6.891: Lecture 8 (October 1st, 2003)

Log-Linear Models for Parsing,
and the EM Algorithm Part |



Overview

e Ratnaparkhi’'s Maximum-Entropy Parser

e The EM Algorithm Part |



Log-Linear Taggers: Independence Assumptions

e The input sentencé, with lengthn = S.length, has|T|"
possible tag sequences.

e Each tag sequendehas a conditional probability

P(T|S) =11 P(T()

= [Ij=, P(T'(5)

S,3,T(1)...T(j —1)) Chainrule

S,5,T(3—2),T(j —1)) Independence
assumptions

e EstimateP(T(y) | S,5,T(j — 2),T(j — 1)) using log-linear

models

e Use the Viterbi algorithm to compute

argmax . log P(1T | S)



A General Approach: (Conditional) History-Based Models

e We've shown how to definé’(T" | S) whereT is a tag
sequence

e How do we defineP(T" | S) if T is a parse tree (or another
structure)?



A General Approach: (Conditional) History-Based Models

e Step 1: represent a tree as a sequenceoisionsd; . . . d,,
T = (dy,ds,...dp,)
m IS not necessarily the length of the sentence

e Step 2: the probabillity of a tree is

P(T|S) = HP di...di1,S)

e Step 3: Use a log-linear model to estimate
( ‘ dl z 1, S)

e Step 4: Search?? (answer we’ll get to later. beam or heuristic
search)



An Example Tree

S(questioned)
NP(lawyer) VP(questioned)
/\
DT NN
| |
the lawyer .
Vit NP(witness) PP(about)
| T
questioned DT NN /I\IP\(revoIver)

the witness jpq,t DT NN

the revolver



Ratnaparkhi’s Parser: Three Layers of Structure

1. Part-of-speech tags
2. Chunks

3. Remaining structure



Layer 1: Part-of-Speech Tags

DT NN Vt DT NN IN DT NN
| | | | | | | |

the lawyer questioned the withess about the revolver

e Step 1: represent a tree as a sequencoisionsd; . . . d,,

T = {dy,ds, . ..dn)

e Firstn decisions are tagging decisions
(dy...d,) = (DT, NN, Vt, DT, NN, IN, DT, NN )



Layer 2: Chunks

NP Vit NP IN NP

DT NN  questioned DT NN about DT NN

the lawyer the witness the revolver

Chunks are defined as any phrase where all children are part-
of-speech tags

(Other common chunks areDJP, QP



Layer 2: Chunks

Start(NP)  Join(NP) Other Start(NP) Join(NP) Other Start(NP) Join(NP)

| | | | | | | |
DT NN Vt DT NN IN DT NN

the lawyer guestioned the witness about the revolver

e Step 1: represent a tree as a sequenceoisionsd; ... d,
T = (dy,ds,...d,)

e Firstn decisions are tagging decisions
Nextn decisions are chunk tagging decisions

(dy...do,) = ( DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP)



Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:

e Join(X) or Start(X), where X is a label (NP, S, VP etc.)

e Check=YES or Check=NO

Meaning of these actions:

e Start(X) starts a new constituent with label X
(always acts on leftmost constituent with no start or join label above it)

¢ Join(X) continues a constituent with label X
(always acts on leftmost constituent with no start or join label above it)

e Check=NO does nothing

e Check=YES takes previous Join or Start action, and converts
It Into a completed constituent



NP Vi NP IN NP
DT NN  questioned DT NN about DT NN

the lawyer the witness the revolver



Start(S) Vi NP IN NP

NP questioned DT NN about DT NN
T | N | |
DT NN the withess the revolver

| |
the lawyer



Start(S) Vit NP IN NP

NP questioned DT NN about DT NN
T | N | |
DT NN the witness the revolver
| |
the lawyer

Check=NO



Start(S) Start(VP) NP IN NP

NP \Yii DT NN about DT NN
PR | N | |
DT NN questioned the witness the revolver

| |
the lawyer



Start(S) Start(VP) NP IN NP

NP Vit DT NN about DT NN
PR | N | |
DT NN questioned the witness the revolver
| |
the lawyer

