
6.891: Lecture 8 (October 1st, 2003)

Log-Linear Models for Parsing,
and the EM Algorithm Part I



Overview
� Ratnaparkhi’s Maximum-Entropy Parser

� The EM Algorithm Part I



Log-Linear Taggers: Independence Assumptions
� The input sentenceS, with lengthn = S:length, hasjT jn

possible tag sequences.

� Each tag sequenceT has a conditional probability

P (T j S) =
Qn

j=1 P (T (j) j S; j; T (1) : : : T (j � 1)) Chain rule

=
Qn

j=1 P (T (j) j S; j; T (j � 2); T (j � 1)) Independence
assumptions

� EstimateP (T (j) j S; j; T (j � 2); T (j � 1)) using log-linear
models

� Use the Viterbi algorithm to compute

argmaxT2T n logP (T j S)



A General Approach: (Conditional) History-Based Models
� We’ve shown how to defineP (T j S) where T is a tag

sequence

� How do we defineP (T j S) if T is a parse tree (or another
structure)?



A General Approach: (Conditional) History-Based Models
� Step 1: represent a tree as a sequence ofdecisionsd1 : : : dm

T = hd1; d2; : : : dmi

m is not necessarily the length of the sentence

� Step 2: the probability of a tree is
P (T j S) =

mY
i=1
P (di j d1 : : : di�1; S)

� Step 3: Use a log-linear model to estimate

P (di j d1 : : : di�1; S)

� Step 4: Search?? (answer we’ll get to later: beam or heuristic
search)
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Ratnaparkhi’s Parser: Three Layers of Structure

1. Part-of-speech tags

2. Chunks

3. Remaining structure



Layer 1: Part-of-Speech Tags
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� Step 1: represent a tree as a sequence ofdecisionsd1 : : : dm

T = hd1; d2; : : : dmi

� Firstn decisions are tagging decisions

hd1 : : : dni = h DT, NN, Vt, DT, NN, IN, DT, NN i



Layer 2: Chunks
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Chunks are defined as any phrase where all children are part-
of-speech tags

(Other common chunks areADJP, QP)



Layer 2: Chunks
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� Step 1: represent a tree as a sequence ofdecisionsd1 : : : dn

T = hd1; d2; : : : dni

� Firstn decisions are tagging decisions
Nextn decisions are chunk tagging decisions

hd1 : : : d2ni = h DT, NN, Vt, DT, NN, IN, DT, NN,
Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP)i



Layer 3: Remaining Structure

Alternate Between Two Classes of Actions:
� Join(X) or Start(X), where X is a label (NP, S, VP etc.)

� Check=YES or Check=NO

Meaning of these actions:

� Start(X) starts a new constituent with label X
(always acts on leftmost constituent with no start or join label above it)

� Join(X) continues a constituent with label X
(always acts on leftmost constituent with no start or join label above it)

� Check=NO does nothing

� Check=YES takes previous Join or Start action, and converts
it into a completed constituent
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The Final Sequence of decisions
hd1 : : : d2ni = h DT, NN, Vt, DT, NN, IN, DT, NN,

Start(NP), Join(NP), Other, Start(NP), Join(NP),
Other, Start(NP), Join(NP),
Start(S), Check=NO, Start(VP), Check=NO,
Join(VP), Check=NO, Start(PP), Check=NO,
Join(PP), Check=YES, Join(VP), Check=YES,
Join(S), Check=YESi



A General Approach: (Conditional) History-Based Models
� Step 1: represent a tree as a sequence ofdecisionsd1 : : : dm

T = hd1; d2; : : : dmi

m is not necessarily the length of the sentence

� Step 2: the probability of a tree is
P (T j S) =

mY
i=1
P (di j d1 : : : di�1; S)

� Step 3: Use a log-linear model to estimate

P (di j d1 : : : di�1; S)

� Step 4: Search?? (answer we’ll get to later: beam or heuristic
search)



Applying a Log-Linear Model
� Step 3: Use a log-linear model to estimate

P (di j d1 : : : di�1; S)

� A reminder:
P (di j d1 : : : di�1; S) =

e�(hd1:::di�1;Si;di)�WP
d2A e
�(hd1:::di�1;Si;d)�W

where:

hd1 : : : di�1; Si is the history

di is the outcome

� maps a history/outcome pair to a feature vector

W is a parameter vector

A is set of possible actions

(may be context dependent)



