6.891: Lecture 4 (September 15, 2003) Stochastic Parsing II

Overview

- Heads in context-free rules
- Dependency representations of parse trees
- A first model for dependencies: (Charniak 1997)
- A second model for dependencies: (Collins 1997)

Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

More about Heads

• Each context-free rule has one "special" child that is the head of the rule. e.g.,

S	\Rightarrow	NP	VP		(VP is the head)
VP	\Rightarrow	Vt	NP		(Vt is the head)
NP	\Rightarrow	DT	NN	NN	(NN is the head)

- A core idea in linguistics (X-bar Theory, Head-Driven Phrase Structure Grammar)
- Some intuitions:
 - The central sub-constituent of each rule.
 - The semantic predicate in each rule.

<u>Rules which Recover Heads:</u> An Example of rules for NPs

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g., NNP NP \Rightarrow DT NN NN NP \Rightarrow DT **NNP** NP \Rightarrow NP PP NP \Rightarrow DT JJ NP \Rightarrow DT

Rules which Recover Heads: An Example of rules for VPs

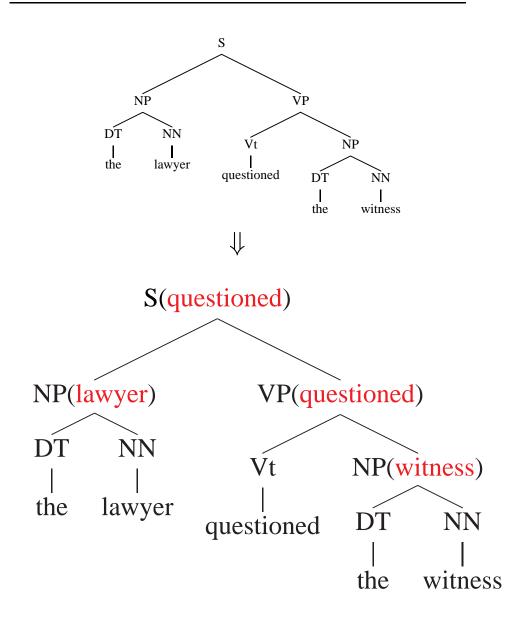
If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains an VP: Choose the leftmost VP

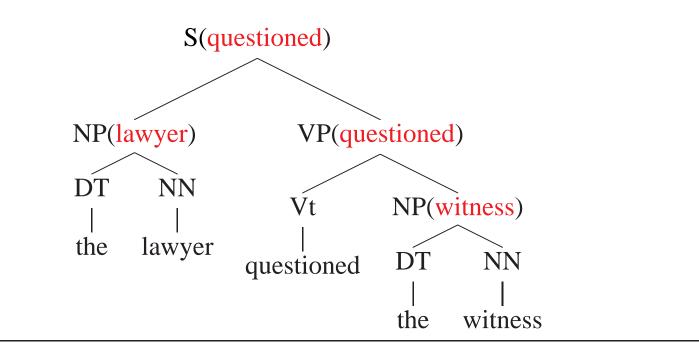
Else Choose the leftmost child

 $\begin{array}{ccc} e.g., \\ VP & \Rightarrow & Vt & NP \\ VP & \Rightarrow & VP & PP \end{array}$

Adding Headwords to Trees



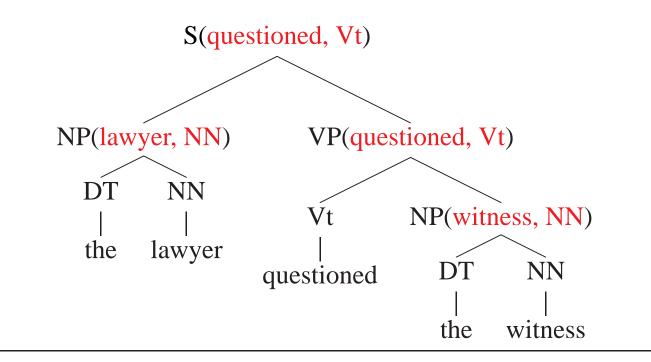
Adding Headwords to Trees



• A constituent receives its headword from its head child.