Check=NO



Start(S) Start(VP) Join(VP) IN NP

| | | PN
NP Vi NP about DT NN
PN N | |
DT NN questioned DT NN the revolver

the lawyer the witness



Start(S) Start(VP) Join(VP) IN NP

| | | P
NP Vi NP about DT NN
DT NN questioned DT NN the revolver
| | | |
the lawyer the witness

Check=NO



Start(S) Start(VP) Join(VP) Start(PP) NP

| | N
NP Vi NP IN DT NN
DT NN questioned DT NN about the revolver

the lawyer the witness



Start(S) Start(VP) Join(VP) Start(PP) NP

| | P
NP Vit NP IN DT NN
DT NN questioned DT NN about the revolver
| | | |
the lawyer the witness

Check=NO



Start(S) Start(VP) Join(VP) Start(PP) Join(PP)

| | |
NP Vt NP IN NP

N N N
DT NN questioned DT NN about DT NN

the lawyer the witness the revolver




Start(S) Start(VP) Join(VP) PP

NP vt NP O We
DT/\NN questioned DmN ab‘out DT/\NN
tr‘]e IaV\|/yer tI’||e Witr|1ess tr|1e revc|)lver

Check=YES



Start(S)

|
NP

N
DT NN

the lawyer

Start(VP)

Vit

guestioned

Join(VP)

|
NP

BN
DT NN

the withess

|
about DT NN
| |

the revolver



Start(S)

|
NP

N
DT NN

| |
the lawyer

Check=YES

Vit
|

guestioned

VP
NP PP
/\
DT NN |mP
S | T
the witness gpout DT NN
| |
the revolver



Start(S)

|
NP

N
DT NN

| |
the lawyer

Join(S)
VP
Vit NP PP
| Py
questioned DT NN ||\|/\Np

the witness gphout DT NN
| |

the revolver



NP VP
/\
DT NN
| |
the lawyer
W Vit NP PP
| P
guestioned DT NN ||\|/\Np

S T
the witness gpout DT NN

the revolver

Check=YES



The Final Sequence of decisions

(dy...do,) = ( DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP),
Start(S), Check=NQO, Start(VP), Check=NO,
Join(VP), Check=NO, Start(PP), Check=NO,
Join(PP), Check=YES, Join(VP), Check=YES,
Join(S), Check=YE$



A General Approach: (Conditional) History-Based Models

e Step 1: represent a tree as a sequencoisionsd; . .. d,,
T = (dy,ds,...dp,)
m IS not necessarily the length of the sentence

e Step 2: the probability of a tree is

P(T|S) = HP dy...d;i1,S)

e Step 3: Use a log-linear model to estimate
P(d; |dy...d;i1,95)

e Step 4: Search?? (answer we’ll get to later. beam or heuristic
search)



Applying a Log-Linear Model

e Step 3: Use a log-linear model to estimate
( ‘ dl z 1, S)

e A reminder:

( ‘dl zlaS):

where:

(dy...d;_1,S) isthe history

IS the outcome

maps a history/outcome pair to a feature vector
IS a parameter vector

IS set of possible actions

(may be context dependent)

6(/5(<d1...d7;_1 ,S>,d@)W

ZdGA €¢(<d1 cdi—1 ,S>,d)-W

:Bg%i&



Reminder: Implementing FEATUREVECTOR

e Intermediate step: map history/tag pair to setfedture
strings

HispanioldaNNP quickly/RB becamé/B an/DT important]J
baséVt from which Spain expanded its empire into the rest of the
Western Hemisphere .

e.g., Ratnaparkhi’s features:

“TAG=Vt;Word=base”

“TAG=Vt: TAG-1=JJ"

“TAG=Vt. TAG-1=JJ; TAG-2=DT"
“TAG=Vt:SUFF1=¢e"
“TAG=Vt:SUFF2=se”
“TAG=Vt;SUFF3=ase”
“TAG=Vt;WORD-1=important”
“TAG=Vt:WORD+1=from”



