
6.891: Lecture 6 (September 24, 2003)
Log-Linear Models



Overview
� Log-linear models

� The maximum-entropy property

� Smoothing, feature selection etc. in log-linear models



Tagging Problems
� Mapping strings toTagged Sequences

a b e e a f h j) a/C b/D e/C e/C a/D f/C h/D j/C



Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective

: : :



Information Extraction

Named Entity Recognition
INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at[Company Boeing Co.], easily topping forecasts
on [LocationWall Street], as their CEO[PersonAlan Mulally] announced first
quarter results.



Named Entity Extraction as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location

: : :



Extracting Glossary Entries from the Web
Input:

 Home  Local | Health | Travel | Sporting Events | Recreation | Home & Garden  World | News | Maps | M
Weather  Ski 
 Learn About Weather | Education | Expertise | Safety

  
Enter city or US zip code

 
GO
 Want us to remember your location?

(Use this for 1-click access to your local forecast)

 

Features of the
Weather in y
e-mail 
Storm Week 
Schoolday
Forecast 

Weather Glossary

A | B | C | D | E | F | G| H | I | J | K | L |M |

N | O | P | Q | R | S | T | U |V | W | X |Y |Z 

Talk about the science of meteorology in our Message Boards! 

S 

SAFFIR-SIMPSON DAMAGE-POTENTIAL SCALE  
Developed in the early 1970s by Herbert Saffir, a consulting engineer, and
Robert Simpson, then Director of the National Hurricane Center, it is a measure
of hurricane intensity on a scale of 1 to 5. The scale categorizes potential
damage based on barometric pressure, wind speeds, and surge. 
Related term: Saffir Simpson Scale 

ST. ELMO’S FIRE  
A luminous, and often audible, electric discharge that is sporadic in nature. It
occurs from objects, especially pointed ones, when the electrical field strength
near their surfaces attains a value near 1000 volts per centimeter. It often
occurs during stormy weather and might be seen on a ship’s mast or yardarm,
aircraft, lightning rods, and steeples. Also known as corposant or corona
discharge. 

SALINITY  
A measure of the quantity of dissolved salts in sea water. The total amount of
dissolved solids in sea water in parts per thousand by weight. 

SALT WATER  
The water of the ocean, distinguished from fresh water by its appreciable
salinity. 

Go Shoppin

Output: St. Elmo’s Fire: A luminous, and often audible, electric discharge
that is sporadic in nature. It occurs from objects, especially pointed ones, when
the electrical field strength near their surfaces attains a value near 100 volts per
centimeter...



The General Problem
� We have someinput domain X

� Have a finitelabel setY

� Aim is to provide aconditional probability P (y j x)

for anyx 2 X andy 2 Y



An Example

Hispaniola/NNP quickly/RB became/VB an/DT
important/JJ base/?? from which Spain expanded
its empire into the rest of the Western Hemisphere .

� There are many possible tags in the position??

Y = fNN, NNS, Vt, Vi, IN, DT, . . .g

� The input domainX is the set of all possiblehistories (or
contexts)

� Need to learn a function from (history, tag) pairs to a
probabilityP (tagjhistory)



Representation: Histories
� A history is a 4-tupleht�1; t�2; w[1:n]; ii

� t�1; t�2 are the previous two tags.

� w[1:n] are then words in the input sentence.

� i is the index of the word being tagged

� X is the set of all possible histories

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

� t�1; t�2 = DT, JJ

� w[1:n] = hHispaniola; quickly; became; : : : ; Hemisphere; :i

� i = 6



Feature Vector Representations
� We have some input domainX , and a finite label setY. Aim

is to provide a conditional probabilityP (y j x) for anyx 2 X

andy 2 Y.

� A feature is a functionf : X � Y ! R

(Oftenbinary features or indicator functions f : X � Y ! f0; 1g).

� Say we havem features�k for k = 1 : : : m

) A feature vector�(x; y) 2 R
m for anyx 2 X andy 2 Y.