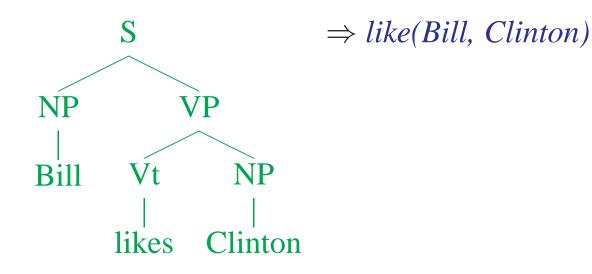
S	\Rightarrow	NP	VP		(S receives headword from VP)
VP	\Rightarrow	Vt	NP		(VP receives headword from Vt)
NP	\Rightarrow	DT		NN	(NP receives headword from NN)

Adding Headtags to Trees



• Also propogate **part-of-speech tags** up the trees (We'll see soon why this is useful!)

Heads and Semantics



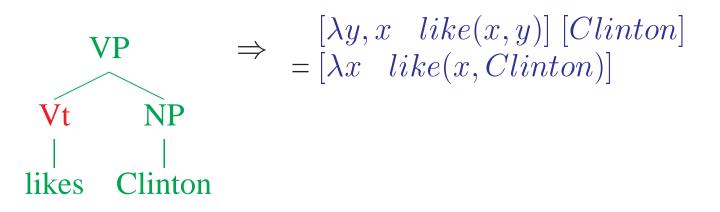
Syntactic structure ⇒ Semantics/Logical form/Predicate-argument structure

Adding Predicate Argument Structure to our Grammar

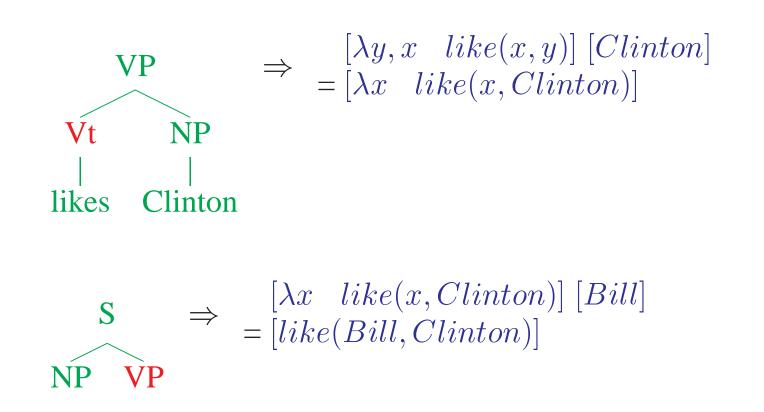
• Identify words with lambda terms:

likes	$\lambda y, x$	like(x, y)
Bill	Bill	
Clinton	Clinte	on

• Semantics for an entire constituent is formed by applying semantics of head (predicate) to the other children (arguments)



Adding Predicate-Argument Structure to our Grammar



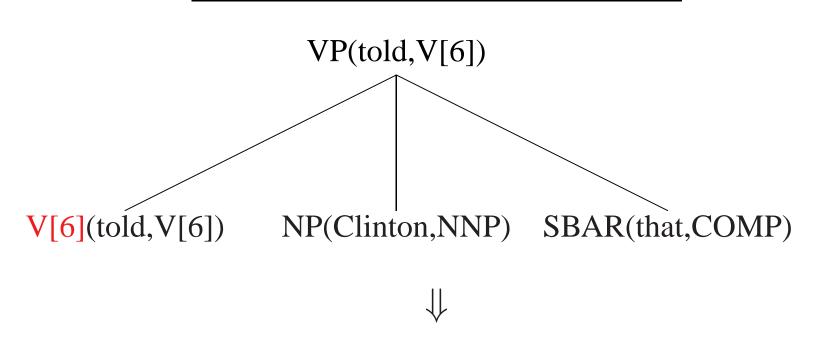
Note that *like* is the predicate for both the VP and the S, and provides the head for both rules

• A new representation: a tree is represented as a set of *dependencies*, not a set of *context-free rules*

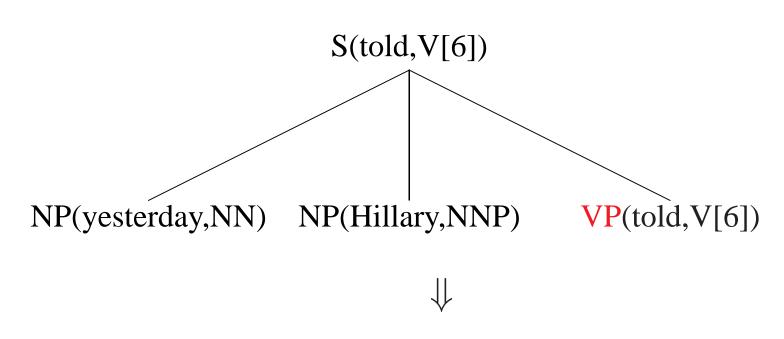
• A **dependency** is an 8-tuple:

(headword,	headtag,
modifer-word,	modifer-tag,
parent non-terminal,	head non-terminal,
modifier non-terminal,	direction)

• Each rule with n children contributes (n-1) dependencies.