Reminder: Implementing FEATUREVECTOR
� Intermediate step: map history/tag pair to set offeature

strings

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/Vt from which Spain expanded its empire into the rest of the
Western Hemisphere .

e.g., Ratnaparkhi’s features:

“TAG=Vt;Word=base”
“TAG=Vt;TAG-1=JJ”
“TAG=Vt;TAG-1=JJ;TAG-2=DT”
“TAG=Vt;SUFF1=e”
“TAG=Vt;SUFF2=se”
“TAG=Vt;SUFF3=ase”
“TAG=Vt;WORD-1=important”
“TAG=Vt;WORD+1=from”



Reminder: Implementing FEATUREVECTOR
� Next step: match strings to integers through a hash table

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/Vt from
which Spain expanded its empire into the rest of the Western Hemisphere .

e.g., Ratnaparkhi’s features:

“TAG=Vt;Word=base” ! 1315
“TAG=Vt;TAG-1=JJ” ! 17
“TAG=Vt;TAG-1=JJ;TAG-2=DT” ! 32908
“TAG=Vt;SUFF1=e” ! 459
“TAG=Vt;SUFF2=se” ! 1000
“TAG=Vt;SUFF3=ase” ! 1509
“TAG=Vt;WORD-1=important” ! 1806
“TAG=Vt;WORD+1=from” ! 300

In this case, sparse array is:

A:length = 8; A(1:::8) = f1315; 17; 32908; 459; 1000; 1509; 1806; 300g



Applying a Log-Linear Model
� Step 3: Use a log-linear model to estimate

P (di j d1 : : : di�1; S) =

e�(hd1:::di�1;Si;di)�WP
d2A e
�(hd1:::di�1;Si;d)�W

� The big question: how do we define�?

� Ratnaparkhi’s method defines� differently depending on
whether next decision is:

– A tagging decision
(same features as before for POS tagging!)

– A chunking decision

– A start/join decision after chunking

– A check=no/check=yes decision



Layer 2: Chunks
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) “TAG=Join(NP);Word0=witness;POS0=NN”
“TAG=Join(NP);POS0=NN”
“TAG=Join(NP);Word+1=about;POS+1=IN”
“TAG=Join(NP);POS+1=IN”
“TAG=Join(NP);Word+2=the;POS+2=DT”
“TAG=Join(NP);POS+2=IN”
“TAG=Join(NP);Word-1=the;POS-1=DT;TAG-1=Start(NP)”
“TAG=Join(NP);POS-1=DT;TAG-1=Start(NP)”
“TAG=Join(NP);TAG-1=Start(NP)”
“TAG=Join(NP);Word-2=questioned;POS-2=Vt;TAG-2=Other”

: : :





Layer 3: Join or Start
� Looks at head word, constituent (or POS) label, and start/join

annotation ofn’th tree relative to the decision, wheren =

�2;�1

� Looks at head word, constituent (or POS) label ofn’th tree
relative to the decision, wheren = 0; 1; 2

� Looks at bigram features of the above for (-1,0) and (0,1)

� Looks at trigram features of the above for (-2,-1,0), (-1,0,1)
and (0, 1, 2)

� The above features with all combinations of head words
excluded

� Various punctuation features



Layer 3: Check=NO or Check=YES
� A variety of questions concerning the proposed constituent



The Search Problem
� In POS tagging, we could use the Viterbi algorithm because

P (T (j) j S; j; T (1) : : : T (j�1)) = P (T (j) j S; j; T (j�2) : : : T (j�1))

� Now: Decisiondi could depend on arbitrary decisions in the
“past”) no chance for dynamic programming

� Instead, Ratnaparkhi uses a beam search method



Overview
� Ratnaparkhi’s Maximum-Entropy Parser

� The EM Algorithm Part I



An Experiment/Some Intuition
� I have one coin in my pocket,

Coin 0 has probability� of heads

� I toss the coin 10 times, and see the following sequence:

HHTTHHHTHH

(7 heads out of 10)

� What would you guess� to be?



An Experiment/Some Intuition
� I have three coins in my pocket,

Coin 0 has probability� of heads;
Coin 1 has probabilityp1 of heads;
Coin 2 has probabilityp2 of heads

� For each trial I do the following:
First I toss Coin 0
If Coin 0 turns upheads, I tosscoin 1 three times
If Coin 0 turns uptails, I tosscoin 2 three times

I don’t tell you whether Coin 0 came up heads or tails,
or whether Coin 1 or 2 was tossed three times,
but I do tell you how many heads/tails are seen at each trial

� You see the following sequence:

hHHHi; hTTT i; hHHHi; hTTT i; hHHHi

What would you estimate as the values for�; p1 andp2?



