6.891: Lecture 8 (October 1st, 2003)

Log-Linear Models for Parsing, and the EM Algorithm Part I

Overview

- Ratnaparkhi's Maximum-Entropy Parser
- The EM Algorithm Part I

Log-Linear Taggers: Independence Assumptions

- The input sentence S, with length n = S.length, has $|\mathcal{T}|^n$ possible tag sequences.
- Each tag sequence T has a conditional probability $P(T \mid S) = \prod_{j=1}^{n} P(T(j) \mid S, j, T(1) \dots T(j-1))$ Chain rule $= \prod_{j=1}^{n} P(T(j) \mid S, j, T(j-2), T(j-1))$ Independence assumptions
 - Estimate $P(T(j) \mid S, j, T(j-2), T(j-1))$ using log-linear models
 - Use the Viterbi algorithm to compute

 $\operatorname{argmax}_{T \in \mathcal{T}^n} \log P(T \mid S)$

A General Approach: (Conditional) History-Based Models

- We've shown how to define $P(T \mid S)$ where T is a tag sequence
- How do we define $P(T \mid S)$ if T is a parse tree (or another structure)?

A General Approach: (Conditional) History-Based Models

• Step 1: represent a tree as a sequence of **decisions** $d_1 \dots d_m$

$$T = \langle d_1, d_2, \dots d_m \rangle$$

m is **not** necessarily the length of the sentence

• Step 2: the probability of a tree is

$$P(T \mid S) = \prod_{i=1}^{m} P(d_i \mid d_1 \dots d_{i-1}, S)$$

• Step 3: Use a log-linear model to estimate

 $P(d_i \mid d_1 \dots d_{i-1}, S)$

• Step 4: Search?? (answer we'll get to later: beam or heuristic search)

An Example Tree

Ratnaparkhi's Parser: Three Layers of Structure

- 1. Part-of-speech tags
- 2. Chunks
- 3. Remaining structure

Layer 1: Part-of-Speech Tags

• Step 1: represent a tree as a sequence of **decisions** $d_1 \dots d_m$

$$T = \langle d_1, d_2, \dots d_m \rangle$$

• First *n* decisions are tagging decisions $\langle d_1 \dots d_n \rangle = \langle \text{ DT, NN, Vt, DT, NN, IN, DT, NN} \rangle$

Layer 2: Chunks

Chunks are defined as any phrase where all children are partof-speech tags

(Other common chunks are ADJP, QP)

Layer 2: Chunks

• Step 1: represent a tree as a sequence of **decisions** $d_1 \dots d_n$

$$T = \langle d_1, d_2, \dots d_n \rangle$$

- First *n* decisions are tagging decisions Next *n* decisions are chunk tagging decisions
 - $\langle d_1 \dots d_{2n} \rangle = \langle \text{DT, NN, Vt, DT, NN, IN, DT, NN,}$ Start(NP), Join(NP), Other, Start(NP), Join(NP), Other, Start(NP), Join(NP) \rangle

Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:

- Join(X) or Start(X), where X is a label (NP, S, VP etc.)
- Check=YES or Check=NO

Meaning of these actions:

- Start(X) starts a new constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Join(X) continues a constituent with label X (always acts on leftmost constituent with no start or join label above it)
- Check=NO does nothing
- Check=YES takes previous Join or Start action, and converts it into a completed constituent

Check=YES

Check=YES

The Final Sequence of decisions

 $\langle d_1 \dots d_{2n} \rangle = \langle \text{DT, NN, Vt, DT, NN, IN, DT, NN,} \\ \text{Start(NP), Join(NP), Other, Start(NP), Join(NP),} \\ \text{Other, Start(NP), Join(NP),} \\ \text{Start(S), Check=NO, Start(VP), Check=NO,} \\ \text{Join(VP), Check=NO, Start(PP), Check=NO,} \\ \text{Join(PP), Check=YES, Join(VP), Check=YES,} \\ \text{Join(S), Check=YES} \rangle$

A General Approach: (Conditional) History-Based Models

• Step 1: represent a tree as a sequence of **decisions** $d_1 \dots d_m$ $T = \langle d_1, d_2, \dots d_m \rangle$

m is **not** necessarily the length of the sentence

• Step 2: the probability of a tree is

$$P(T \mid S) = \prod_{i=1}^{m} P(d_i \mid d_1 \dots d_{i-1}, S)$$

- Step 3: Use a log-linear model to estimate $P(d_i \mid d_1 \dots d_{i-1}, S)$
- Step 4: Search?? (answer we'll get to later: beam or heuristic search)