(told, V[6], Clinton, NNP, VP, V[6], NP, RIGHT)(told, V[6], that, COMP, VP, V[6], SBAR, RIGHT)



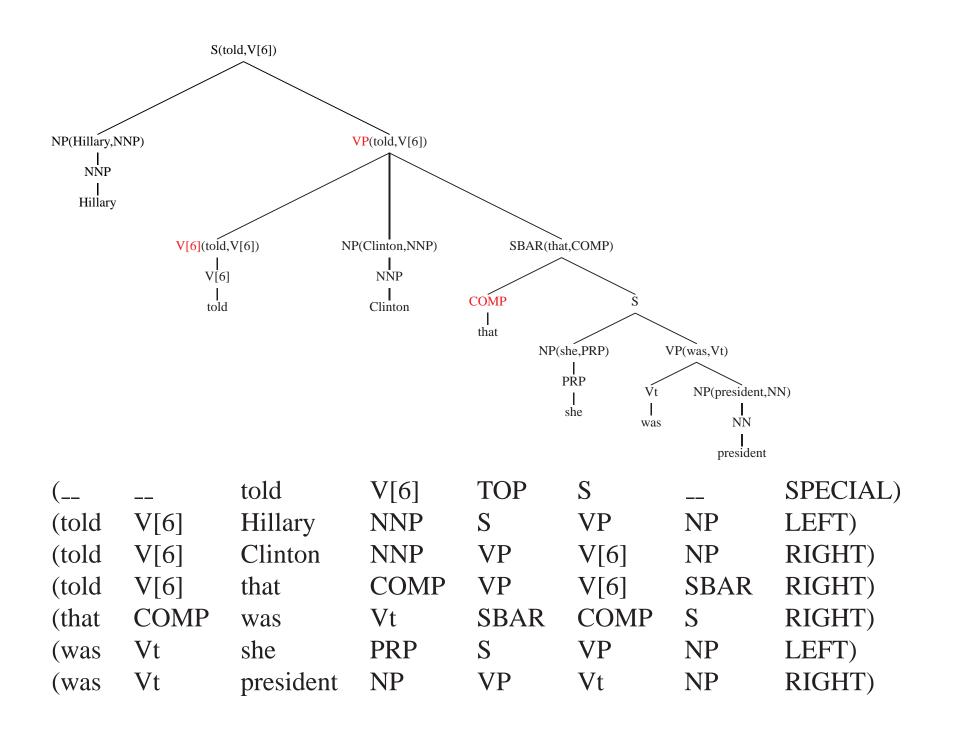
(told, V[6], yesterday, NN, S, VP, NP, LEFT) (told, V[6], Hillary, NNP, S, VP, NP, LEFT)

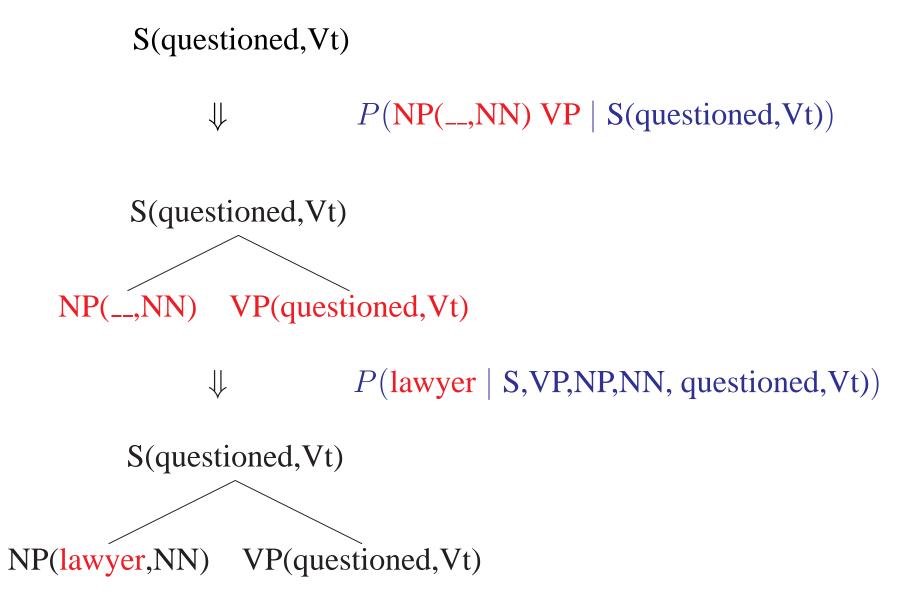
A Special Case: the Top of the Tree

TOP | S(told,V[6])