An Example (continued)
� X is the set of all possible histories of formht�1; t�2; w[1:n]; ii

� Y = fNN, NNS, Vt, Vi, IN, DT, . . .g

� We havem features�k : X � Y ! R for k = 1 : : : m

For example:

�1(h; t) =

(
1 if current wordwi is base andt = Vt

0 otherwise

�2(h; t) =

(
1 if current wordwi ends ining andt = VBG

0 otherwise

: : :

�1(hJJ, DT,h Hispaniola, . . .i, 6i;Vt) = 1

�2(hJJ, DT,h Hispaniola, . . .i, 6i;Vt) = 0

: : :



The Full Set of Features in [Ratnaparkhi 96]
� Word/tag features for all word/tag pairs, e.g.,

�100(h; t) =

(
1 if current wordwi is base andt = Vt

0 otherwise

� Spelling features for all prefixes/suffixes of length� 4, e.g.,

�101(h; t) =

(
1 if current wordwi ends ining andt = VBG

0 otherwise

�102(h; t) =

(
1 if current wordwi starts withpre andt = NN

0 otherwise



The Full Set of Features in [Ratnaparkhi 96]
� Contextual Features, e.g.,

�103(h; t) =

(
1 if ht�2; t�1; ti = hDT, JJ, Vti

0 otherwise

�104(h; t) =

(
1 if ht�1; ti = hJJ, Vti

0 otherwise

�105(h; t) =

(
1 if hti = hVti

0 otherwise

�106(h; t) =

(
1 if previous wordwi�1 = theandt = Vt

0 otherwise

�107(h; t) =

(
1 if next wordwi+1 = theandt = Vt

0 otherwise



The Final Result
� We can come up with practically any questions (features)

regarding history/tag pairs.

� For a given historyx 2 X , each label inY is mapped to a
different feature vector

�(hJJ, DT,h Hispaniola, . . .i, 6i;Vt) = 1001011001001100110

�(hJJ, DT,h Hispaniola, . . .i, 6i; JJ) = 0110010101011110010

�(hJJ, DT,h Hispaniola, . . .i, 6i;NN) = 0001111101001100100

�(hJJ, DT,h Hispaniola, . . .i, 6i; IN) = 0001011011000000010

: : :



Log-Linear Models
� We have some input domainX , and a finite label setY. Aim

is to provide a conditional probabilityP (y j x) for anyx 2 X

andy 2 Y.

� A feature is a functionf : X � Y ! R

(Often binary features or indicator functionsf : X � Y ! f0; 1g).

� Say we havem features�k for k = 1 : : : m

) A feature vector�(x; y) 2 R
m for anyx 2 X andy 2 Y.

� We also have aparameter vectorW 2 R
m

� We define

P (y j x;W) =

eW��(x;y)P
y02Y e
W��(x;y0)



More About Log-Linear Models
� Why the name?

logP (y j x;W) =W � �(x; y)| {z }

Linear term

� log
X

y02Y
eW��(x;y0)

| {z }

Normalization term

� Maximum-likelihood estimates given training sample(xi; yi)

for i = 1 : : : n, each(xi; yi) 2 X � Y:

WML = argmax
W2R
mL(W)

where

L(W) =

nX
i=1

logP (yi j xi)

=

nX
i=1
W � �(xi; yi)�

nX
i=1

log
X

y02Y

eW��(xi;y
0)



Calculating the Maximum-Likelihood Estimates
� Need to maximize:

L(W) =

nX
i=1
W � �(xi; yi)�

nX
i=1

log
X

y02Y
eW��(xi;y
0)

� Calculating gradients:

dL
dW

����
W

=

nX
i=1

�(xi; yi)�

nX
i=1

P
y02Y

�(xi; y
0)eW��(xi;y
0)P

z02Y

eW��(xi;z0)

=

nX
i=1

�(xi; yi)�

nX
i=1

X
y02Y

�(xi; y
0)

eW��(xi;y
0)P

z02Y

eW��(xi;z0)

=

nX
i=1

�(xi; yi)| {z }

Empirical counts

�

nX
i=1

X
y02Y

�(xi; y
0)P (y0 j xi;W)

| {z }

Expected counts



Gradient Ascent Methods
� Need to maximizeL(W) where

dL
dW

�����
W

=

nX
i=1
�(xi; yi)�

nX
i=1

X
y02Y
�(xi; y
0)P (y0 j xi;W)

Initialization: W = 0

Iterate until convergence:

� Calculate� = dL
dW

���
W

� Calculate�� = argmax�L(W + ��) (Line Search)

� SetW W + ���



Conjugate Gradient Methods
� (Vanilla) gradient ascent can be very slow

� Conjugate gradient methods require calculation of gradient at
each iteration, but do a line search ina direction which is
a function of the current gradient, and the previous step
taken.

