6.891: Lecture 6 (September 24, 2003)
Log-Linear Models



Overview

e Log-linear models
e The maximum-entropy property

e Smoothing, feature selection etc. in log-linear models



Tagging Problems

e Mapping strings tofagged Sequences

abeeafhp aCbh/DeCeCabf/Ch/Dj/C




Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

ProfitdN soaredv at’/P BoeingN Co/N ,/, easilyADV toppingV
forecast8N on/P Wall/N StreetN ,/, asP theirPOSS CEQN
Alan/N Mulally/N announcedd/ firstt ADJ quarterN resultsN ./.

N = Noun

V = Verb

P = Preposition
Adv = Adverb

Adj = Adjective



Information Extraction

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as
their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared afCompany Boeing Col, easily topping forecasts
on [LocationWall Stree}, as their CEQPersonAlan Mulally] announced first

guarter results.



Named Entity Extraction as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall
Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

ProfitdNA soared\NA at/NA BoeingSC Co/CC ,/NA easilyNA
toppingNA forecast8NA on/NA Wall/SL StreetCL ,/NA asNA
theirNA CEQNA Alan/SP Mulally/CP announceA first/NA
guartefNA resultsNA ./NA

NA = No entity

SC = Start Company

CC = Continue Company
SL = Start Location

CL = Continue Location



Extracting Glossary Entries from the Web

Home Local | Health | Travel | Sporting Events | Recreation | Home & Gafdenid | News | MapsN

I n u t . Weather Ski
» Learn About Weather | Education | Expertise | Safety

o e

) ) Want us to remember your location?
Enter city or US zip code GO (Use this for 1-click access to your local forecast)

Features of th
Weather iny
B b W W E B W e-mail
FOTTE s s Storm Week
Schoolday
Forecast
Weather Glossary [F Go Shoppin
A|B|CID|E|F|GIH[I]J|K|LIM]
NIOIPIQIRIS|TIUIVIWIX]|Y|Z
Talk about the science of meteorology in our Message Boards! -E:-_.
S
Ll
SAFFIR-SIMPSON DAMAGE-POTENTIAL SCALE “u;,,u;-
Developed in the early 1970s by Herbert Saffir, a consulting engineer, an
Robert Simpson, then Director of the National Hurricane Center, it is a m¢ t
of hurricane intensity on a scale of 1 to 5. The scale categorizes potential
damage based on barometric pressure, wind speeds, and surge. .
Related term: Saffir Simpson Scale H

ST. ELMO’S FIRE
A luminous, and often audible, electric discharge that is sporadic in naturg. It
occurs from objects, especially pointed ones, when the electrical field strepgth
near their surfaces attains a value near 1000 volts per centimeter. It often
occurs during stormy weather and might be seen on a ship’s mast or yardg
aircraft, lightning rods, and steeples. Also known as corposant or corona
discharge.

4

m,

SALINITY
A measure of the quantity of dissolved salts in sea water. The total amourt of
dissolved solids in sea water in parts per thousand by weight.

SALT WATER
The water of the ocean, distinguished from fresh water by its appreciable
salinity.

Output: St. EImo’s Fire: A luminous, and often audible, electric discharge
that is sporadic in nature. It occurs from objects, especially pointed ones, when
the electrical field strength near their surfaces attains a value near 100 volts per
centimeter...



The General Problem

e \We have somenput domain X
e Have a finitdlabel set)

e Aim is to provide aconditional probability P(y | x)
foranyz € X andy € Y



An Example

HispaniolaNNP quickly/RB becamé&/B an'DT
iImportantJJ basé?? from which Spain expanded
Its empire into the rest of the Western Hemisphere .

e There are many possible tags in the posittén
Y = {NN, NNS, Vt, Vi, IN, DT, ...}

e The input domainX is the set of all possiblaistories (or
contexts)

e Need to learn a function from (history, tag) pairs to a
probability P(tag|history)



Representation: Histories

o A history is a 4-tuple(t_i,t_o, wii.p), 7)
e 1_,,t_o are the previous two tags.