 \downarrow

(___, ___, told, V[6], TOP, S, ___, SPECIAL)





Smoothed Estimation

 $P(NP(_,NN) VP | S(questioned,Vt)) =$

$$\lambda_1 \times \frac{Count(S(questioned,Vt) \rightarrow NP(_,NN) VP)}{Count(S(questioned,Vt))}$$

$$+\lambda_2 \times \frac{Count(\mathbf{S}(_,Vt) \rightarrow \mathbf{NP}(_,\mathbf{NN}) \mathbf{VP})}{Count(\mathbf{S}(_,Vt))}$$

• Where $0 \leq \lambda_1, \lambda_2 \leq 1$, and $\lambda_1 + \lambda_2 = 1$

Smoothed Estimation

P(lawyer | S, VP, NP, NN, questioned, Vt) =

$$\lambda_1 \times \frac{Count(lawyer | S, VP, NP, NN, questioned, Vt)}{Count(S, VP, NP, NN, questioned, Vt)}$$

$$+\lambda_2 \times \frac{\textit{Count}(\textit{lawyer} \mid S, \textit{VP,NP,NN,Vt})}{\textit{Count}(S,\textit{VP,NP,NN,Vt})}$$

$$+\lambda_3 \times \frac{Count(lawyer | NN)}{Count(NN)}$$

• Where $0 \leq \lambda_1, \lambda_2, \lambda_3 \leq 1$, and $\lambda_1 + \lambda_2 + \lambda_3 = 1$

P(NP(lawyer,NN) VP | S(questioned,Vt)) =

$$\left(\lambda_{1} \times \frac{Count(\mathbf{S}(\mathbf{questioned}, \mathbf{Vt}) \rightarrow \mathbf{NP}(__, \mathbf{NN}) \ \mathbf{VP})}{Count(\mathbf{S}(\mathbf{questioned}, \mathbf{Vt}))}\right)$$

$$+\lambda_2 \times \frac{Count(\mathbf{S}(_,\mathbf{Vt})\rightarrow\mathbf{NP}(_,\mathbf{NN}) \mathbf{VP})}{Count(\mathbf{S}(_,\mathbf{Vt}))}$$
)

$$\times \left(\lambda_1 \times \frac{Count(lawyer \mid S, VP, NP, NN, questioned, Vt)}{Count(S, VP, NP, NN, questioned, Vt)} \right)$$

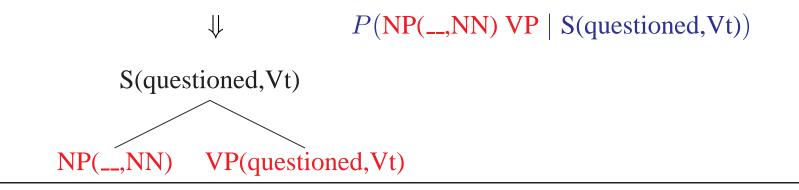
$$+\lambda_2 \times \frac{\textit{Count}(\textit{lawyer} \mid \textbf{S}, \textit{VP}, \textit{NP}, \textit{NN}, \textit{Vt})}{\textit{Count}(\textbf{S}, \textit{VP}, \textit{NP}, \textit{NN}, \textit{Vt})}$$

$$+\lambda_3 \times \frac{Count(lawyer \mid NN)}{Count(NN)}$$
)

Motivation for Breaking Down Rules

• First step of decomposition of (Charniak 1997):

S(questioned,Vt)



- Relies on counts of entire rules
- These counts are *sparse*:
 - 40,000 sentences from Penn treebank have 12,409 rules.
 - 15% of all test data sentences contain a rule never seen in training