Applying a Log-Linear Model

- Step 3: Use a log-linear model to estimate $P(d_i \mid d_1 \dots d_{i-1}, S)$
- A reminder:

$$P(d_i \mid d_1 \dots d_{i-1}, S) = \frac{e^{\phi(\langle d_1 \dots d_{i-1}, S \rangle, d_i) \cdot \mathbf{W}}}{\sum_{d \in \mathcal{A}} e^{\phi(\langle d_1 \dots d_{i-1}, S \rangle, d) \cdot \mathbf{W}}}$$

where:

- $\langle d_1 \dots d_{i-1}, S \rangle$ is the history
 - d_i is the outcome
 - ϕ maps a history/outcome pair to a feature vector
 - W is a parameter vector
 - \mathcal{A} is set of possible actions

(may be context dependent)

Reminder: Implementing FEATURE_VECTOR

• Intermediate step: map history/tag pair to set of **feature strings**

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/Vt from which Spain expanded its empire into the rest of the Western Hemisphere .

e.g., Ratnaparkhi's features:

```
"TAG=Vt;Word=base"
"TAG=Vt;TAG-1=JJ"
"TAG=Vt;TAG-1=JJ;TAG-2=DT"
"TAG=Vt;SUFF1=e"
"TAG=Vt;SUFF2=se"
"TAG=Vt;SUFF3=ase"
"TAG=Vt;WORD-1=important"
"TAG=Vt;WORD+1=from"
```

Reminder: Implementing FEATURE_VECTOR

• Next step: match strings to integers through a hash table

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/Vt from which Spain expanded its empire into the rest of the Western Hemisphere .

e.g., Ratnaparkhi's features:

"TAG=Vt;Word=base"	$\rightarrow 1315$
"TAG=Vt;TAG-1=JJ"	$\rightarrow 17$
"TAG=Vt;TAG-1=JJ;TAG-2=DT"	$\rightarrow 32908$
"TAG=Vt;SUFF1=e"	$\rightarrow 459$
"TAG=Vt;SUFF2=se"	$\rightarrow 1000$
"TAG=Vt;SUFF3=ase"	$\rightarrow 1509$
"TAG=Vt;WORD-1=important"	$\rightarrow 1806$
"TAG=Vt;WORD+1=from"	$\rightarrow 300$

In this case, sparse array is: $A.length = 8, A(1...8) = \{1315, 17, 32908, 459, 1000, 1509, 1806, 300\}$

Applying a Log-Linear Model

• Step 3: Use a log-linear model to estimate

$$P(d_i \mid d_1 \dots d_{i-1}, S) = \frac{e^{\phi(\langle d_1 \dots d_{i-1}, S \rangle, d_i) \cdot \mathbf{W}}}{\sum_{d \in \mathcal{A}} e^{\phi(\langle d_1 \dots d_{i-1}, S \rangle, d) \cdot \mathbf{W}}}$$

- The big question: how do we define ϕ ?
- Ratnaparkhi's method defines ϕ differently depending on whether next decision is:
 - A tagging decision
 (same features as before for POS tagging!)
 - A chunking decision
 - A start/join decision after chunking
 - A check=no/check=yes decision

Layer 2: Chunks


```
⇒ "TAG=Join(NP);Word0=witness;POS0=NN"
"TAG=Join(NP);POS0=NN"
"TAG=Join(NP);Word+1=about;POS+1=IN"
"TAG=Join(NP);POS+1=IN"
"TAG=Join(NP);Word+2=the;POS+2=DT"
"TAG=Join(NP);POS+2=IN"
"TAG=Join(NP);Word-1=the;POS-1=DT;TAG-1=Start(NP)"
"TAG=Join(NP);POS-1=DT;TAG-1=Start(NP)"
"TAG=Join(NP);TAG-1=Start(NP)"
"TAG=Join(NP);Word-2=questioned;POS-2=Vt;TAG-2=Other"
```

. . .