* wy.,, are then words in the input sentence.
¢ ; IS the index of the word being tagged

e X' is the set of all possible histories

HispanioldNNP quicklyyRB becamé/B an'DT important]J
basé?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

® t_l,t_g — DT, JJ
® Wiy = (Hispaniola, quickly,became, ..., Hemisphere,.)

o1 =0



Feature Vector Representations

e We have some input domaii, and a finite label seY. Aim
IS to provide a conditional probabilit}(y | =) for anyz € X
andy € ).

e A featureis afunctionf : X x Y — R
(Oftenbinary features or indicator functions f : X x Y — {0, 1}).

e Say we haven featuresp, fork =1...m
= A feature vector¢(x,y) € R™ foranyx € X andy € ).



An Example (continued)

o X is the set of all possible histories of forftyL, t_o, w1y, 7)
e V= {NN,NNS, Vt, Vi, IN, DT, ...}

e We haven featuresp, : X x Y - Rfork=1...m

For example:
(1 if current wordw; is base andt = Vt
hi(hit) = <\ 0 otherwise
bo(h 1) = [ 1 if current wordw; ends ining andt = VBG
20T T 0 otherwise
$1((JJ, DT,{ Hispaniola, ..), 6), Vt) = 1
$-((JJ, DT,({ Hispaniola, ..), 6),Vt) =0



The Full Set of Features in Ratnaparkhi 96]

e \Word/tag features for all word/tag pairs, e.g.,

1 if current wordw, Is base andt = Vt
§/)100(h7 t) {

0 otherwise

e Spelling features for all prefixes/suffixes of lengtht, e.qg.,

bron(ht) = < 1 if current wordw; ends ining andt = VBG
IR S ™1 0 otherwise

broa(hit) = < 1 if current wordw; starts withpre andt = NN
2V 5 ™ 1 0 otherwise




The Full Set of Features in Ratnaparkhi 96]

e Contextual Features, e.g.,

(1 if (t_a,t_q,t) = (DT, 33, Vi
dros(h,t) = < 0 otherwise

droa(h,t) = < (1) if (t_1,t) = (33, Vb

\ otherwise
[ 1 i) = (Vi)
dros(h,t) = <\ 0 otherwise
oolhnt) = <’ if previous wordw,_; = theandt = Vt
106 9 —

otherwise

If next wordw, ; =theandt = Vt

dror(h,t) = 3 otherwise

O = O =



The Final Result

e We can come up with practically any questiorisatures
regarding history/tag pairs.

e For a given historyr € X, each label iy iIs mapped to a
different feature vector

¢((JJ, DT,( Hispaniola, ..), 6),Vt) = 1001011001001100110
¢((JJ, DT,( Hispaniola, ..), 6),JJ) 0110010101011110010
¢((JJ, DT,( Hispaniola, .. ), 6), NN) 0001111101001100100
¢((JJ, DT,( Hispaniola, ..), 6),IN) = 0001011011000000010



Log-Linear Models

¢ We have some input domai, and a finite label seY. Aim
IS to provide a conditional probabilit}(y | =) for anyz € X
andy € ).

e Afeatureisafunctiory : X x Y — R
(Often binary features or indicator functioris X x Y — {0, 1}).

e Say we haven featuresp, fork =1...m
= A feature vectow(z,y) € R™ foranyz € X andy € ).

e \We also have @arameter vector W € R™

e We define
qub(CU,y)

Zy’Ey ewqb(x)y/)

P(Q‘wi):




More About Log-Linear Models

e Why the name?
log P(y | 2, W) =W - ¢(z,y) — log }_ eWe(@y)

] e ey
Linear term —_~ ,

Normalization term

e Maximume-likelihood estimates given training samgie, y; )
fori =1...n,each(x;,y;) € X x Y:

where

L(W)

Wy = argmaxyepmL(W)

— ZlogP(yi | ;)
i=1

- Zn:W (i, yi) — znjlog Z eW-d(ziyy')
=1 i=1

y' ey



Calculating the Maximum-Likelihood Estimates

e Need to maximize:

LW) = Y W oz, y;) — Zlogzewqxw
1=1

y'ey

e Calculating gradients:

dL - " Y yey Oy )eW )
TINKT — Z qb(xmyz) o Z S W (zi,2")
AW |w = i=1 Dey € v
n n 6W-q§(x¢,y/)
S SRS 5) 3P N M
. i=1y/ €y rey
— qu xzayz qubxz» y ‘xza )
=1 y’'€ey