� Conjugate gradient packages are widely available
In general: they require a function

calc gradient (W)!

 
L(W);
dL

dW

�����
W

!

and that’s about it!



Iterative Scaling

Initialization:

W = 0

CalculateH =
P

i �(xi; yi) (Empirical counts)

CalculateC = maxi=1:::n;y2Y (
Pm

k=1 �k(xi; y))

Iterate until convergence:

CalculateE(W) =
P

i
P

y02Y �(xi; y
0)P (y0 j xi;W)

(Expected counts)

Fork = 1 : : : m, setWk  Wk +
1

C

log Hk

Ek(W)

Converges to maximum-likelihood solution provided that

�k(xi; yi) � 0 for all i; k.



Derivation of Iterative Scaling
Consider a vector of updatesÆ 2 R

m, so thatWk+1 = Wk + Æ. The
gain in log-likelihood is thenL(W + Æ)� L(W).

L(W + Æ)� L(W)

=

nX
i=1

(W + Æ) � �(xi; yi)�

nX
i=1

log
X

y02Y

e(W+Æ)��(xi;y
0)

�
0

@ nX
i=1
W � �(xi; yi)�

nX
i=1

log
X

y02Y

eW��(xi;y
0)
1

A (1)

=

nX
i=1

Æ � �(xi; yi)�

nX
i=1

log
P

y02Y

e(W+Æ)��(xi;y
0)P

z2Y eW��(xi;z)

(2)

=

nX
i=1

Æ � �(xi; yi)�

nX
i=1

log
X

y02Y

p(y0 j xi;W)eÆ��(xi;y
0) (3)



�

nX
i=1

Æ � �(xi; yi) + 1�

nX
i=1

X
y02Y

p(y0 j xi;W)eÆ��(xi;y
0) (4)

(From � log(x) � 1� x)

=

nX
i=1

Æ � �(xi; yi) + 1

�

nX
i=1

X
y02Y

p(y0 j xi;W) exp f(Æ � �(xi; y
0) + 0:(C � Ci(y
0)))g (5)

(WhereCi(y
0) =
P

k �k(xi; y
0), andC = maxi;y0 Ci(y
0))

�

nX
i=1

Æ � �(xi; yi) + 1

�

nX
i=1

X
y02Y

p(y0 j xi;W)
 X

k

�(xi; y
0)

C

eCÆk +
C � Ci(y
0)

C

!

(6)

(Frome
P

x

q(x)f(x) �
P

x q(x)e
f(x) for anyq(x) � 0, and

P
x q(x) = 1)

= A(W; Æ) (7)



� We now have an auxilliary functionA(W; Æ) such that

L(W; Æ)� L(W) � A(W; Æ)

� Now maximizeA(W; Æ) with respect to eachÆk:

dA
dÆk

=

nX
i=1
�k(xi; yi)�

nX
i=1

X
y02Y
p(y0 j xi;W)�k(xi; y
0)eCÆk

= Hk � eCÆkEk(W)
Setting derivatives equal to 0 gives iterative scaling:

Æk =

1
C
log

Hk

Ek(W)



Improved Iterative Scaling (Berger et. al)

nX
i=1

Æ � �(xi; yi) + 1�

nX
i=1

X
y02Y

p(y0 j xi;W)eÆ��(xi;y
0) (8)

�

nX
i=1

Æ � �(xi; yi) + 1

�

nX
i=1

X
y02Y

p(y0 j xi;W)
 X

k

�(xi; y
0)

f(xi; y0)
ef(xi;y

0)Æk
!

(9)

(Wheref(xi; y0) =
P

k �(xi; y
0), (10)

and frome
P

x

q(x)f(x) �
P

x q(x)e
f(x) for anyq(x) � 0, and

P
x q(x) = 1)

= A(W; Æ) (11)

Maximizing A(W; Æ) w.r.t. Æ involves finding Æk’s which solve:

nX
i=1

�k(xi; yi)�

nX
i=1

X
y02Y

p(y0 j xi;W)�k(xi; y
0)ef(xi;y
0)Æk = 0



Overview
� Log-linear models

� The maximum-entropy property

� Smoothing, feature selection etc. in log-linear models



Maximum-Entropy Properties of Log-Linear Models
� We define the set of distributions which satisfy linear

constraints implied by the data:
P = fp :

X
i

�(xi; yi)| {z }

Empirical counts

=
X

i

X
y2Y
p(y j xi)�(xi; y)

| {z }

Expected counts

g

here,p is ann� jYj vector definingP (y j xi) for all i; y.

