
Three Generative, Lexicalised Models for Statistical Parsing

Michael Collins�

Dept. of Computer and Information Science

University of Pennsylvania

Philadelphia, PA, 19104, U.S.A.

mcollins@gradient.cis.upenn.edu

Abstract

In this paper we �rst propose a new sta-
tistical parsing model, which is a genera-
tive model of lexicalised context-free gram-
mar. We then extend the model to in-
clude a probabilistic treatment of both sub-
categorisation and wh-movement. Results
on Wall Street Journal text show that the
parser performs at 88.1/87.5% constituent
precision/recall, an average improvement
of 2.3% over (Collins 96).

1 Introduction

Generative models of syntax have been central in
linguistics since they were introduced in (Chom-
sky 57). Each sentence-tree pair (S; T) in a lan-
guage has an associated top-down derivation con-
sisting of a sequence of rule applications of a gram-
mar. These models can be extended to be statisti-
cal by de�ning probability distributions at points of
non-determinism in the derivations, thereby assign-
ing a probability P(S; T) to each (S; T) pair. Proba-
bilistic context free grammar (Booth and Thompson
73) was an early example of a statistical grammar.
A PCFG can be lexicalised by associating a head-
word with each non-terminal in a parse tree; thus
far, (Magerman 95; Jelinek et al. 94) and (Collins
96), which both make heavy use of lexical informa-
tion, have reported the best statistical parsing per-
formance on Wall Street Journal text. Neither of
these models is generative, instead they both esti-
mate P(T j S) directly.
This paper proposes three new parsing models.

Model 1 is essentially a generative version of the
model described in (Collins 96). In Model 2, we
extend the parser to make the complement/adjunct
distinction by adding probabilities over subcategori-
sation frames for head-words. In Model 3 we give
a probabilistic treatment of wh-movement, which

�This research was supported by ARPA Grant
N6600194-C6043.

is derived from the analysis given in Generalized
Phrase Structure Grammar (Gazdar et al. 95). The
work makes two advances over previous models:
First, Model 1 performs signi�cantly better than
(Collins 96), and Models 2 and 3 give further im-
provements | our �nal results are 88.1/87.5% con-
stituent precision/recall, an average improvement
of 2.3% over (Collins 96). Second, the parsers
in (Collins 96) and (Magerman 95; Jelinek et al.
94) produce trees without information about wh-
movement or subcategorisation. Most NLP applica-
tions will need this information to extract predicate-
argument structure from parse trees.
In the remainder of this paper we describe the 3

models in section 2, discuss practical issues in sec-
tion 3, give results in section 4, and give conclusions
in section 5.

2 The Three Parsing Models

2.1 Model 1

In general, a statistical parsing model de�nes the
conditional probability, P(T jS), for each candidate
parse tree T for a sentence S. The parser itself is
an algorithm which searches for the tree, Tbest, that
maximises P(T j S). A generative model uses the
observation that maximising P(T; S) is equivalent
to maximising P(T j S): 1

Tbest = argmax
T

P(T j S) = argmax
T

P(T; S)

P(S)

= argmax
T

P(T; S) (1)

P(T; S) is then estimated by attaching probabilities
to a top-down derivation of the tree. In a PCFG,
for a tree derived by n applications of context-free
re-write rules LHSi) RHSi, 1 � i � n,

P(T; S) =
Y

i=1::n

P(RHSi j LHSi) (2)

The re-write rules are either internal to the tree,
where LHS is a non-terminal and RHS is a string

1P(S) is constant, hence maximising P(T;S)

P(S)
is equiv-

alent to maximising P(T; S).