Emplrlcal counts Expected counts



Gradient Ascent Methods

e Need to maximizd.(W) where

j—\if w — zn:(/ﬁ(%,yi) - Zn: > ¢z, v )Py | xi, W)

i=1 i=1y'cy

Initialization: W = 0

Iterate until convergence:

__ dL
e CalculateA = AW |

e Calculates, = argmaxzL(W + 8A) (Line Search)
o SetW «— W + 5. A



Conjugate Gradient Methods

¢ (Vanilla) gradient ascent can be very slow

e Conjugate gradient methods require calculation of gradient at
each iteration, but do a line searchandirection which is
a function of the current gradient, and the previous step
taken.

e Conjugate gradient packages are widely available
In general: they require a function

calc _gradient (W) — (L(W), j—éf )
\%%

and that's about it!



Iterative Scaling

Initialization:

W =0

CalculateH = Y, ¢(z;,y;)  (Empirical counts)
CalculateC' = maxi—1_n ey (X0, dr(2i, y))
Iterate until convergence:

CalculateE(W) = >, 3" ey ¢(xi, v ) P(y' | 24, W)
(Expected counts)

Fork =1...m, setW; < W, + & log E;I@V

Converges to maximum-likelihood solution provided
dr(x;,y;) > 0forall, k.

that



Derivation of Iterative Scaling

Consider a vector of updatés= R™, so thatil,,.; = W, + 4. The
gain in log-likelihood is ther.(W + ¢) — L(W).

L(W + ) — L(W)

T

= Y (W+56) ¢(xi,u) ZlogZeW+5

- (iw'ﬁb(%,yz Zlog Z W (@i, y)) (1)
i—1

y' ey

I yEJ’e
B ;5 i) Zlog 2 ze yeW'qﬁ(fm,z) (2)

= ) 0 ¢(xi,ui) Zlog > p(y' | @i, W)eP?eny) (3)
1=1

y' ey




1V

'V

25 d(Ti, Yi) +1—ZZpy | z;, W)ed ¢ (@iy') (4)

=1 y’'€e)y
(From —log(z) > 1—x)

> 6 d(miy) +1
i=1

3N b |2 W) exp{(8 - (zi,y) +0.C = Ci(y)}  (5)
i=1y'ey

(WhereC;(y') = >, ¢x(zi,y'), andC' = max; , C;(y'))

25'¢($i,yi)+1
x’my k C_C’L(y/)
—ZZpy\azz, (Z e+ T ) (6)

i=1y’'€e)y k

(Fromez <Y q(x)e/® foranyg(z) > 0, and>"_q(x) = 1)
A(W,9) (7)




e \We now have an auxilliary functiodA(W, 9) such that

L(W,8) — L(W) > A(W, )

e Now maximizeA(W, d) with respect to eachy,:

dA n n
d—ék — Z¢k($z7yz Z Z p ‘ xu ¢k(x17y )605k
1=1

= H; — eC5kEk(W)
Setting derivatives equal to O gives iterative scaling:

1 Hy

— 1
o = G log g W




Improved Iterative Scaling (Berger et. al)

Za (i, ;) +1—Z > p(y |z, W)et ey (8)

=1 y’'€ey
> Z 0 - ¢ Liy Yi
i=1
_ - ! LisY ) f(@iy')on 9
2 E w0 (S .
1=1y'ey k
(Wheref (i, y') = > @i y'), (10)
and frome2=. 47/ () <> q(x)el® foranyg(z) > 0, and}"_q(x) = 1)
= A(W,)) (11)

Maximizing A(W,§) w.r.t. J involves finding é;’s which solve:

Z@:(%,yz Z Z p( Y’ | z;, W ¢k($z,y) f(ziy")ok —
=1

1=1y’'€)y



Overview

e Log-linear models
e The maximum-entropy property

e Smoothing, feature selection etc. in log-linear models



Maximum-Entropy Properties of Log-Linear Models

e We define the set of distributions which satisfy linear
constraints implied by the data:

P={p : Zﬁb(l’z‘,%) ZZM\% (i y)}

1 yey

Emplrlcal COUﬂtS Expected counts

7

here,p is ann x |Y| vector definingP(y | z;) for all ¢, y.