� Note that at least one distribution satisfies these constraints,
i.e.,

p(y j xi) =
(

1 if y = yi

0 otherwise



Maximum-Entropy Properties of Log-Linear Models
� Theentropy of any distribution is:

H(p) = �
0

@ 1
n

X
i

X
y2Y
p(y j xi) log p(y j xi)

1
A

� Entropy is a measure of “smoothness” of a distribution

� In this case, entropy is maximized by uniform distribution,

p(y j xi) =

1
jYj

for all y; xi



The Maximum-Entropy Solution
� The maximum entropy model is

p� = argmaxp2PH(p)

� Intuition: find a distribution which

1. satisfies the constraints

2. is as smooth as possible



Maximum-Entropy Properties of Log-Linear Models
� We define the set of distributions which can be specified in

log-linear form
Q = fp : p(y j xi) =

eW��(xi;y)P
y02Y e
W��(xi;y0)
;W 2 R
mg

here, eachp is ann� jYj vector definingp(y j xi) for all i; y.

� Define the negative log-likelihood of the data
L(p) = �
X

i

log p(yi j xi)

� Maximum likelihood solution:

q� = argmin
q2 �Q

L(q)
where �Q is theclosureof Q



Duality Theorem
� There is a unique distributionq� satisfying

1. q� 2 intersection ofP and �Q

2. q� = argmaxp2PH(p) (Max-ent solution)

3. q� = argminq2 �Q L(q) (Max-likelihood solution)

� This implies:

1. The maximum entropy solution can be written in log-linear form

2. Finding the maximum-likelihood solution also gives the maximum
entropy solution



Developing Intuition Using Lagrange Multipliers
� Max-Ent Problem: Findmaxp2P H(p)

� Equivalent (unconstrained) problem

max
p2�

inf

W2R
m

L(p;W)

where� is the space of all probability distributions, and

L(p;W) =
0

@H(p)�

mX
k=1
Wk

0
@X

i

�k(xi; yi)�
X

i

X
y2Y

�k(xi; y)p(y j xi)
1

A
1

A

� Why the equivalence?:

inf

W2R
m

L(p;W) =
(

H(p) if all constraints satisfied, i.e.,p 2 P

�1 otherwise



Developing Intuition Using Lagrange Multipliers
� We can now switch the min and max:

max
p2P

H(p) = max
p2�

inf

W2R
m

L(p;W) = inf

W2R
m

max
p2�

L(p;W) = inf

W2R
m

L(W)

� whereL(W) = maxp2� L(p;W)



� By differentiatingL(p;W) w.r.t. p, and setting the derivative
to zero (making sure to include lagrange multipliers that
ensure for alli,

P
y p(y j xi) = 1), and solving

p� = argmaxp2�L(p;W)

gives
p�(y j xi;W) =

e
P

k

Wk�k(xi;y)P
y02Y e
P

k

Wk�k(xi;y0)

� Also:

L(W) = max
p2�

L(p;W) = L(p�(y j xi;W);W)

= �
X

i

log p�(y j xi;W)

i.e., the negative log-likelihood under parametersW!



To Summarize
� We’ve shown that

max
p2P

H(p) = inf

W2R
m

L(W)

whereL(W) is negative log-likelihood

� This argument is pretty informal, as we have to be careful
about switching themax and inf, and we need to relate

inf
W2R
m L(W) to findingq� = argminq2 �Q L(q). See[Della

Pietra, Della Pietra, and Lafferty 1997] for a proof of the
duality theorem.



Is the Maximum-Entropy Property Useful?
� Intuition: find a distribution which

1. satisfies the constraints

2. is as smooth as possible

� One problem: the constraints are define byempirical counts
from the data.