Motivation for Breaking Down Rules

Rule Count	No. of Rules	Percentage	No. of Rules	Percentage
	by Type	by Type	by token	by token
1	6765	54.52	6765	0.72
2	1688	13.60	3376	0.36
3	695	5.60	2085	0.22
4	457	3.68	1828	0.19
5	329	2.65	1645	0.18
6 10	835	6.73	6430	0.68
11 20	496	4.00	7219	0.77
21 50	501	4.04	15931	1.70
51 100	204	1.64	14507	1.54
> 100	439	3.54	879596	93.64

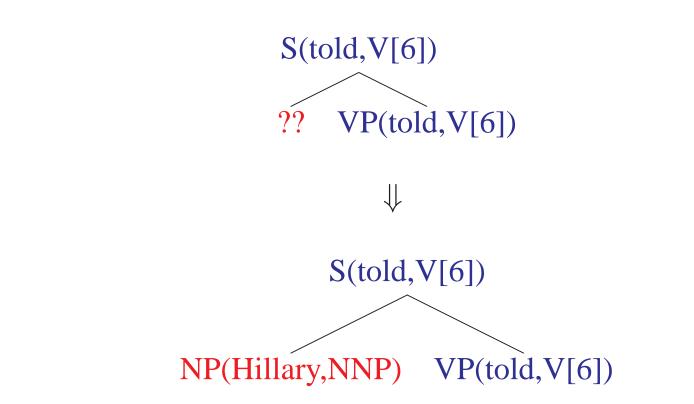
Statistics for rules taken from sections 2-21 of the treebank (Table taken from my PhD thesis).

• Step 1: generate category of head child

```
S(told,V[6])
↓
S(told,V[6])
↓
VP(told,V[6])
```

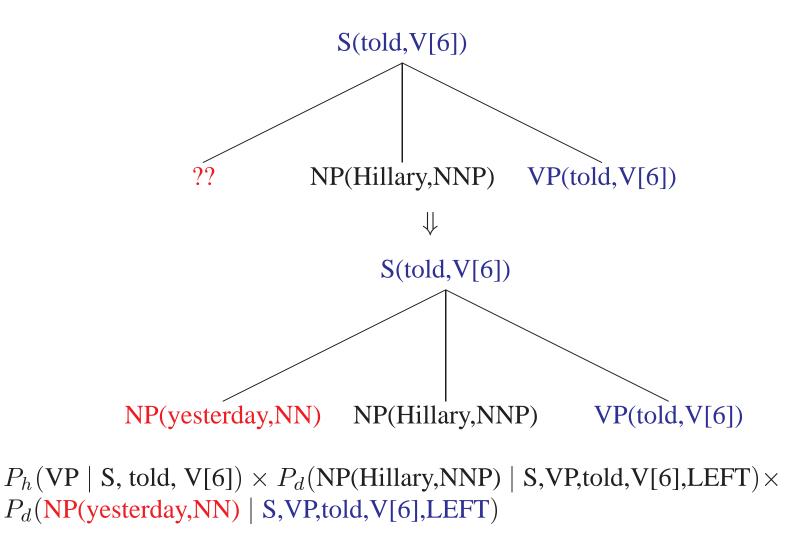
 $P_h(\mathbf{VP} \mid \mathbf{S}, \text{told}, \mathbf{V[6]})$