TOP

S(bought)

NP(week)

JJ

Last

NN

week

NP(Marks)

NNP

Marks

VP(bought)

VB

bought

NP(Brooks)

NNP

Brooks

TOP -> S(bought)
S(bought) -> NP(week) NP(Marks) VP(bought)
NP(week) -> JJ(Last) NN(week)
NP(Marks) -> NNP(Marks)
VP(bought) -> VB(bought) NP(Brooks)
NP(Brooks) -> NNP(Brooks)

Figure 1: A lexicalised parse tree, and a list of the rules it contains. For brevity we omit the POS tag
associated with each word.

of one or more non-terminals; or lexical, where LHS

is a part of speech tag and RHS is a word.
A PCFG can be lexicalised2 by associating a word

w and a part-of-speech (POS) tag t with each non-
terminal X in the tree. Thus we write a non-
terminal as X(x), where x = hw; ti, and X is a
constituent label. Each rule now has the form3:

P (h)! Ln(ln):::L1(l1)H(h)R1(r1):::Rm(rm) (3)

H is the head-child of the phrase, which inherits
the head-word h from its parent P . L1:::Ln and
R1:::Rm are left and right modi�ers of H . Either
n or m may be zero, and n = m = 0 for unary
rules. Figure 1 shows a tree which will be used as
an example throughout this paper.
The addition of lexical heads leads to an enormous

number of potential rules, making direct estimation
of P(RHS j LHS) infeasible because of sparse data
problems. We decompose the generation of the RHS
of a rule such as (3), given the LHS, into three steps
| �rst generating the head, then making the inde-
pendence assumptions that the left and right mod-
i�ers are generated by separate 0th-order markov
processes4:

1. Generate the head constituent label of the
phrase, with probability PH(H j P; h).

2. Generate modi�ers to the right of the head
with probability

Q
i=1::m+1

PR(Ri(ri) jP; h;H).
Rm+1(rm+1) is de�ned as STOP | the STOP
symbol is added to the vocabulary of non-
terminals, and the model stops generating right
modi�ers when it is generated.

2We �nd lexical heads in Penn treebank data using
rules which are similar to those used by (Magerman 95;
Jelinek et al. 94).

3With the exception of the top rule in the tree, which
has the form TOP ! H(h).

4An exception is the �rst rule in the tree, TOP !
H(h), which has probability PTOP (H;hjTOP)

3. Generate modi�ers to the left of the head with
probability

Q
i=1::n+1

PL(Li(li) jP; h;H), where
Ln+1(ln+1) = STOP .

For example, the probability of the rule S(bought)

-> NP(week) NP(Marks) VP(bought) would be es-
timated as

Ph(VP j S,bought)�Pl(NP(Marks) j S,VP,bought)�

Pl(NP(week) j S,VP,bought)�Pl(STOP j S,VP,bought)�

Pr(STOP j S,VP,bought)

We have made the 0th order markov assumptions

Pl(Li(li) jH;P; h; L1(l1):::Li�1(li�1)) =

Pl(Li(li) jH;P; h) (4)

Pr(Ri(ri) jH;P; h;R1(r1):::Ri�1(ri�1)) =

Pr(Ri(ri) jH;P; h) (5)

but in general the probabilities could be conditioned
on any of the preceding modi�ers. In fact, if the
derivation order is �xed to be depth-�rst | that
is, each modi�er recursively generates the sub-tree
below it before the next modi�er is generated |
then the model can also condition on any structure
below the preceding modi�ers. For the moment we
exploit this by making the approximations

Pl(Li(li) jH;P; h; L1(l1):::Li�1(li�1)) =

Pl(Li(li) jH;P; h; distancel(i� 1)) (6)

Pr(Ri(ri) jH;P; h;R1(r1):::Ri�1(ri�1)) =

Pr(Ri(ri) jH;P; h; distancer(i� 1)) (7)

where distancel and distancer are functions of the
surface string from the head word to the edge of the
constituent (see �gure 2). The distance measure is
the same as in (Collins 96), a vector with the fol-
lowing 3 elements: (1) is the string of zero length?
(Allowing the model to learn a preference for right-
branching structures); (2) does the string contain a

verb? (Allowing the model to learn a preference for
modi�cation of the most recent verb). (3) Does the
string contain 0, 1, 2 or > 2 commas? (where a
comma is anything tagged as \," or \:").

h

distance

P(h)

H(h) R1(r1) R2(r2) R3(r3)

Figure 2: The next child, R3(r3), is generated with
probability P(R3(r3) j P;H; h; distancer(2)). The
distance is a function of the surface string from the
word after h to the last word of R2, inclusive. In
principle the model could condition on any struc-
ture dominated by H , R1 or R2.

