
6.891: Lecture 8 (October 1st, 2003)

Log-Linear Models for Parsing,
and the EM Algorithm Part I



Overview
� Ratnaparkhi’s Maximum-Entropy Parser

� The EM Algorithm Part I



Log-Linear Taggers: Independence Assumptions
� The input sentenceS, with lengthn = S:length, hasjT jn

possible tag sequences.

� Each tag sequenceT has a conditional probability

P (T j S) =
Qn

j=1 P (T (j) j S; j; T (1) : : : T (j � 1)) Chain rule

=
Qn

j=1 P (T (j) j S; j; T (j � 2); T (j � 1)) Independence
assumptions

� EstimateP (T (j) j S; j; T (j � 2); T (j � 1)) using log-linear
models

� Use the Viterbi algorithm to compute

argmaxT2T n logP (T j S)



A General Approach: (Conditional) History-Based Models
� We’ve shown how to defineP (T j S) where T is a tag

sequence

� How do we defineP (T j S) if T is a parse tree (or another
structure)?



A General Approach: (Conditional) History-Based Models
� Step 1: represent a tree as a sequence ofdecisionsd1 : : : dm

T = hd1; d2; : : : dmi

m is not necessarily the length of the sentence

� Step 2: the probability of a tree is
P (T j S) =

mY
i=1
P (di j d1 : : : di�1; S)

� Step 3: Use a log-linear model to estimate

P (di j d1 : : : di�1; S)

� Step 4: Search?? (answer we’ll get to later: beam or heuristic
search)



An Example Tree

S(questioned)

NP(lawyer)

DT

the

NN

lawyer

VP(questioned)

Vt

questioned

NP(witness)

DT

the

NN

witness

PP(about)

IN

about

NP(revolver)

DT

the

NN

revolver



Ratnaparkhi’s Parser: Three Layers of Structure

1. Part-of-speech tags

2. Chunks

3. Remaining structure



Layer 1: Part-of-Speech Tags

DT

the

NN

lawyer

Vt

questioned

DT

the

NN

witness

IN

about

DT

the

NN

revolver

� Step 1: represent a tree as a sequence ofdecisionsd1 : : : dm

T = hd1; d2; : : : dmi

� Firstn decisions are tagging decisions

hd1 : : : dni = h DT, NN, Vt, DT, NN, IN, DT, NN i



Layer 2: Chunks

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Chunks are defined as any phrase where all children are part-
of-speech tags

(Other common chunks areADJP, QP)



Layer 2: Chunks

Start(NP)

DT

the

Join(NP)

NN

lawyer

Other

Vt

questioned

Start(NP)

DT

the

Join(NP)

NN

witness

Other

IN

about

Start(NP)

DT

the

Join(NP)

NN

revolver

� Step 1: represent a tree as a sequence ofdecisionsd1 : : : dn

T = hd1; d2; : : : dni

� Firstn decisions are tagging decisions
Nextn decisions are chunk tagging decisions

hd1 : : : d2ni = h DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP)i



Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:
� Join(X) or Start(X), where X is a label (NP, S, VP etc.)

� Check=YES or Check=NO

Meaning of these actions:

� Start(X) starts a new constituent with label X
(always acts on leftmost constituent with no start or join label above it)

� Join(X) continues a constituent with label X
(always acts on leftmost constituent with no start or join label above it)

� Check=NO does nothing

� Check=YES takes previous Join or Start action, and converts
it into a completed constituent



NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver



Start(S)

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver



Start(S)

NP

DT

the

NN

lawyer

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

IN

about

NP

DT

the

NN

revolver

Check=NO



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

NP

DT

the

NN

revolver



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

NP

DT

the

NN

revolver

Check=NO



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Start(PP)

IN

about

Join(PP)

NP

DT

the

NN

revolver



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES



Start(S)

NP

DT

the

NN

lawyer

Start(VP)

Vt

questioned

Join(VP)

NP

DT

the

NN

witness

Join(VP)

PP

IN

about

NP

DT

the

NN

revolver



Start(S)

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES



Start(S)

NP

DT

the

NN

lawyer

Join(S)

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver



S

NP

DT

the

NN

lawyer

VP

Vt

questioned

NP

DT

the

NN

witness

PP

IN

about

NP

DT

the

NN

revolver

Check=YES



The Final Sequence of decisions
hd1 : : : d2ni = h DT, NN, Vt, DT, NN, IN, DT, NN,

Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP),
Start(S), Check=NO, Start(VP), Check=NO,
Join(VP), Check=NO, Start(PP), Check=NO,
Join(PP), Check=YES, Join(VP), Check=YES,
Join(S), Check=YESi



A General Approach: (Conditional) History-Based Models
� Step 1: represent a tree as a sequence ofdecisionsd1 : : : dm