Layer 3: Join or Start

- Looks at head word, constituent (or POS) label, and start/join annotation of n'th tree relative to the decision, where n = -2, -1
- Looks at head word, constituent (or POS) label of n'th tree relative to the decision, where n = 0, 1, 2
- Looks at bigram features of the above for (-1,0) and (0,1)
- Looks at trigram features of the above for (-2,-1,0), (-1,0,1) and (0, 1, 2)
- The above features with all combinations of head words excluded
- Various punctuation features

Layer 3: Check=NO or Check=YES

• A variety of questions concerning the proposed constituent

The Search Problem

• In POS tagging, we could use the Viterbi algorithm because $P(T(j) \mid S, j, T(1) \dots T(j-1)) = P(T(j) \mid S, j, T(j-2) \dots T(j-1))$

- Now: Decision d_i could depend on arbitrary decisions in the "past" \Rightarrow no chance for dynamic programming
- Instead, Ratnaparkhi uses a beam search method

Overview

- Ratnaparkhi's Maximum-Entropy Parser
- The EM Algorithm Part I

An Experiment/Some Intuition

• I have one coin in my pocket,

Coin 0 has probability λ of heads

• I toss the coin 10 times, and see the following sequence: HHTTHHHTHH

(7 heads out of 10)

• What would you guess λ to be?

An Experiment/Some Intuition

• I have three coins in my pocket,

Coin 0 has probability λ of heads; Coin 1 has probability p_1 of heads; Coin 2 has probability p_2 of heads

• For each trial I do the following:

First I toss Coin 0 If Coin 0 turns up **heads**, I toss **coin 1** three times If Coin 0 turns up **tails**, I toss **coin 2** three times

I don't tell you whether Coin 0 came up heads or tails, or whether Coin 1 or 2 was tossed three times, but I do tell you how many heads/tails are seen at each trial

• You see the following sequence:

 $\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$

What would you estimate as the values for λ , p_1 and p_2 ?

Maximum Likelihood Estimation

- We have data points $X_1, X_2, \dots X_n$ drawn from some (finite or countable) set \mathcal{X}
- We have a parameter vector $\boldsymbol{\Theta}$
- We have a parameter space Ω
- We have a distribution $P(X \mid \Theta)$ for any $\Theta \in \Omega$, such that

$$\sum_{X \in \mathcal{X}} P(X \mid \Theta) = 1 \text{ and } P(X \mid \Theta) \ge 0 \text{ for all } X$$

• We assume that our data points $X_1, X_2, \ldots X_n$ are drawn at random (independently, identically distributed) from a distribution $P(X \mid \Theta^*)$ for some $\Theta^* \in \Omega$

A First Example: Coin Tossing

• $\mathcal{X} = \{H, T\}$. Our data points X_1, X_2, \dots, X_n are a sequence of heads and tails, e.g.

ННТТНННТНН

- Parameter vector Θ is a single parameter, i.e., the probability of coin coming up heads
- Parameter space $\Omega = [0, 1]$
- Distribution $P(X \mid \Theta)$ is defined as

$$P(X \mid \Theta) = \begin{cases} \Theta & \text{If } X = \mathtt{H} \\ 1 - \Theta & \text{If } X = \mathtt{T} \end{cases}$$

Log-Likelihood

- We have data points $X_1, X_2, \ldots X_n$ drawn from some (finite or countable) set \mathcal{X}
- We have a parameter vector Θ , and a parameter space Ω
- We have a distribution $P(X \mid \Theta)$ for any $\Theta \in \Omega$
- The likelihood is

 $Likelihood(\Theta) = P(X_1, X_2, \dots, X_n \mid \Theta) = \prod_{i=1}^n P(X_i \mid \Theta)$

• The log-likelihood is

$$L(\Theta) = \log Likelihood(\Theta) = \sum_{i=1}^{n} \log P(X_i \mid \Theta)$$

Maximum Likelihood Estimation

- Given a sample X_1, X_2, \dots, X_n , choose $\Theta_{ML} = \operatorname{argmax}_{\Theta \in \Omega} L(\Theta) = \operatorname{argmax}_{\Theta \in \Omega} \sum_i \log P(X_i \mid \Theta)$
- For example, take the coin example:
 say X₁...X_n has Count(H) heads, and (n − Count(H)) tails
 ⇒

$$L(\Theta) = \log \left(\Theta^{Count(H)} \times (1 - \Theta)^{n - Count(H)} \right)$$