Reminder: Implementing FEATUREVECTOR

e Next step: match strings to integers through a hash table

HispanioldNNP quickly/RB becamé/B an'DT importantJJ baséVt from
which Spain expanded its empire into the rest of the Western Hemisphere .

e.g., Ratnaparkhi’s features:

“TAG=Vt;Word=base” — 1315
“TAG=Vt; TAG-1=3J" — 17
“TAG=Vt; TAG-1=JJ;TAG-2=DT” — 32908
“TAG=Vt;SUFF1=¢" — 459
“TAG=Vt;SUFF2=se” — 1000
“TAG=Vt;SUFF3=ase” — 1509
“TAG=Vt;WORD-1=important” — 1806
“TAG=Vt;WORD+1=from” — 300

In this case, sparse array is:
A.length = 8, A(1...8) = {1315, 17, 32908, 459, 1000, 1509, 1806, 300}



Applying a Log-Linear Model

e Step 3: Use a log-linear model to estimate

e¢(<d1 cdiq ;S>,d7;)-W

- S g g eOUdidi1.5).d) W

Pd; | dy...d;i1,5)

e The big question: how do we defig@

e Ratnaparkhi’'s method defines differently depending on
whether next decision is:

— A tagging decision
(same features as before for POS tagging!)
— A chunking decision
— A start/join decision after chunking
— A check=no/check=yes decision



Layer 2. Chunks

Start(NP)  Join(NP) Other Start(NP)  Join(NP) IN DT NN

| | | | | | | |
DT NN Vi DT NN about the revolver

the lawyer guestioned the witness

= “TAG=Join(NP);Word0=witness;POS0=NN"
“TAG=Join(NP);POS0=NN"
“TAG=Join(NP);Word+1=about;POS+1=IN"
“TAG=JoIin(NP);POS+1=IN"
“TAG=Join(NP);Word+2=the;POS+2=DT”
“TAG=Join(NP);POS+2=IN"
“TAG=Join(NP);Word-1=the;POS-1=DT,TAG-1=Start(NP)"
“TAG=JoIn(NP);POS-1=DT; TAG-1=Start(NP)”
“TAG=JoIn(NP); TAG-1=Start(NP)”
“TAG=Join(NP);Word-2=questioned;POS-2=Vt, TAG-2=0ther”






Layer 3: Join or Start

e Looks at head word, constituent (or POS) label, and start/join
annotation ofn’th tree relative to the decision, where =
—2,—1

e Looks at head word, constituent (or POS) labelhdh tree
relative to the decision, where= 0, 1, 2

e Looks at bigram features of the above for (-1,0) and (0,1)

e Looks at trigram features of the above for (-2,-1,0), (-1,0,1)
and (0, 1, 2)

e The above features with all combinations of head words
excluded

e Various punctuation features



Layer 3: Check=NO or Check=YES

e A variety of guestions concerning the proposed constituent



The Search Problem

e In POS tagging, we could use the Viterbi algorithm because

P(T() | S, 4, T(1)...T(j=1)) = P(T(j) | $.4,T(j=2)...T(j=1))

e Now: Decisiond; could depend on arbitrary decisions in the
“past” = no chance for dynamic programming

e Instead, Rathaparkhi uses a beam search method



Overview

e Ratnaparkhi’'s Maximum-Entropy Parser

e The EM Algorithm Part |



An Experiment/Some Intuition

¢ | have one coin in my pocket,

Coin 0 has probability\ of heads

e | toss the coin 10 times, and see the following sequence:

HHTTHHHTHH
(7 heads out of 10)

e What would you guess to be?



An Experiment/Some Intuition

¢ | have three coins in my pocket,

Coin 0 has probability\ of heads;
Coin 1 has probability, of heads;
Coin 2 has probability, of heads

e For each trial | do the following:

First | toss Coin 0
If Coin O turns upheads | tosscoin 1three times
If Coin O turns uptails, | tosscoin 2three times

| don’t tell you whether Coin 0 came up heads or tails,
or whether Coin 1 or 2 was tossed three times,
but | do tell you how many heads/tails are seen at each trial

e You see the following sequence:
(HHH),(TTT),(HHH),(TTT),(HHH)

What would you estimate as the values kop; andp,?