Maximum Likelihood Estimation
� We have data pointsX1; X2; : : : Xn drawn from some (finite

or countable) setX

� We have a parameter vector�

� We have a parameter space


� We have a distributionP (X j �) for any� 2 
, such thatX
X2X
P (X j �) = 1 andP (X j �) � 0 for all X

� We assume that our data pointsX1; X2; : : : Xn are drawn
at random (independently, identically distributed) from a
distributionP (X j ��) for some�� 2 




A First Example: Coin Tossing
� X = fH,T g. Our data pointsX1; X2; : : : Xn are a sequence

of heads and tails, e.g.

HHTTHHHTHH

� Parameter vector� is a single parameter, i.e., the probability
of coin coming up heads

� Parameter space
 = [0; 1]

� DistributionP (X j �) is defined as

P (X j �) =
(

� If X = H

1�� If X = T



Log-Likelihood
� We have data pointsX1; X2; : : : Xn drawn from some (finite

or countable) setX

� We have a parameter vector�, and a parameter space


� We have a distributionP (X j �) for any� 2 


� The likelihood is

Likelihood(�) = P (X1; X2; : : : Xn j �) =

nY
i=1
P (Xi j �)

� The log-likelihood is

L(�) = logLikelihood(�) =

nX
i=1
logP (Xi j �)



Maximum Likelihood Estimation
� Given a sampleX1; X2; : : : Xn, choose

�ML = argmax�2
L(�) = argmax�2

X

i

logP (Xi j �)

� For example, take the coin example:
sayX1 : : :Xn hasCount(H) heads, and(n� Count(H)) tails

)

L(�) = log
�

�Count(H) � (1��)n�Count(H)
�

= Count(H) log� + (n� Count(H)) log(1��)

� We now have

�ML =
Count(H)

n



A Second Example: Probabilistic Context-Free Grammars
� X is the set of all parse trees generated by the underlying

context-free grammar. Our sample isn treesT1 : : : Tn such
that eachTi 2 X .

� R is the set of rules in the context free grammar

N is the set of non-terminals in the grammar

� �r for r 2 R is the parameter for ruler

� LetR(�) � R be the rules of the form�! � for some�

� The parameter space
 is the set of� 2 [0; 1]jRj such that

for all � 2 N

X
r2R(�)

�r = 1



� We have

P (T j �) =
Y

r2R
�Count(T;r)

r

whereCount(T; r) is the number of times ruler is seen in the treeT

) logP (T j �) =
X

r2R
Count(T; r) log�r



Maximum Likelihood Estimation for PCFGs
� We have

logP (T j �) =
X

r2R
Count(T; r) log�r

whereCount(T; r) is the number of times ruler is seen in the treeT

� And,

L(�) =
X

i

logP (Ti j �) =
X

i

X
r2R
Count(Ti; r) log�r

� Solving�ML = argmax�2
L(�) gives

�r =

P
iCount(Ti; r)P

i
P

s2R(�)Count(Ti; s)
wherer is of the form�! � for some�



Models with Hidden Variables
� Now say we have two setsX andY, and a joint distribution

P (X;Y j �)

� If we hadfully observed data, (Xi; Yi) pairs, then

L(�) =
X

i

logP (Xi; Yi j �)

� If we havepartially observed data, Xi examples, then

L(�) =

X
i

logP (Xi j �)

=

X
i

log
X

Y 2Y
P (Xi; Y j �)



� TheEM (Expectation Maximization) algorithm is a method
for finding

�ML = argmax�
X

i

log
X

Y 2Y
P (Xi; Y j �)



The Three Coins Example
� e.g., in the three coins example:

Y = fH,T g

X = fHHH,TTT,HTT,THH,HHT,TTH,HTH,THT g

� = f�; p1; p2g

� and
P (X;Y j �) = P (Y j �)P (X j Y;�)

where

P (Y j �) =
�

� If Y = H

1� � If Y = T

and

P (X j Y;�) =
�

ph1(1� p1)
t If Y = H

ph2(1� p2)t If Y = T

whereh = number of heads inX, t = number of tails inX



The Three Coins Example
� Fully observed data might look like:

(hHHHi; H); (hTTT i; T ); (hHHHi; H); (hTTT i; T ); (hHHHi; H)

� In this case maximum likelihood estimates are:

� =
3

5

p1 =
3

3

p2 =
0

3



The Three Coins Example
� Partially observed data might look like:

hHHHi; hTTT i; hHHHi; hTTT i; hHHHi

� How do we find the maximum likelihood parameters?