2.2 Model 2: The complement/adjunct
distinction and subcategorisation

The tree in �gure 1 is an example of the importance
of the complement/adjunct distinction. It would be
useful to identify \Marks" as a subject, and \Last
week" as an adjunct (temporal modi�er), but this
distinction is not made in the tree, as both NPs are
in the same position5 (sisters to a VP under an S
node). From here on we will identify complements
by attaching a \-C" su�x to non-terminals | �g-
ure 3 gives an example tree.

TOP

S(bought)

NP(week)

Last week

NP-C(Marks)

Marks

VP(bought)

VBD

bought

NP-C(Brooks)

Brooks

Figure 3: A tree with the \-C" su�x used to identify
complements. \Marks" and \Brooks" are in subject
and object position respectively. \Last week" is an
adjunct.

A post-processing stage could add this detail to
the parser output, but we give two reasons for mak-
ing the distinction while parsing: First, identifying
complements is complex enough to warrant a prob-
abilistic treatment. Lexical information is needed

5Except \Marks" is closer to the VP, but note that
\Marks" is also the subject in \Marks last week bought
Brooks".

| for example, knowledge that \week" is likely to
be a temporal modi�er. Knowledge about subcat-
egorisation preferences | for example that a verb
takes exactly one subject | is also required. These
problems are not restricted to NPs, compare \The
spokeswoman said (SBAR that the asbestos was
dangerous)" vs. \Bonds beat short-term invest-
ments (SBAR because the market is down)", where
an SBAR headed by \that" is a complement, but an
SBAR headed by \because" is an adjunct.
The second reason for making the comple-

ment/adjunct distinction while parsing is that it
may help parsing accuracy. The assumption that
complements are generated independently of each
other often leads to incorrect parses | see �gure 4
for further explanation.

2.2.1 Identifying Complements and
Adjuncts in the Penn Treebank

We add the \-C" su�x to all non-terminals in
training data which satisfy the following conditions:

1. The non-terminal must be: (1) an NP, SBAR,
or S whose parent is an S; (2) an NP, SBAR, S,
or VP whose parent is a VP; or (3) an S whose
parent is an SBAR.

2. The non-terminal must not have one of the fol-
lowing semantic tags: ADV, VOC, BNF, DIR,
EXT, LOC, MNR, TMP, CLR or PRP. See
(Marcus et al. 94) for an explanation of what
these tags signify. For example, the NP \Last
week" in �gure 1 would have the TMP (tempo-
ral) tag; and the SBAR in \(SBAR because the
market is down)", would have the ADV (adver-
bial) tag.

In addition, the �rst child following the head of a
prepositional phrase is marked as a complement.

2.2.2 Probabilities over Subcategorisation
Frames

The model could be retrained on training data
with the enhanced set of non-terminals, and it
might learn the lexical properties which distinguish
complements and adjuncts (\Marks" vs \week", or
\that" vs. \because"). However, it would still su�er
from the bad independence assumptions illustrated
in �gure 4. To solve these kinds of problems, the gen-
erative process is extended to include a probabilistic
choice of left and right subcategorisation frames:

1. Choose a head H with probability PH(H jP; h).

2. Choose left and right subcat frames, LC and
RC, with probabilities Plc(LC j P;H; h) and

1. (a) Incorrect S

NP-C

Dreyfus

NP-C

the best fund

VP

was ADJP

low

(b) Correct S

NP-C

NP

Dreyfus

NP

the best fund

VP

was ADJP

low

2. (a) Incorrect S

NP-C

The issue

VP

was NP-C

a bill

VP-C

funding NP-C

Congress

(b) Correct S

NP-C

The issue

VP

was NP-C

NP

a bill

VP

funding NP-C

Congress

Figure 4: Two examples where the assumption that modi�ers are generated independently of each
other leads to errors. In (1) the probability of generating both \Dreyfus" and \fund" as sub-
jects, P(NP-C(Dreyfus) j S,VP,was) � P(NP-C(fund) j S,VP,was) is unreasonably high. (2) is similar:
P(NP-C(bill),VP-C(funding)jVP,VB,was) = P(NP-C(bill)jVP,VB,was)�P(VP-C(funding)jVP,VB,was)
is a bad independence assumption.