Maximum Likelihood Estimation

e We have data pointX;, X, ... X,, drawn from some (finite
or countable) set’

e \We have a parameter vecter
e \We have a parameter spdee

e \We have a distributio®?(X | ©) for any® < (2, such that

Y P(X|©)=1landP(X |©)>0forall X
XeX

e We assume that our data poinks, X,,... X, are drawn
at random (independently, identically distributed) from a
distribution P(X | ©*) for some©* < )



A First Example: Coin Tossing

X = {H,T}. Our data pointsX;, X,, ... X, are a sequence
of heads and talls, e.qg.

HHTTHHHTHH

Parameter vectod is a single parameter, i.e., the probability
of coin coming up heads

Parameter spade = |0, 1]

Distribution P(X | ©) is defined as

© If X =H
P11 =17 o iyt



Log-Likelihood

e We have data pointX;, X, ... X,, drawn from some (finite
or countable) set’

e \We have a parameter vector and a parameter spate
¢ \We have a distributio®(X | ©) for any® € 2

e The likelihood is

n

Likelihood(©) = P(X1, Xa,... X, | ©) = ]| P(Xi | ©)
i=1

e The log-likelihood is

L(©) = log Likelihood(©) = > "log P(X; | ©)

1=1



Maximum Likelihood Estimation

e Given a sampleX,, X, ... X, choose

O = argmaxgeoL(0) = argmaxgeq » log P(X; | ©)

e For example, take the coin example:
sayX; ... X, hasCount(H) heads, angn — Count(H)) tails

=

L(@) — log <@C’0unt(H) X (1 _ @)n—Count(H))
= Count(H)log® + (n — Count(H)) log(1 — ©)

e \We now have
Count(H)

n

®ML —




A Second Example: Probabilistic Context-Free Grammars

e X Is the set of all parse trees generated by the underlying
context-free grammar. Our sampleristreesT; ... T, such
that eacll; € X.

e R is the set of rules in the context free grammar
N Is the set of non-terminals in the grammar

e O, forr € R Is the parameter for rule
e Let R(a) C R be the rules of the form — S for somegs

e The parameter spaéeis the set o® ¢ [0, 1]'# such that

forallae N ) ©6,=1
reR(a)



¢ \We have
P(T ‘ @) _ H @C’ount(T,T)
,
reR
whereCount(T, r) is the number of times ruleis seen in the tre@

=  log P(T| ©)=>_ Count(T,r)log®,
rcR



Maximum Likelihood Estimation for PCFGs

e \We have

log P(T'| ©) =Y _ Count(T,r)log©,
reR

whereCount(T, r) is the number of times ruleis seen in the tre@

e And,
ZlogPT 1©) =) Y Count(T;,r)log©,

1 reRr
e Solving®,,;, = argmaxg.oL(0O) gives
>, Count(T;,r)
i 2ser(a) Count(T;, s)
wherer is of the forma — 3 for someg

O, =



Models with Hidden Variables

e Now say we have two set¥ and)’, and a joint distribution
P(X,Y | ©)

e If we hadfully observed data, (X;, Y;) pairs, then
L(©) = ZlOgP(Xz',Yz' | ©)

¢ |f we havepartially observed data, X; examples, then

L(®) = } logP(X;|0)

= > log > P(X;,Y|0O)

1 Yey



e TheEM (Expectation Maximization) algorithm is a method
for finding

O = argmaxg » log Y P(X;,Y | ©)
i Yey



The Three Coins Example

e €.7g., Inthe three coins example:
Y ={H,T}
X ={HHH,TTT,HTT, THHHHT, TTHHTH THT }
O = {)\7]717]72}

e and
P(X,Y |©®)=P(Y|©O)P(X|Y,0)
where
porio={ 3, Y=
and

h t
| (1 —p)" Y =H
PX1Y,0) _{ pi(l—po)t Y =T

whereh = number of heads IX , ¢ = number of tails inX



The Three Coins Example

e Fully observed data might look like:

(HHH),H),(TTT), T), (HHH),H), (TTT), T),((HHH), H)

e In this case maximum likelihood estimates are:

3
A= —

5)
_3
P1—3
_O
p2—3



The Three Coins Example

e Partially observed data might look like:

(HHH),(TTT),(HHH),(TTT),(HHH)

e How do we find the maximum likelihood parameters?