T = hd1; d2; : : : dmi

m is not necessarily the length of the sentence

� Step 2: the probability of a tree is
P (T j S) =

mY
i=1
P (di j d1 : : : di�1; S)

� Step 3: Use a log-linear model to estimate

P (di j d1 : : : di�1; S)

� Step 4: Search?? (answer we’ll get to later: beam or heuristic
search)



Applying a Log-Linear Model
� Step 3: Use a log-linear model to estimate

P (di j d1 : : : di�1; S)

� A reminder:
P (di j d1 : : : di�1; S) =

e�(hd1:::di�1;Si;di)�WP
d2A e
�(hd1:::di�1;Si;d)�W

where:

hd1 : : : di�1; Si is the history

di is the outcome

� maps a history/outcome pair to a feature vector

W is a parameter vector

A is set of possible actions

(may be context dependent)



Reminder: Implementing FEATUREVECTOR
� Intermediate step: map history/tag pair to set offeature

strings

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/Vt from which Spain expanded its empire into the rest of the
Western Hemisphere .

e.g., Ratnaparkhi’s features:

“TAG=Vt;Word=base”
“TAG=Vt;TAG-1=JJ”
“TAG=Vt;TAG-1=JJ;TAG-2=DT”
“TAG=Vt;SUFF1=e”
“TAG=Vt;SUFF2=se”
“TAG=Vt;SUFF3=ase”
“TAG=Vt;WORD-1=important”
“TAG=Vt;WORD+1=from”



Reminder: Implementing FEATUREVECTOR
� Next step: match strings to integers through a hash table

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/Vt from
which Spain expanded its empire into the rest of the Western Hemisphere .

e.g., Ratnaparkhi’s features:

“TAG=Vt;Word=base” ! 1315
“TAG=Vt;TAG-1=JJ” ! 17
“TAG=Vt;TAG-1=JJ;TAG-2=DT” ! 32908
“TAG=Vt;SUFF1=e” ! 459
“TAG=Vt;SUFF2=se” ! 1000
“TAG=Vt;SUFF3=ase” ! 1509
“TAG=Vt;WORD-1=important” ! 1806
“TAG=Vt;WORD+1=from” ! 300

In this case, sparse array is:

A:length = 8; A(1:::8) = f1315; 17; 32908; 459; 1000; 1509; 1806; 300g



Applying a Log-Linear Model
� Step 3: Use a log-linear model to estimate

P (di j d1 : : : di�1; S) =

e�(hd1:::di�1;Si;di)�WP
d2A e
�(hd1:::di�1;Si;d)�W

� The big question: how do we define�?

� Ratnaparkhi’s method defines� differently depending on
whether next decision is:

– A tagging decision
(same features as before for POS tagging!)

– A chunking decision

– A start/join decision after chunking

– A check=no/check=yes decision



Layer 2: Chunks

Start(NP)

DT

the

Join(NP)

NN

lawyer

Other

Vt

questioned

Start(NP)

DT

the

Join(NP)

NN

witness

IN

about

DT

the

NN

revolver

) “TAG=Join(NP);Word0=witness;POS0=NN”
“TAG=Join(NP);POS0=NN”
“TAG=Join(NP);Word+1=about;POS+1=IN”
“TAG=Join(NP);POS+1=IN”
“TAG=Join(NP);Word+2=the;POS+2=DT”
“TAG=Join(NP);POS+2=IN”
“TAG=Join(NP);Word-1=the;POS-1=DT;TAG-1=Start(NP)”
“TAG=Join(NP);POS-1=DT;TAG-1=Start(NP)”
“TAG=Join(NP);TAG-1=Start(NP)”
“TAG=Join(NP);Word-2=questioned;POS-2=Vt;TAG-2=Other”

: : :





Layer 3: Join or Start
� Looks at head word, constituent (or POS) label, and start/join

annotation ofn’th tree relative to the decision, wheren =

�2;�1

� Looks at head word, constituent (or POS) label ofn’th tree
relative to the decision, wheren = 0; 1; 2

� Looks at bigram features of the above for (-1,0) and (0,1)

� Looks at trigram features of the above for (-2,-1,0), (-1,0,1)
and (0, 1, 2)

� The above features with all combinations of head words
excluded

� Various punctuation features



Layer 3: Check=NO or Check=YES
� A variety of questions concerning the proposed constituent



The Search Problem
� In POS tagging, we could use the Viterbi algorithm because

P (T (j) j S; j; T (1) : : : T (j�1)) = P (T (j) j S; j; T (j�2) : : : T (j�1))

� Now: Decisiondi could depend on arbitrary decisions in the
“past”) no chance for dynamic programming

� Instead, Ratnaparkhi uses a beam search method



Overview
� Ratnaparkhi’s Maximum-Entropy Parser

� The EM Algorithm Part I



An Experiment/Some Intuition
� I have one coin in my pocket,

Coin 0 has probability� of heads

� I toss the coin 10 times, and see the following sequence:

HHTTHHHTHH

(7 heads out of 10)

� What would you guess� to be?