Prc(RC j P;H; h). Each subcat frame is a
multiset6 specifying the complements which the
head requires in its left or right modi�ers.

3. Generate the left and right modi�ers with prob-
abilities Pl(Li; li jH;P; h; distancel(i� 1); LC)
and Pr(Ri; ri jH;P; h; distancer(i� 1); RC) re-
spectively. Thus the subcat requirements are
added to the conditioning context. As comple-
ments are generated they are removed from the
appropriate subcat multiset. Most importantly,
the probability of generating the STOP symbol
will be 0 when the subcat frame is non-empty,
and the probability of generating a complement
will be 0 when it is not in the subcat frame;
thus all and only the required complements will
be generated.

The probability of the phrase S(bought) ->

NP(week) NP-C(Marks) VP(bought) is now:

Ph(VP j S,bought)�

Plc(fNP-Cg j S,VP,bought)�Prc(fg j S,VP,bought)�

Pl(NP-C(Marks) j S,VP,bought; fNP-Cg)�

Pl(NP(week) j S,VP,bought; fg)�

Pl(STOP j S,VP,bought; fg)�

Pr(STOP j S,VP,bought; fg)

Here the head initially decides to take a sin-
gle NP-C (subject) to its left, and no complements

6A multiset, or bag, is a set which may contain du-
plicate non-terminal labels.

to its right. NP-C(Marks) is immediately gener-
ated as the required subject, and NP-C is removed
from LC, leaving it empty when the next modi-
�er, NP(week) is generated. The incorrect struc-
tures in �gure 4 should now have low probabil-
ity because Plc(fNP-C,NP-Cg j S,VP,bought) and
Prc(fNP-C,VP-Cg j VP,VB,was) are small.

2.3 Model 3: Traces and Wh-Movement

Another obstacle to extracting predicate-argument
structure from parse trees is wh-movement. This
section describes a probabilistic treatment of extrac-
tion from relative clauses. Noun phrases are most of-
ten extracted from subject position, object position,
or from within PPs:

Example 1 The store (SBAR which TRACE
bought Brooks Brothers)

Example 2 The store (SBAR which Marks bought
TRACE)

Example 3 The store (SBAR which Marks bought
Brooks Brothers from TRACE)

It might be possible to write rule-based patterns
which identify traces in a parse tree. However, we
argue again that this task is best integrated into
the parser: the task is complex enough to warrant
a probabilistic treatment, and integration may help
parsing accuracy. A couple of complexities are that
modi�cation by an SBAR does not always involve
extraction (e.g., \the fact (SBAR that besoboru is

NP(store)

NP(store)

The store

SBAR(that)(+gap)

WHNP(that)

WDT

that

S(bought)(+gap)

NP-C(Marks)

Marks

VP(bought)(+gap)

VBD

bought

TRACE NP(week)

last week

(1) NP -> NP SBAR(+gap)

(2) SBAR(+gap) -> WHNP S-C(+gap)

(3) S(+gap) -> NP-C VP(+gap)

(4) VP(+gap) -> VB TRACE NP

Figure 5: A +gap feature can be added to non-terminals to describe NP extraction. The top-level NP
initially generates an SBAR modi�er, but speci�es that it must contain an NP trace by adding the +gap
feature. The gap is then passed down through the tree, until it is discharged as a TRACE complement to
the right of bought.

played with a ball and a bat)"), and it is not un-
common for extraction to occur through several con-
stituents, (e.g., \The changes (SBAR that he said
the government was prepared to make TRACE)").