The EM Algorithm

e O'is the parameter vector #th iteration
e Choosed' (at random, or using various heuristics)

e |terative procedure is defined as
O! = argmax,Q(0, 0 )
where

QO,0"H)=3"> PV | X;,0 " log P(X,,Y | ©)

1 Ye)y



The EM Algorithm

e Iterative procedure is defined 88 = argmaxoQ(0, 0" 1), where
QO,0) =) ¥ P(Y|X;06"")logP(X;,Y | ©)
1 YEY
e Key points:

— Intuition: fill in hidden variableg” according taP(Y | X;, O)

— EM is guaranteed to converge to a local maximum, or saddle-point,
of the likelihood function

— In general, if
argmaxg Zlog P(X;,Y; | ©)

has a simple (analytic) solution, then

argmaxg » Y P(Y|X;,0)log P(X;,Y | ©)
) Y

also has a simple (analytic) solution.



The Three Coins Example

e Partially observed data might look like:

(HHH),(TTT),(HHH),(TTT),(HHH)

e SayX = (HHH), current parameters akep;, ps

P(HHH)) = P((HHH), )+ P(HHH),T)
= Api+ (1 - N)ps

and
) - P((HHH), H)
P(Y=H|(HHH)) = P((HHH),H)+ P((HHH),T)
AP

Apt + (1= A)ps



The Three Coins Example

e After filling in hidden variables for each example,
partially observed data might look like:

((HHH),H) P(Y=H|HHH)=0.6
((HHH),T) P(Y =T|HHH)=0.4
(TTT),H) P =H|TTT)=0.3
(TTT),T) P(Y =T|TTT)=0.7
((HHH),H) P(Y=H|HHH)=0.6
((HHH),T) P(Y=T|HHH)=0.4
(TTT),H) P =H|TTT)=0.3
(TTT),T) P(Y =T|TTT)=0.7
((HHH),H) P(Y=H|HHH)=0.6

) (

P(Y=T|HHH)=0.4



EM for Probabilistic Context-Free Grammars

e A PCFG defines a distributioR (S, T | ©) over tree/sentence
pairs(S,T)

e |f we had tree/sentence paifsilfy observed data) then

L(©) =} _log P(S;, T; | ©)

e Say we have sentences ondy,. .. .S,
= trees are hidden variables

L(©) =Y log}" P(S,,T | ©)



EM for Probabilistic Context-Free Grammars

e Say we have sentences ondy,. .. .S,
= trees are hidden variables

L(®) = ZlogZP(Si,T | ©)

e EM algorithm is ther®! = argmax,Q(©, 0" !), where
Q(@a ®t_1) — ZZP(T ‘ Si,@t_l)lOgP(Si,T ‘ @)
R K



e Remember:

log P(S;, T | ©) = > _ Count(S;, T,r)log®,

reR

where Count(S,T,r) is the number of times rule is seen in the
sentence/tree pafis, T')

= Q(6,0" 1)

Y > P(T]8;,0" ) log P(S;,T | ©)
) T

= ZZP(T Si,@t_l)ZCount(S@',T,T)log@r
i T

reR

= Z Z Count(S;,r)log©,

1 TER

whereCount(S;,r) = >, P(T | S;, ©1)Count(S;, T,r)
the expected counts



e Solving®,,;, = argmaxg.oL(0©) gives

B >, Count(S;,r)
> 2seR(a) Count(S;, s)

wherer is of the forma — 3 for someg

O,

e We'll see next week that there are efficient (dynamic
programming) algorithms for computation of

Count(S;,r) =) _ P(T | S;, 0" " Count(S;, T,r)
T