= $Count(H) \log \Theta + (n - Count(H)) \log(1 - \Theta)$

• We now have

$$\Theta_{ML} = \frac{Count(H)}{n}$$

A Second Example: Probabilistic Context-Free Grammars

- \mathcal{X} is the set of all parse trees generated by the underlying context-free grammar. Our sample is n trees $T_1 \dots T_n$ such that each $T_i \in \mathcal{X}$.
- *R* is the set of rules in the context free grammar *N* is the set of non-terminals in the grammar
- Θ_r for $r \in R$ is the parameter for rule r
- Let $R(\alpha) \subset R$ be the rules of the form $\alpha \to \beta$ for some β
- The parameter space Ω is the set of $\Theta \in [0,1]^{|R|}$ such that

for all
$$\alpha \in N \sum_{r \in R(\alpha)} \Theta_r = 1$$

• We have

$$P(T \mid \Theta) = \prod_{r \in R} \Theta_r^{Count(T,r)}$$

where Count(T, r) is the number of times rule r is seen in the tree T

$$\Rightarrow \quad \log P(T \mid \Theta) = \sum_{r \in R} Count(T, r) \log \Theta_r$$

Maximum Likelihood Estimation for PCFGs

• We have

$$\log P(T \mid \Theta) = \sum_{r \in R} Count(T, r) \log \Theta_r$$

where Count(T, r) is the number of times rule r is seen in the tree T

- And, $L(\Theta) = \sum_{i} \log P(T_i \mid \Theta) = \sum_{i} \sum_{r \in R} Count(T_i, r) \log \Theta_r$
- Solving $\Theta_{ML} = \operatorname{argmax}_{\Theta \in \Omega} L(\Theta)$ gives $\Theta_r = \frac{\sum_i Count(T_i, r)}{\sum_i \sum_{s \in R(\alpha)} Count(T_i, s)}$

where r is of the form $\alpha \to \beta$ for some β

Models with Hidden Variables

- Now say we have two sets \mathcal{X} and \mathcal{Y} , and a joint distribution $P(X, Y \mid \Theta)$
- If we had **fully observed data**, (X_i, Y_i) pairs, then

$$L(\Theta) = \sum_{i} \log P(X_i, Y_i \mid \Theta)$$

• If we have **partially observed data**, X_i examples, then

$$L(\Theta) = \sum_{i} \log P(X_i \mid \Theta)$$
$$= \sum_{i} \log \sum_{Y \in \mathcal{Y}} P(X_i, Y \mid \Theta)$$

• The **EM** (**Expectation Maximization**) **algorithm** is a method for finding

$$\Theta_{ML} = \operatorname{argmax}_{\Theta} \sum_{i} \log \sum_{Y \in \mathcal{Y}} P(X_i, Y \mid \Theta)$$

• e.g., in the three coins example: $\mathcal{Y} = \{H, T\}$ $\mathcal{X} = \{HHH, TTT, HTT, THH, HHT, TTH, HTH, THT\}$ $\Theta = \{\lambda, p_1, p_2\}$

• and

$$P(X, Y \mid \Theta) = P(Y \mid \Theta)P(X \mid Y, \Theta)$$

where

$$P(Y \mid \Theta) = \begin{cases} \lambda & \text{If } Y = H \\ 1 - \lambda & \text{If } Y = T \end{cases}$$

and

$$P(X \mid Y, \Theta) = \begin{cases} p_1^h (1 - p_1)^t & \text{If } Y = \mathbf{H} \\ p_2^h (1 - p_2)t & \text{If } Y = \mathbf{T} \end{cases}$$

where h = number of heads in X, t = number of tails in X

• Fully observed data might look like:

 $(\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H)$

• In this case maximum likelihood estimates are:

$$\lambda = \frac{3}{5}$$
$$p_1 = \frac{3}{3}$$
$$p_2 = \frac{0}{3}$$

• Partially observed data might look like:

$\langle HHH\rangle, \langle TTT\rangle, \langle HHH\rangle, \langle TTT\rangle, \langle HHH\rangle$

• How do we find the maximum likelihood parameters?

The EM Algorithm

- Θ^t is the parameter vector at t'th iteration
- Choose Θ^0 (at random, or using various heuristics)
- Iterative procedure is defined as

$$\Theta^{t} = \operatorname{argmax}_{\Theta} Q(\Theta, \Theta^{t-1})$$

where

$$Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{Y \in \mathcal{Y}} P(Y \mid X_i, \Theta^{t-1}) \log P(X_i, Y \mid \Theta)$$

The EM Algorithm

• Iterative procedure is defined as $\Theta^t = \operatorname{argmax}_{\Theta} Q(\Theta, \Theta^{t-1})$, where

$$Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{Y \in \mathcal{Y}} P(Y \mid X_i, \Theta^{t-1}) \log P(X_i, Y \mid \Theta)$$