The second reason for an integrated treatment
of traces is to improve the parameterisation of the
model. In particular, the subcategorisation proba-
bilities are smeared by extraction. In examples 1, 2
and 3 above `bought' is a transitive verb, but with-
out knowledge of traces example 2 in training data
will contribute to the probability of `bought' being
an intransitive verb.

Formalisms similar to GPSG (Gazdar et al. 95)
handle NP extraction by adding a gap feature to
each non-terminal in the tree, and propagating gaps
through the tree until they are �nally discharged as a
trace complement (see �gure 5). In extraction cases
the Penn treebank annotation co-indexes a TRACE
with the WHNP head of the SBAR, so it is straight-
forward to add this information to trees in training
data.

Given that the LHS of the rule has a gap, there
are 3 ways that the gap can be passed down to the
RHS:

Head The gap is passed to the head of the phrase,
as in rule (3) in �gure 5.

Left, Right The gap is passed on recursively to one
of the left or right modi�ers of the head, or is
discharged as a trace argument to the left/right
of the head. In rule (2) it is passed on to a right
modi�er, the S complement. In rule (4) a trace
is generated to the right of the head VB.

We specify a parameter PG(G j P; h;H) where G
is either Head, Left or Right. The generative pro-
cess is extended to choose between these cases after
generating the head of the phrase. The rest of the
phrase is then generated in di�erent ways depend-
ing on how the gap is propagated: In the Head
case the left and right modi�ers are generated as
normal. In the Left, Right cases a gap require-
ment is added to either the left or right SUBCAT
variable. This requirement is ful�lled (and removed
from the subcat list) when a trace or a modi�er
non-terminal which has the +gap feature is gener-
ated. For example, Rule (2), SBAR(that)(+gap) ->

WHNP(that) S-C(bought)(+gap), has probability

Ph(WHNP j SBAR,that)�PG(Right j SBAR,WHNP,that)�

PLC(fg j SBAR,WHNP,that)�

PRC(fS-Cg j SBAR,WHNP,that)�

PR(S-C(bought)(+gap) j SBAR,WHNP,that; fS-C,+gapg)�

PR(STOP j SBAR,WHNP,that; fg)�

PL(STOP j SBAR,WHNP,that; fg)

Rule (4), VP(bought)(+gap) -> VB(bought)

TRACE NP(week), has probability

Ph(VB j VP,bought)�PG(Right j VP,bought,VB)�

PLC(fg j VP,bought,VB)�PRC(fNP-Cg j VP,bought,VB)�

PR(TRACE j VP,bought,VB; fNP-C, +gapg)�

PR(NP(week) j VP,bought,VB; fg)�

PL(STOP j VP,bought,VB; fg)�

PR(STOP j VP,bought,VB; fg)

In rule (2) Right is chosen, so the +gap requirement
is added to RC. Generation of S-C(bought)(+gap)

(a) H(+)

. . . .

) P(-)

H(+)

. . . .

(c) P(-)

. . . .

) P(+)

. . . .

Prob = X Prob = X �PH(H j P; :::) Prob = X Prob = X �PL(STOP j ::::)
�PR(STOP j ::::)

(b) P(-)

.. H R1 ..

+ Ri(+)) P(-)

.. H R1 .. Ri
Prob = X Prob = Y Prob = X � Y � PR(Ri(ri) j P;H; :::)

Figure 6: The life of a constituent in the chart. (+) means a constituent is complete (i.e. it includes the
stop probabilities), (�) means a constituent is incomplete. (a) a new constituent is started by projecting a
complete rule upwards; (b) the constituent then takes left and right modi�ers (or none if it is unary). (c)
�nally, STOP probabilities are added to complete the constituent.

Back-o� PH(H j :::) PG(G j :::) PL1(Li(lti) j :::) PL2(lwi j :::)
Level PLC(LC j :::) PR1(Ri(rti) j :::) PR2(rwi j :::)

PRC(RC j :::)

1 P, w, t P, H, w, t P, H, w, t, �, LC Li, lti, P, H, w, t, �, LC
2 P, t P, H, t P, H, t, �, LC Li, lti, P, H, t, �, LC
3 P P, H P, H, �, LC Li, lti
4 | | | lti

Table 1: The conditioning variables for each level of back-o�. For example, PH estimation interpolates
e1 = PH(H j P;w; t), e2 = PH(H j P; t), and e3 = PH(H j P). � is the distance measure.

ful�lls both the S-C and +gap requirements in RC.
In rule (4) Right is chosen again. Note that gen-
eration of trace satis�es both the NP-C and +gap
subcat requirements.