e Note that at least one distribution satisfies these constraints,
l.e.,

_ )1 ty=y
p(y | zi) = { 0 otherwise



Maximum-Entropy Properties of Log-Linear Models

e Theentropy of any distribution is:

H(p ( ZZpy\ivz logp(yxz))

1 yey

e Entropy is a measure of “smoothness” of a distribution

¢ |n this case, entropy is maximized by uniform distribution,

p(y | 5:) = =

forall y, x;
1Y



The Maximum-Entropy Solution

e The maximum entropy model is

ps = argmax, cpH(p)

e Intuition: find a distribution which

1. satisfies the constraints
2. 1S as smooth as possible



Maximum-Entropy Properties of Log-Linear Models

e We define the set of distributions which can be specified In

log-linear form
Q={p : plylz;) = > ey ew.qb(azi,y’)’w <R

here, eachy is ann x || vector definingp(y | z;) for all ¢, y.

e Define the negative log-likelihood of the data
L(p) = — Zlogp(yi | ;)

e Maximum likelihood solution:

¢. = arg min L(q)
qeQ

whereQ is theclosureof O



Duality Theorem

e There is a unique distributiop. satisfying

1. ¢. € intersection of? andQ
2. q, = argmax,.pH (p) (Max-ent solution)
3. ¢« = argmin 5 L(q) (Max-likelihood solution)

e This implies:

1. The maximum entropy solution can be written in log-linear form

2. Finding the maximum-likelihood solution also gives the maximum
entropy solution



Developing Intuition Using Lagrange Multipliers

e Max-Ent Problem: Findnax,cp H (p)

e Equivalent (unconstrained) problem

inf L(p. W
max inf (p, W)

whereA is the space of all probability distributions, and

m

L(p, W) = (H(p) - Wy (Z Sk (i, yi) — Y Y drl(wi, y)p(y | l‘i)) )

k=1 1 yey

e Why the equivalence?:

inf L(p,W) =

WeclR™

H(p) if all constraints satisfied, i.ep, € P
—oo  otherwise



Developing Intuition Using Lagrange Multipliers

e \We can now switch the min and max:

H(p) = inf L(p, W)= 1inf Lp,W)= inf L(W
B ) = DR e T W) = e BB W) = (i HW)

e WhereL(W) = max,ca L(p, W)



e By differentiatingL(p, W) w.r.t. p, and setting the derivative
to zero (making sure to include lagrange multipliers that
ensure foralk, >-, p(y | ;) = 1), and solving

p* = argmax, A L(p, W)

gives
GZk Wi (i,y)

Zy’ey BZk Wi o (i,y')

P (y |z, W) =

e Also:

L(W) =max L(p,W) = L(p*(y |z, W), W)

pEA
= —Zlogp*(y | x;, W)

l.e., the negative log-likelihood under parameférs



To Summarize

e \We've shown that

max H(p) = nglém L(W)

peP

whereL (W) is negative log-likelihood

e This argument is pretty informal, as we have to be careful
about switching themax and inf, and we need to relate
infywerm L(W) to finding g, = argmin .5 L(q). See[Della
Pietra, Della Pietra, and Lafferty 199%or a proof of the
duality theorem.



Is the Maximum-Entropy Property Useful?

e Intuition: find a distribution which

1. satisfies the constraints
2. 1S as smooth as possible

e One problem: the constraints are definedmgpirical counts
from the data.

e Another problem: no formal relationship between maximum-
entropy property and generalization(?) (at least none is given
In the NLP literature)



Overview

e Log-linear models
e The maximum-entropy property

e Smoothing, feature selection etc. in log-linear models



Smoothing in Maximum Entropy Models

e Say we have a feature:

¢100 (h7 t)

1 If current wordw, Is base andt = Vt
0 otherwise

e |n training datapase is seen 3 times, witN't every time

e Maximum likelihood solution satisfies

Z(bloo(%ﬁ% ZZP y \ ri, W ¢100(5Uzay)

= p(Vt | x;, W) = 1 for any historyz; wherew; = base
= W90 — oo at maximume-likelihood solution (most likely)
= p(Vt | z, W) = 1 for any test data history wherew = base



A Simple Approach: Count Cut-Offs

e [Ratnaparkhi 1998(PhD thesis): include all features that
occurb times or more Iin training data. 1.e.,

Z Or(Ts, i) > 5

for all featuresp,,.