- Key points:
 - Intuition: fill in hidden variables Y according to $P(Y \mid X_i, \Theta)$
 - EM is guaranteed to converge to a local maximum, or saddle-point, of the likelihood function
 - In general, if

$$\operatorname{argmax}_{\Theta} \sum_{i} \log P(X_i, Y_i \mid \Theta)$$

has a simple (analytic) solution, then

$$\operatorname{argmax}_{\Theta} \sum_{i} \sum_{Y} P(Y \mid X_{i}, \Theta) \log P(X_{i}, Y \mid \Theta)$$

also has a simple (analytic) solution.

• Partially observed data might look like: $\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$

• Say $X = \langle HHH \rangle$, current parameters are λ, p_1, p_2

$$P(\langle HHH \rangle) = P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)$$

= $\lambda p_1^3 + (1 - \lambda) p_2^3$

and

$$P(Y = H \mid \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$$
$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda) p_2^3}$$

• After filling in hidden variables for each example, partially observed data might look like:

 $(\langle HHH \rangle, H) \qquad P(Y = H \mid HHH) = 0.6$ $(\langle HHH \rangle, T)$ $P(Y = T \mid HHH) = 0.4$ $(\langle TTT \rangle, H)$ $P(Y = H \mid TTT) = 0.3$ $(\langle TTT \rangle, T)$ $P(Y = T \mid TTT) = 0.7$ $(\langle HHH \rangle, H)$ $P(Y = H \mid HHH) = 0.6$ $(\langle HHH \rangle, T)$ $P(Y = T \mid HHH) = 0.4$ $(\langle TTT \rangle, H)$ $P(Y = H \mid TTT) = 0.3$ $(\langle TTT \rangle, T)$ $P(Y = T \mid TTT) = 0.7$ $(\langle HHH \rangle, H)$ $P(Y = H \mid HHH) = 0.6$ $(\langle HHH \rangle, T)$ $P(Y = T \mid HHH) = 0.4$

EM for Probabilistic Context-Free Grammars

- A PCFG defines a distribution $P(S, T \mid \Theta)$ over tree/sentence pairs (S, T)
- If we had tree/sentence pairs (fully observed data) then

$$L(\Theta) = \sum_{i} \log P(S_i, T_i \mid \Theta)$$

• Say we have sentences only, $S_1 \dots S_n$ \Rightarrow trees are hidden variables

$$L(\Theta) = \sum_{i} \log \sum_{T} P(S_i, T \mid \Theta)$$

EM for Probabilistic Context-Free Grammars

• Say we have sentences only, $S_1 \dots S_n$ \Rightarrow trees are hidden variables

$$L(\Theta) = \sum_{i} \log \sum_{T} P(S_i, T \mid \Theta)$$

• EM algorithm is then $\Theta^t = \operatorname{argmax}_{\Theta} Q(\Theta, \Theta^{t-1})$, where

$$Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{T} P(T \mid S_i, \Theta^{t-1}) \log P(S_i, T \mid \Theta)$$

• Remember:

$$\log P(S_i, T \mid \Theta) = \sum_{r \in R} Count(S_i, T, r) \log \Theta_r$$

where Count(S,T,r) is the number of times rule r is seen in the sentence/tree pair (S,T)

$$\Rightarrow Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{T} P(T \mid S_i, \Theta^{t-1}) \log P(S_i, T \mid \Theta)$$
$$= \sum_{i} \sum_{T} P(T \mid S_i, \Theta^{t-1}) \sum_{r \in R} Count(S_i, T, r) \log \Theta_r$$
$$= \sum_{i} \sum_{r \in R} Count(S_i, r) \log \Theta_r$$

where $Count(S_i, r) = \sum_T P(T \mid S_i, \Theta^{t-1})Count(S_i, T, r)$ the expected counts • Solving $\Theta_{ML} = \operatorname{argmax}_{\Theta \in \Omega} L(\Theta)$ gives

$$\Theta_r = \frac{\sum_i Count(S_i, r)}{\sum_i \sum_{s \in R(\alpha)} Count(S_i, s)}$$

where *r* is of the form $\alpha \rightarrow \beta$ for some β

• We'll see next week that there are efficient (dynamic programming) algorithms for computation of

$$Count(S_i, r) = \sum_T P(T \mid S_i, \Theta^{t-1}) Count(S_i, T, r)$$