3 Practical Issues

3.1 Smoothing and Unknown Words

Table 1 shows the various levels of back-o� for each
type of parameter in the model. Note that we de-
compose PL(Li(lwi; lti) j P;H;w; t;�; LC) (where
lwi and lti are the word and POS tag generated
with non-terminal Li, � is the distance measure)
into the product PL1(Li(lti) j P;H;w; t;�; LC) �
PL2(lwi jLi; lti; P;H;w; t;�; LC), and then smooth
these two probabilities separately (Jason Eisner,
p.c.). In each case7 the �nal estimate is

e = �1e1 + (1� �1)(�2e2 + (1� �2)e3)

where e1, e2 and e3 are maximum likelihood esti-
mates with the context at levels 1, 2 and 3 in the
table, and �1, �2 and �3 are smoothing parameters
where 0 � �i � 1. All words occurring less than 5
times in training data, and words in test data which

7Except cases L2 and R2, which have 4 levels, so that
e = �1e1 + (1� �1)(�2e2 + (1� �2)(�3e3 + (1� �3)e4)).

have never been seen in training, are replaced with
the \UNKNOWN" token. This allows the model to
robustly handle the statistics for rare or new words.

3.2 Part of Speech Tagging and Parsing

Part of speech tags are generated along with the
words in this model. When parsing, the POS tags al-
lowed for each word are limited to those which have
been seen in training data for that word. For un-
known words, the output from the tagger described
in (Ratnaparkhi 96) is used as the single possible tag
for that word. A CKY style dynamic programming
chart parser is used to �nd the maximum probability
tree for each sentence (see �gure 6).

4 Results

The parser was trained on sections 02 - 21 of the Wall
Street Journal portion of the Penn Treebank (Mar-
cus et al. 93) (approximately 40,000 sentences), and
tested on section 23 (2,416 sentences). We use the
PARSEVAL measures (Black et al. 91) to compare
performance:

Labeled Precision =
number of correct constituents in proposed parse

number of constituents in proposed parse

MODEL � 40 Words (2245 sentences) � 100 Words (2416 sentences)
LR LP CBs 0 CBs � 2 CBs LR LP CBs 0 CBs � 2 CBs

(Magerman 95) 84.6% 84.9% 1.26 56.6% 81.4% 84.0% 84.3% 1.46 54.0% 78.8%
(Collins 96) 85.8% 86.3% 1.14 59.9% 83.6% 85.3% 85.7% 1.32 57.2% 80.8%
Model 1 87.4% 88.1% 0.96 65.7% 86.3% 86.8% 87.6% 1.11 63.1% 84.1%
Model 2 88.1% 88.6% 0.91 66.5% 86.9% 87.5% 88.1% 1.07 63.9% 84.6%
Model 3 88.1% 88.6% 0.91 66.4% 86.9% 87.5% 88.1% 1.07 63.9% 84.6%

Table 2: Results on Section 23 of the WSJ Treebank. LR/LP = labeled recall/precision. CBs is the average
number of crossing brackets per sentence. 0 CBs, � 2 CBs are the percentage of sentences with 0 or � 2
crossing brackets respectively.

Labeled Recall =
number of correct constituents in proposed parse

number of constituents in treebank parse

Crossing Brackets = number of con-
stituents which violate constituent boundaries
with a constituent in the treebank parse.