Gaussian Priors
e Modified loss function

n 2
LW) = Y W-¢(i,y) Zlog D eWoten) - Z ‘27:2
1=1

y'ey k=1

e Calculating gradients:

dL —

o = (i, yi) — (i, y" )Py | 4, )——W

Wy T X >3 -
Empirical counts Expected counts

e Can run conjugate gradient methods as before

e Adds a penalty for large weights



The Bayesian Justification for Gaussian Priors

In Bayesianmethods, combine the log-likelihooB(data | W) with a
prior over parameters} (W)

P(data | W)P(W)

P(W | data) = Jw P(data | W)P(W)dW

TheMAP (Maximum A-Posteriori) estimates are

Wyap = argmaxw P(W | data)

= argmaxyy | log P(data | W) +log P(W)
Log-LiEeIihood PFiror

Gaussian priorP(W) o e~ 2ok Wi/2"
=log P(W) = -, W2/20%2 +C



Experiments with Gaussian Priors

e [Chen and Rosenfeld, 198&pply maximum entropy models
to language modelingzstimateP (w; | w; o, w; 1)

e Unigram, bigram, trigram features, e.g.,

If trigram is (the,dog,laughs)
otherwise

Pr(wi—2, wi—1,w;) = {

If bigram is(dog,laughs)
otherwise

P2 (Wi—2, wi—1,w;) = {

If unigram is(laughs)
otherwise

SO = O = O

P3(wi—2, wi—1,w;) = {

€Zk Pk (wi—2,wi—1,w;) W

P(w’t ‘ wi_2’wi_1) N > w sz Or(Wi—2,wi—1,w) W



Experiments with Gaussian Priors

e In regular (unsmoothed) maxent, if all n-gram features
are included, then it's equivalent to maximume-likelihood
estimates!

Count(w;_o, w;_1, w;)

P 7 1—2y Wi— -
(’LU \w 2, W 1) C’ount(wi—zawz’—l)

e |Chen and Rosenfeld, 1998with gaussian priors, get very
good results. Performs as well as or better than standardly
used “discounting methods” such as Kneser-Ney smoothing
(see lecture 2).

e Note: their method uses development set to optinuze
parameters

e Downside: computing,, 2 (wi-2:wi-1.w) W jg 5| OW.



Feature Selection Methods

e Goal: find a small number of features/hich make good
progress in optimizing log-likelihood

e A greedy method:

Step 1 Throughout the algorithm, maintain a set of active features.
Initialize this set to be empty.

Step 2 Choose a feature from outside of the set of active features
which has largest estimated impact in terms of increasing the
log-likelihood and add this to the active feature set.

Step 3 Minimize L(W) with respect to the set of active features.
Return toStep 2



Figures from |[Ratnaparkhi 1998| (PhD thesis)

e The task: PP attachment ambiguity
e ME Default: Count cut-off of 5

e ME Tuned: Count cut-offs vary for 4-tuples, 3-tuples, 2-
tuples, unigram features

e ME IFS: feature selection method



Experiment Accuracy Training Time # of Features

ME Default 82.0% 10 min 4028
ME Tuned 83.7% 10 min 83875
ME IFS 80.5% 30 hours 387

DT Default 72.2% 1 min
DT Tuned  80.4% 10 min
DT Binary 1 week +
Baseline 70.4%

Table 8.2: Maximum Entropy (ME) and Decision Tree (DT) Experiments on PP attach-
ment



Figures from |[Ratnaparkhi 1998| (PhD thesis)

e A second task: text classification, identifying articles about
acquisitions



Experiment Accuracy Training Time # of Features
ME Default  95.5% 15 min 2350

ME IFS 95.8% 15 hours 356

DT Default 91.6%% 18 hours

DT Tuned  92.1% 10 hours

Table 8.4: Text Categorization Performance on the acq category



Summary

e Introduced log-linear models as general approach for
modeling conditional probabilitieB(y | x).

e Optimization methods:

— Iterative scaling
— Gradient ascent
— Conjugate gradient ascent

e Maximum-entropy properties of log-linear models

e Smoothing methods using Gaussian prior, and feature
selection methods
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