An Experiment/Some Intuition
� I have three coins in my pocket,

Coin 0 has probability� of heads;
Coin 1 has probabilityp1 of heads;
Coin 2 has probabilityp2 of heads

� For each trial I do the following:
First I toss Coin 0
If Coin 0 turns upheads, I tosscoin 1 three times
If Coin 0 turns uptails, I tosscoin 2 three times

I don’t tell you whether Coin 0 came up heads or tails,
or whether Coin 1 or 2 was tossed three times,
but I do tell you how many heads/tails are seen at each trial

� You see the following sequence:

hHHHi; hTTT i; hHHHi; hTTT i; hHHHi

What would you estimate as the values for�; p1 andp2?



Maximum Likelihood Estimation
� We have data pointsX1; X2; : : : Xn drawn from some (finite

or countable) setX

� We have a parameter vector�

� We have a parameter space


� We have a distributionP (X j �) for any� 2 
, such thatX
X2X
P (X j �) = 1 andP (X j �) � 0 for all X

� We assume that our data pointsX1; X2; : : : Xn are drawn
at random (independently, identically distributed) from a
distributionP (X j ��) for some�� 2 




A First Example: Coin Tossing
� X = fH,T g. Our data pointsX1; X2; : : : Xn are a sequence

of heads and tails, e.g.

HHTTHHHTHH

� Parameter vector� is a single parameter, i.e., the probability
of coin coming up heads

� Parameter space
 = [0; 1]

� DistributionP (X j �) is defined as

P (X j �) =
(

� If X = H

1�� If X = T



Log-Likelihood
� We have data pointsX1; X2; : : : Xn drawn from some (finite

or countable) setX

� We have a parameter vector�, and a parameter space


� We have a distributionP (X j �) for any� 2 


� The likelihood is

Likelihood(�) = P (X1; X2; : : : Xn j �) =

nY
i=1
P (Xi j �)

� The log-likelihood is

L(�) = logLikelihood(�) =

nX
i=1
logP (Xi j �)



Maximum Likelihood Estimation
� Given a sampleX1; X2; : : : Xn, choose

�ML = argmax�2
L(�) = argmax�2

X

i

logP (Xi j �)

� For example, take the coin example:
sayX1 : : :Xn hasCount(H) heads, and(n� Count(H)) tails

)

L(�) = log
�

�Count(H) � (1��)n�Count(H)
�

= Count(H) log� + (n� Count(H)) log(1��)

� We now have

�ML =
Count(H)

n



A Second Example: Probabilistic Context-Free Grammars
� X is the set of all parse trees generated by the underlying

context-free grammar. Our sample isn treesT1 : : : Tn such
that eachTi 2 X .

� R is the set of rules in the context free grammar

N is the set of non-terminals in the grammar

� �r for r 2 R is the parameter for ruler

� LetR(�) � R be the rules of the form�! � for some�

� The parameter space
 is the set of� 2 [0; 1]jRj such that

for all � 2 N

X
r2R(�)

�r = 1



� We have

P (T j �) =
Y

r2R
�Count(T;r)

r

whereCount(T; r) is the number of times ruler is seen in the treeT

) logP (T j �) =
X

r2R
Count(T; r) log�r



Maximum Likelihood Estimation for PCFGs
� We have

logP (T j �) =
X

r2R
Count(T; r) log�r

whereCount(T; r) is the number of times ruler is seen in the treeT

� And,

L(�) =
X

i

logP (Ti j �) =
X

i

X
r2R
Count(Ti; r) log�r

� Solving�ML = argmax�2
L(�) gives

�r =

P
iCount(Ti; r)P

i
P

s2R(�)Count(Ti; s)
wherer is of the form�! � for some�



Models with Hidden Variables
� Now say we have two setsX andY, and a joint distribution

P (X;Y j �)

� If we hadfully observed data, (Xi; Yi) pairs, then

L(�) =
X

i

logP (Xi; Yi j �)

� If we havepartially observed data, Xi examples, then

L(�) =

X
i

logP (Xi j �)

=

X
i

log
X

Y 2Y
P (Xi; Y j �)



� TheEM (Expectation Maximization) algorithm is a method
for finding

�ML = argmax�
X

i

log
X

Y 2Y
P (Xi; Y j �)



The Three Coins Example
� e.g., in the three coins example:

