D point for each pair of
corresponding points

computation of F

use x‘Fx;=0 equations, linear in coeff. F

8 points (linear), 7 points (non-linear), 8+ (least-squares)
(more on this next class)

computation of camera matrices

Possible choice:

P=[1]0] P'=[[¢'].F|e']

triangulation
compute intersection of two backprojected rays

Direct reconstruction using ground truth

use control points X, with known coordinates to go
from projective to metric

Xy =HX;

X, =PH'X,,

(2 lin. eq. in H! per view,
3 for two views)

Factorization approach to Projective SFM

Use multiple frame sequence....
Generalize Tomasi-Kanade to the projective case...

47

Perspective factorization

The camera equations
Am; =P,M . i=L..m,j=1..,m

for a fixed image i can be written in matrix form as

where mA, =PM

m, =[m,.m,....m,|. M=[M,.M,...M, |
A, =diag(ty, Mo h)

1220 im
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Perspective factorization

All equations can be collected for all i as

m =PM
where
m A, P,
me m,A\, p- P,
m,A, P,

In these formulas 72 are known, but A, P and M are unknown

Observe that PM is a product of a 3mx4 matrix and a 4x7
matrix, i.e. it is a rank 4 matrix

49
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Perspective factorization algorithm
Assume that L; are known, then PM is known.
Use the singular value decomposition
PM=US VT
In the noise-free case
S=diag(s,,,,53,54,0, ... ,0)
and a reconstruction can be obtained by setting:

P=the first four columns of US.

M=the first four rows of V.
50
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Iterative perspective factorization

When L; are unknown the following algorithm can be used:
1. Set ;=1 (affine approximation).

2. Factorize PM and obtain an estimate of P and M. If sy is
sufficiently small then STOP.

3. Use m, P and M to estimate L; from the camera equations
(linearly) m, L=PM

4. Goto 2.

In general the algorithm minimizes the proximity measure
P(L,P,M)=ss

Structure and motion recovered up to an arbitrary projective
transformation s

www.cs.unc edu’-marc/myg)

Bundle adjustment

Given initial estimates for the matrices Mi (i=1, .. .,m) and
vectors Pj (j =1, .. ., n), we can refine these estimates by
using non-linear least squares to minimize the global error
measure

1 mg - Pj m - Py
E=— ui'772+ Q},"*iQ
mn ;[( 7 mig-Pj) (vis mys - Py

[F&p)

Euclidean upgrade

Given a camera with known intrinsic parameters, we can take
the calibration matrix to be the identity and write the
perspective projection equation in some Euclidean world
coordinate system as

p=1® 9(7) =& ()

for any non-zero scale factor A. If #; and P; denote the shape
and motion parameters measured in some Euclidean
coordinate system, there must exist a 4 x4 matrix Q such
that

Mi = M;Q and 137’ = Qilpyw 53

[F&p]

Euclidean upgrade

Mi=pii(Ri &),

where p; accounts for the unknown scale of %, and
K; is a calibration matrix

M;Qs = piKiRi.

the 3x3 matrices M;Q; are in this case scaled rotation

matrices.
mﬂ Q30Tm;s =0,
m%LQ:Q m;z =0,
m ;50308 miy =0,
m}; Q30 mi —m5L0307miz =0,
m5LQ30 Mz — m5LQ30Imyz =0. 54
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Euclidean upgrade

FIGURE 14.6: A synthetic texture-mapped image of a castle constructed via projective
motion analysis followed by a Euclidean upgrade. The principal point is assumed to be
known. Reprinted from [Pollefeys, 1999], Figure 6.13.
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Further Factorization work

Factorization with uncertainty
(Irani & Anandan, IJCV’02)

Factorization for dynamic scenes

(Costeira and Kanade ‘94)

(Bregler et al. 2000,
Brand 2001)

3D Non-rigid Structure from Motion

Chris Bregler
Gene Alexander, Henning Biermann, Aaron Hertzmann,
Lorenzo Torresani, Danny Yang

3D Non-Rigid Structure from Motion

- We want 3 things:
- 3D non-rigid shape model
- for each frame:
- 3D Pose
- non-rigid configuration (deformation)

Solution based on Factorization

- We want 3 things:
- non-
- for each frame:

- non-rigid configuration (deformation)

59

Solution based on Factorization

- We want 3 things:
-3D -
- for each frame:
- 3D Pose

10
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Shape Factorization
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3D Shape Model
Linear Interpolation between 3D Key-Shapes:
K
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Matrix-Rank <=3*K
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Nonrigid 3D Kinematics results

Nonrigid 3D Kinematics results
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Nonrigid 3D Kinematics results

67

Nonrigid 3D Kinematics results

From Pixels to 3D Blend Shapes (torresani et al 2001)
* No Point Tracks:
Lucas-Kanade -> Irani -> Model-free Nonrigid:

[umv[g g}flmm
i0,-80.-51:] 7| <1au

* Region-Based
« Iterative Refinement
* Occlusion Prediction

69

From Pixels to 3D Blend Shapes (Torresani et al 2001)

“

Figure 1. Example tracks of the shoe se-
quence. The blue circles are reliable points,
the red crosses are features with 1D texture
that have been recovered using rank con- "
straints. [

From Pixels to 3D Blend Shapes (torresani et al 2001)

Figure 2. The black rectangular markers are

p of ing features.
The algorithm can recover the complete tra-
of the il points. 7

From Pixels to 3D Blend Shapes (torresani et al 2001)

1 Lk

Figure 3. 3D reconstruction of corresponding
2D tracks from monocular video sequence.
Please check video to see all details.
72
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From Pixels to 3D Blend Shapes (Torresani et al 2001)

(a) x random basis shapes (b) x random basis shapes

pvyh v

avg percent errorin 2

avg percenterorin 30

«
(c) superquadric

T
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g 5 T uma
51 S oot
H 5 \
8ol 814 S
g &)
L B 2
TE T w e T 8w
& %

[ £ T 2]3Ta[s]6[7]E]
[Derror [ 325 [ 2.9 | 380 | 284 | 224 | 22 [ 2.62]
[TZemor [ 233 [ 169 | 197 | 249 | 202 | 234 | 254
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From Pixels to 3D Blend Shapes (Torresani et al 2001)

From Pixels to 3D Blend Shapes (Torresani et al 2001)

Next Lecture: Horn, Perspective Projection
Properly Models Image Formation

Date: WEDNESDAY 3-10-2004 Time: 1:00 PM - 2:00 PM Location: NE43-814

Methods based on projective geometry have become popular in machine vision
because they lead to elegant mathematics, and easy-to-solve linear equations.

It is often not realized that one pays a heavy price for this convenience. Such
methods do not correctly model the physics of image formation, require more
correspondences, and are considerably more sensitive to measurement error
than methods based on true perspective projection.

In this talk we find that for the example of exterior orientation: (i) Methods based
on projective geometry are fundamentally different from methods based on
perspective projection; (ii) Methods based on projective geometry yield a
transformation matrix T that in general does not correspond to a physical
imaging situation that is, a rotation, translation and perspective projection; (iii)
Optimization methods based on the real physical imaging equations (true
perspective projection) produce considerably more accurate results. 7

Date: WEDNESDAY 3-10-2004 Time: 1:00 PM - 2:00 PM Location: NE43-814

Projective Geometry Considered Harmful

Berthold K.P. Horn
77
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