For a constituent to be `correct' it must span the
same set of words (ignoring punctuation, i.e. all to-
kens tagged as commas, colons or quotes) and have
the same label8 as a constituent in the treebank
parse. Table 2 shows the results for Models 1, 2 and
3. The precision/recall of the traces found by Model
3 was 93.3%/90.1% (out of 436 cases in section 23
of the treebank), where three criteria must be met
for a trace to be \correct": (1) it must be an argu-
ment to the correct head-word; (2) it must be in the
correct position in relation to that head word (pre-
ceding or following); (3) it must be dominated by the
correct non-terminal label. For example, in �gure 5
the trace is an argument to bought, which it fol-
lows, and it is dominated by aVP. Of the 436 cases,
342 were string-vacuous extraction from subject po-
sition, recovered with 97.1%/98.2% precision/recall;
and 94 were longer distance cases, recovered with
76%/60.6% precision/recall 9.

4.1 Comparison to previous work

Model 1 is similar in structure to (Collins 96) |
the major di�erences being that the \score" for each
bigram dependency is Pl(Li; lijH;P; h; distancel)

8(Magerman 95) collapses ADVP and PRT to the same
label, for comparison we also removed this distinction
when calculating scores.

9We exclude in�nitival relative clauses from these �g-
ures, for example \I called a plumber TRACE to �x the
sink" where `plumber' is co-indexed with the trace sub-
ject of the in�nitival. The algorithm scored 41%/18%
precision/recall on the 60 cases in section 23 | but in-
�nitival relatives are extremely di�cult even for human
annotators to distinguish from purpose clauses (in this
case, the in�nitival could be a purpose clause modifying
`called') (Ann Taylor, p.c.)

rather than Pl(Li; P;H j li; h; distancel), and that
there are the additional probabilities of generat-
ing the head and the STOP symbols for each con-
stituent. However, Model 1 has some advantages
which may account for the improved performance.
The model in (Collins 96) is de�cient, that is for
most sentences S,

P
T
P(T j S) < 1, because prob-

ability mass is lost to dependency structures which
violate the hard constraint that no links may cross.
For reasons we do not have space to describe here,
Model 1 has advantages in its treatment of unary
rules and the distance measure. The generative
model can condition on any structure that has been
previously generated | we exploit this in models 2
and 3 | whereas (Collins 96) is restricted to condi-
tioning on features of the surface string alone.

(Charniak 95) also uses a lexicalised genera-
tive model. In our notation, he decomposes
P(RHSi j LHSi) as P(Rn:::R1HL1::Lm j P; h) �Q

i=1::n
P(ri jP;Ri; h)�

Q
i=1::m

P(li jP;Li; h). The
Penn treebank annotation style leads to a very
large number of context-free rules, so that directly
estimating P(Rn:::R1HL1::Lm j P; h) may lead to
sparse data problems, or problems with coverage
(a rule which has never been seen in training may
be required for a test data sentence). The com-
plement/adjunct distinction and traces increase the
number of rules, compounding this problem.

(Eisner 96) proposes 3 dependency models, and
gives results that show that a generative model sim-
ilar to Model 1 performs best of the three. However,
a pure dependency model omits non-terminal infor-
mation, which is important. For example, \hope" is
likely to generate a VP(TO) modi�er (e.g., I hope
[VP to sleep]) whereas \require" is likely to gen-
erate an S(TO) modi�er (e.g., I require [S Jim to
sleep]), but omitting non-terminals con
ates these
two cases, giving high probability to incorrect struc-
tures such as \I hope [Jim to sleep]" or \I require [to
sleep]". (Alshawi 96) extends a generative depen-
dency model to include an additional state variable
which is equivalent to having non-terminals | his

suggestions may be close to our models 1 and 2, but
he does not fully specify the details of his model, and
doesn't give results for parsing accuracy. (Miller et
al. 96) describe a model where the RHS of a rule is
generated by a Markov process, although the pro-
cess is not head-centered. They increase the set of
non-terminals by adding semantic labels rather than
by adding lexical head-words.
(Magerman 95; Jelinek et al. 94) describe a

history-based approach which uses decision trees to
estimate P(T jS). Our models use much less sophis-
ticated n-gram estimation methods, and might well
bene�t from methods such as decision-tree estima-
tion which could condition on richer history than
just surface distance.
There has recently been interest in using

dependency-based parsing models in speech recog-
nition, for example (Stolcke 96). It is interesting to
note that Models 1, 2 or 3 could be used as lan-
guage models. The probability for any sentence can
be estimated as P(S) =

P
T
P(T; S), or (making

a Viterbi approximation for e�ciency reasons) as
P(S) � P(Tbest; S). We intend to perform experi-
ments to compare the perplexity of the various mod-
els, and a structurally similar `pure' PCFG10.