Y = fH,T g

X = fHHH,TTT,HTT,THH,HHT,TTH,HTH,THT g

� = f�; p1; p2g

� and
P (X;Y j �) = P (Y j �)P (X j Y;�)

where

P (Y j �) =
�

� If Y = H

1� � If Y = T

and

P (X j Y;�) =
�

ph1(1� p1)
t If Y = H

ph2(1� p2)t If Y = T

whereh = number of heads inX, t = number of tails inX



The Three Coins Example
� Fully observed data might look like:

(hHHHi; H); (hTTT i; T ); (hHHHi; H); (hTTT i; T ); (hHHHi; H)

� In this case maximum likelihood estimates are:

� =
3

5

p1 =
3

3

p2 =
0

3



The Three Coins Example
� Partially observed data might look like:

hHHHi; hTTT i; hHHHi; hTTT i; hHHHi

� How do we find the maximum likelihood parameters?



The EM Algorithm
� �t is the parameter vector att’th iteration

� Choose�0 (at random, or using various heuristics)

� Iterative procedure is defined as

�t = argmax�Q(�;�t�1)

where

Q(�;�t�1) =
X

i

X
Y 2Y
P (Y j Xi;�
t�1) logP (Xi; Y j �)



The EM Algorithm
� Iterative procedure is defined as�t = argmax�Q(�;�
t�1), where

Q(�;�t�1) =
X

i

X
Y 2Y

P (Y j Xi;�
t�1) logP (Xi; Y j �)

� Key points:

– Intuition: fill in hidden variablesY according toP (Y j Xi;�)

– EM is guaranteed to converge to a local maximum, or saddle-point,
of the likelihood function

– In general, if

argmax�
X

i

logP (Xi; Yi j �)

has a simple (analytic) solution, then

argmax�
X

i

X
Y

P (Y j Xi;�) logP (Xi; Y j �)

also has a simple (analytic) solution.



The Three Coins Example
� Partially observed data might look like:

hHHHi; hTTT i; hHHHi; hTTT i; hHHHi

� SayX = hHHHi, current parameters are�; p1; p2

P (hHHHi) = P (hHHHi; H) + P (hHHHi; T )

= �p31 + (1� �)p32

and

P (Y = H j hHHHi) =

P (hHHHi; H)

P (hHHHi; H) + P (hHHHi; T )

=

�p31

�p31 + (1� �)p32



The Three Coins Example
� After filling in hidden variables for each example,

partially observed data might look like:

(hHHHi; H) P (Y = H j HHH) = 0:6

(hHHHi; T ) P (Y = T j HHH) = 0:4

(hTTT i; H) P (Y = H j TTT ) = 0:3

(hTTT i; T ) P (Y = T j TTT ) = 0:7

(hHHHi; H) P (Y = H j HHH) = 0:6

(hHHHi; T ) P (Y = T j HHH) = 0:4

(hTTT i; H) P (Y = H j TTT ) = 0:3

(hTTT i; T ) P (Y = T j TTT ) = 0:7

(hHHHi; H) P (Y = H j HHH) = 0:6

(hHHHi; T ) P (Y = T j HHH) = 0:4



EM for Probabilistic Context-Free Grammars
� A PCFG defines a distributionP (S; T j �) over tree/sentence

pairs(S; T )

� If we had tree/sentence pairs (fully observed data) then

L(�) =
X

i

logP (Si; Ti j �)

� Say we have sentences only,S1 : : : Sn

) trees are hidden variables

L(�) =
X

i

log
X

T

P (Si; T j �)



EM for Probabilistic Context-Free Grammars
� Say we have sentences only,S1 : : : Sn

) trees are hidden variables

L(�) =
X

i

log
X

T

P (Si; T j �)

� EM algorithm is then�t = argmax�Q(�;�t�1), where

Q(�;�t�1) =
X

i

X
T

P (T j Si;�
t�1) logP (Si; T j �)



� Remember:

logP (Si; T j �) =
X

r2R
Count(Si; T; r) log�r

where Count(S; T; r) is the number of times ruler is seen in the
sentence/tree pair(S; T )

) Q(�;�t�1) =

X
i

X
T

P (T j Si;�
t�1) logP (Si; T j �)

=

X
i

X
T

P (T j Si;�
t�1)
X

r2R

Count(Si; T; r) log�r

=

X
i

X
r2R

Count(Si; r) log�r

whereCount(Si; r) =
P

T

P (T j Si;�
t�1)Count(Si; T; r)

the expected counts



� Solving�ML = argmax�2
L(�) gives

�r =

P
iCount(Si; r)P

i
P

s2R(�)Count(Si; s)

wherer is of the form�! � for some�

� We’ll see next week that there are efficient (dynamic
programming) algorithms for computation of

Count(Si; r) =
X

T

P (T j Si;�
t�1)Count(Si; T; r)