� Another problem: no formal relationship between maximum-
entropy property and generalization(?) (at least none is given
in the NLP literature)



Overview
� Log-linear models

� The maximum-entropy property

� Smoothing, feature selection etc. in log-linear models



Smoothing in Maximum Entropy Models
� Say we have a feature:

�100(h; t) =

(
1 if current wordwi is base andt = Vt

0 otherwise

� In training data,base is seen 3 times, withVt every time

� Maximum likelihood solution satisfiesX
i

�100(xi; yi) =
X

i

X
y

p(y j xi;W)�100(xi; y)

) p(Vt j xi;W) = 1 for any historyxi wherewi = base

)W100 !1 at maximum-likelihood solution (most likely)

) p(Vt j x;W) = 1 for any test data historyx wherew = base



A Simple Approach: Count Cut-Offs
� [Ratnaparkhi 1998] (PhD thesis): include all features that

occur5 times or more in training data. i.e.,X
i

�k(xi; yi) � 5

for all features�k.



Gaussian Priors
� Modified loss function

L(W) =

nX
i=1
W � �(xi; yi)�

nX
i=1

log
X

y02Y

eW��(xi;y
0) �

mX
k=1
W

2
k

2�2

� Calculating gradients:

dL
dW

����
W

=

nX
i=1

�(xi; yi)| {z }
Empirical counts

�

nX
i=1

X
y02Y

�(xi; y
0)P (y0 j xi;W)

| {z }

Expected counts

�
1

�2
W

� Can run conjugate gradient methods as before

� Adds a penalty for large weights



The Bayesian Justification for Gaussian Priors
� In Bayesianmethods, combine the log-likelihoodP (data j W) with a

prior over parameters,P (W)

P (W j data) =

P (data jW)P (W)R
W

P (data jW)P (W)dW

� TheMAP (Maximum A-Posteriori) estimates are

WMAP = argmaxWP (W j data)

= argmaxW
0

BB@logP (data jW)| {z }

Log-Likelihood

+ logP (W)| {z }

Prior

1
CCA

� Gaussian prior:P (W) / e�
P

k

W

2
k
=2�2

) logP (W) = �
P

kW

2
k=2�
2 + C



Experiments with Gaussian Priors
� [Chen and Rosenfeld, 1998]: apply maximum entropy models

to language modeling:EstimateP (wi j wi�2; wi�1)

� Unigram, bigram, trigram features, e.g.,

�1(wi�2; wi�1; wi) =

�
1 if trigram is (the,dog,laughs)

0 otherwise

�2(wi�2; wi�1; wi) =

�
1 if bigram is(dog,laughs)

0 otherwise

�3(wi�2; wi�1; wi) =

�
1 if unigram is(laughs)

0 otherwise

P (wi j wi�2; wi�1) =

e
P

k

�k(wi�2;wi�1;wi)�WP
w e
P

k

�k(wi�2;wi�1;w)�W



Experiments with Gaussian Priors
� In regular (unsmoothed) maxent, if all n-gram features

are included, then it’s equivalent to maximum-likelihood
estimates!

P (wi j wi�2; wi�1) =
Count(wi�2; wi�1; wi)

Count(wi�2; wi�1)

� [Chen and Rosenfeld, 1998]: with gaussian priors, get very
good results. Performs as well as or better than standardly
used “discounting methods” such as Kneser-Ney smoothing
(see lecture 2).

� Note: their method uses development set to optimize�

parameters

� Downside: computing

P
w e
P

k

�k(wi�2;wi�1;w)�W is SLOW.



Feature Selection Methods
� Goal: find a small number of featureswhich make good

progress in optimizing log-likelihood

� A greedy method:

Step 1 Throughout the algorithm, maintain a set of active features.
Initialize this set to be empty.

Step 2 Choose a feature from outside of the set of active features
which has largest estimated impact in terms of increasing the
log-likelihood and add this to the active feature set.

Step 3 Minimize L(W) with respect to the set of active features.
Return toStep 2.



Figures from [Ratnaparkhi 1998] (PhD thesis)
� The task: PP attachment ambiguity

� ME Default: Count cut-off of 5

� ME Tuned: Count cut-offs vary for 4-tuples, 3-tuples, 2-
tuples, unigram features

� ME IFS: feature selection method
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Figures from [Ratnaparkhi 1998] (PhD thesis)
� A second task: text classification, identifying articles about

acquisitions
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Summary
� Introduced log-linear models as general approach for

modeling conditional probabilitiesP (y j x).

� Optimization methods:

– Iterative scaling

– Gradient ascent

– Conjugate gradient ascent

� Maximum-entropy properties of log-linear models

� Smoothing methods using Gaussian prior, and feature
selection methods
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