The EM Algorithm
� �t is the parameter vector att’th iteration

� Choose�0 (at random, or using various heuristics)

� Iterative procedure is defined as

�t = argmax�Q(�;�t�1)

where

Q(�;�t�1) =
X

i

X
Y 2Y
P (Y j Xi;�
t�1) logP (Xi; Y j �)



The EM Algorithm
� Iterative procedure is defined as�t = argmax�Q(�;�
t�1), where

Q(�;�t�1) =
X

i

X
Y 2Y

P (Y j Xi;�
t�1) logP (Xi; Y j �)

� Key points:

– Intuition: fill in hidden variablesY according toP (Y j Xi;�)

– EM is guaranteed to converge to a local maximum, or saddle-point,
of the likelihood function

– In general, if

argmax�
X

i

logP (Xi; Yi j �)

has a simple (analytic) solution, then

argmax�
X

i

X
Y

P (Y j Xi;�) logP (Xi; Y j �)

also has a simple (analytic) solution.



The Three Coins Example
� Partially observed data might look like:

hHHHi; hTTT i; hHHHi; hTTT i; hHHHi

� SayX = hHHHi, current parameters are�; p1; p2

P (hHHHi) = P (hHHHi; H) + P (hHHHi; T )

= �p31 + (1� �)p32

and

P (Y = H j hHHHi) =

P (hHHHi; H)

P (hHHHi; H) + P (hHHHi; T )

=

�p31

�p31 + (1� �)p32



The Three Coins Example
� After filling in hidden variables for each example,

partially observed data might look like:

(hHHHi; H) P (Y = H j HHH) = 0:6

(hHHHi; T ) P (Y = T j HHH) = 0:4

(hTTT i; H) P (Y = H j TTT ) = 0:3

(hTTT i; T ) P (Y = T j TTT ) = 0:7

(hHHHi; H) P (Y = H j HHH) = 0:6

(hHHHi; T ) P (Y = T j HHH) = 0:4

(hTTT i; H) P (Y = H j TTT ) = 0:3

(hTTT i; T ) P (Y = T j TTT ) = 0:7

(hHHHi; H) P (Y = H j HHH) = 0:6

(hHHHi; T ) P (Y = T j HHH) = 0:4



EM for Probabilistic Context-Free Grammars
� A PCFG defines a distributionP (S; T j �) over tree/sentence

pairs(S; T )

� If we had tree/sentence pairs (fully observed data) then

L(�) =
X

i

logP (Si; Ti j �)

� Say we have sentences only,S1 : : : Sn

) trees are hidden variables

L(�) =
X

i

log
X

T

P (Si; T j �)



EM for Probabilistic Context-Free Grammars
� Say we have sentences only,S1 : : : Sn

) trees are hidden variables

L(�) =
X

i

log
X

T

P (Si; T j �)

� EM algorithm is then�t = argmax�Q(�;�t�1), where

Q(�;�t�1) =
X

i

X
T

P (T j Si;�
t�1) logP (Si; T j �)



� Remember:

logP (Si; T j �) =
X

r2R
Count(Si; T; r) log�r

where Count(S; T; r) is the number of times ruler is seen in the
sentence/tree pair(S; T )

) Q(�;�t�1) =

X
i

X
T

P (T j Si;�
t�1) logP (Si; T j �)

=

X
i

X
T

P (T j Si;�
t�1)
X

r2R

Count(Si; T; r) log�r

=

X
i

X
r2R

Count(Si; r) log�r

whereCount(Si; r) =
P

T

P (T j Si;�
t�1)Count(Si; T; r)

the expected counts



� Solving�ML = argmax�2
L(�) gives

�r =

P
iCount(Si; r)P

i
P

s2R(�)Count(Si; s)

wherer is of the form�! � for some�

� We’ll see next week that there are efficient (dynamic
programming) algorithms for computation of

Count(Si; r) =
X

T

P (T j Si;�
t�1)Count(Si; T; r)