5 Conclusions

This paper has proposed a generative, lexicalised,
probabilistic parsing model. We have shown that lin-
guistically fundamental ideas, namely subcategori-
sation and wh-movement, can be given a statistical
interpretation. This improves parsing performance,
and, more importantly, adds useful information to
the parser's output.

6 Acknowledgements

I would like to thank Mitch Marcus, Jason Eisner,
Dan Melamed and Adwait Ratnaparkhi for many
useful discussions, and comments on earlier versions
of this paper. This work has also bene�ted greatly
from suggestions and advice from Scott Miller.

References

H. Alshawi. 1996. Head Automata and Bilingual
Tiling: Translation with Minimal Representa-
tions. Proceedings of the 34th Annual Meeting
of the Association for Computational Linguistics,
pages 167-176.

E. Black et al. 1991. A Procedure for Quantita-
tively Comparing the Syntactic Coverage of En-
glish Grammars. Proceedings of the February 1991
DARPA Speech and Natural Language Workshop.

10Thanks to one of the anonymous reviewers for sug-
gesting these experiments.

T. L. Booth and R. A. Thompson. 1973. Applying
Probability Measures to Abstract Languages. IEEE
Transactions on Computers, C-22(5), pages 442-
450.

E. Charniak. 1995. Parsing with Context-Free Gram-
mars and Word Statistics. Technical Report CS-
95-28, Dept. of Computer Science, Brown Univer-
sity.

N. Chomsky. 1957. Syntactic Structures, Mouton,
The Hague.

M. J. Collins. 1996. A New Statistical Parser Based
on Bigram Lexical Dependencies. Proceedings of
the 34th Annual Meeting of the Association for
Computational Linguistics, pages 184-191.

J. Eisner. 1996. Three New Probabilistic Models for
Dependency Parsing: An Exploration. Proceed-
ings of COLING-96, pages 340-345.

G. Gazdar, E.H. Klein, G.K. Pullum, I.A. Sag. 1985.
Generalized Phrase Structure Grammar. Harvard
University Press.

F. Jelinek, J. La�erty, D. Magerman, R. Mercer, A.
Ratnaparkhi, S. Roukos. 1994. Decision Tree Pars-
ing using a Hidden Derivation Model. Proceedings
of the 1994 Human Language Technology Work-
shop, pages 272-277.

D. Magerman. 1995. Statistical Decision-Tree Mod-
els for Parsing. Proceedings of the 33rd Annual
Meeting of the Association for Computational
Linguistics, pages 276-283.

M. Marcus, B. Santorini and M. Marcinkiewicz.
1993. Building a Large Annotated Corpus of En-
glish: the Penn Treebank. Computational Linguis-
tics, 19(2):313-330.

M. Marcus, G. Kim, M. A. Marcinkiewicz, R.
MacIntyre, A. Bies, M. Ferguson, K. Katz, B.
Schasberger. 1994. The Penn Treebank: Annotat-
ing Predicate Argument Structure. Proceedings of
the 1994 Human Language Technology Workshop,
pages 110-115.

S. Miller, D. Stallard and R. Schwartz. 1996. A
Fully Statistical Approach to Natural Language
Interfaces. Proceedings of the 34th Annual Meeting
of the Association for Computational Linguistics,
pages 55-61.

A. Ratnaparkhi. 1996. A Maximum Entropy Model
for Part-Of-Speech Tagging. Conference on Em-
pirical Methods in Natural Language Processing.

A. Stolcke. 1996. Linguistic Dependency Modeling.
Proceedings of ICSLP 96, Fourth International
Conference on Spoken Language Processing.