• Step 2: generate left modifiers in a Markov chain

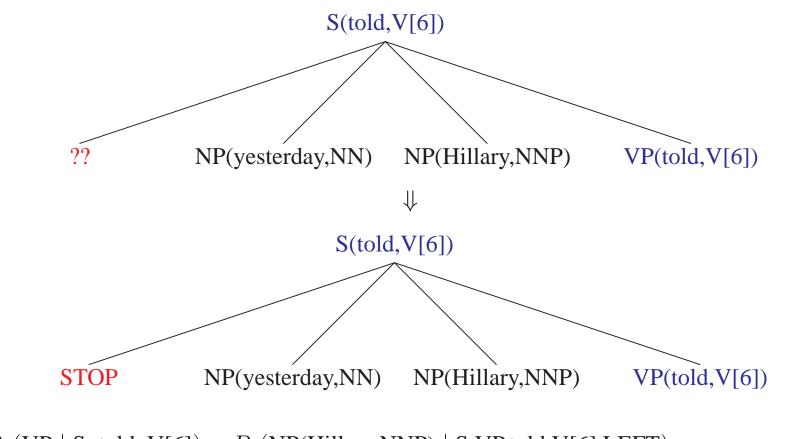


 $P_h(VP | S, told, V[6]) \times P_d(NP(Hillary, NNP) | S, VP, told, V[6], LEFT)$

• Step 2: generate left modifiers in a Markov chain

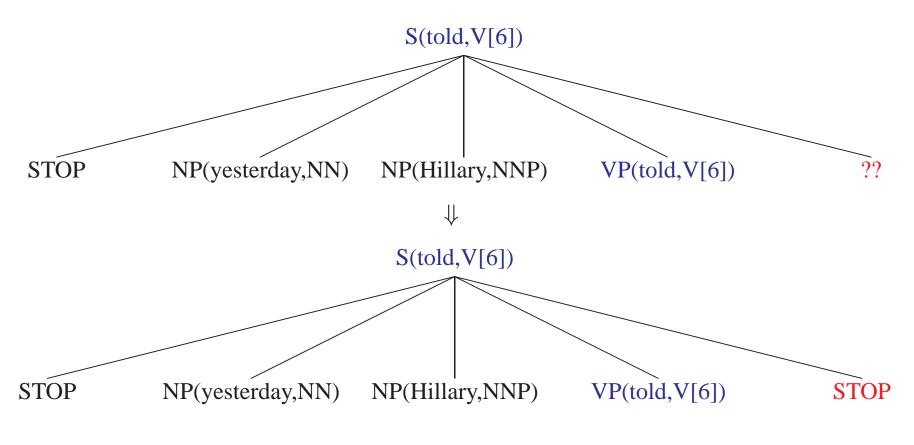


• Step 2: generate left modifiers in a Markov chain



 $P_h(VP | S, told, V[6]) \times P_d(NP(Hillary,NNP) | S,VP,told,V[6],LEFT) \times P_d(NP(yesterday,NN) | S,VP,told,V[6],LEFT) \times P_d(STOP | S,VP,told,V[6],LEFT)$

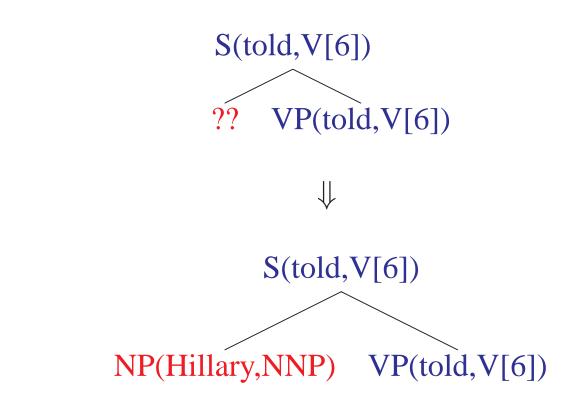
• Step 3: generate right modifiers in a Markov chain



 $P_h(VP | S, told, V[6]) \times P_d(NP(Hillary,NNP) | S,VP,told,V[6],LEFT) \times P_d(NP(yesterday,NN) | S,VP,told,V[6],LEFT) \times P_d(STOP | S,VP,told,V[6],RIGHT) \times P_d(STOP | S,VP,told,V[6],RIGHT)$

A Refinement: Adding a Distance Variable

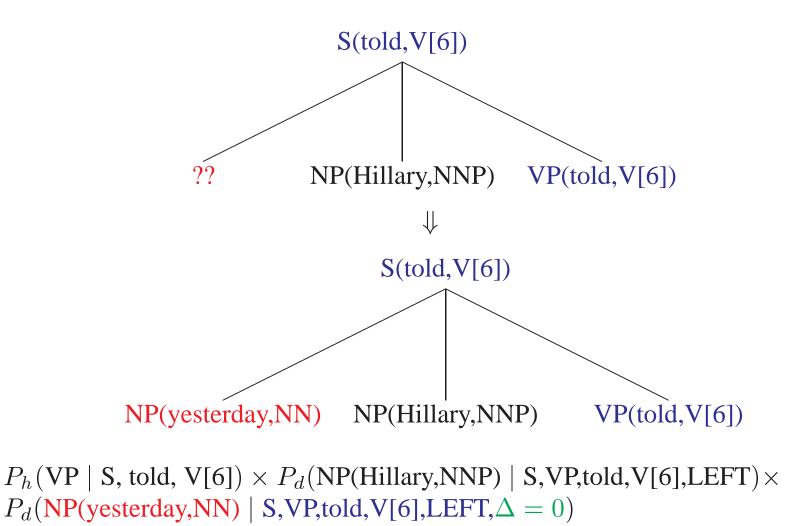
• $\Delta = 1$ if position is adjacent to the head.



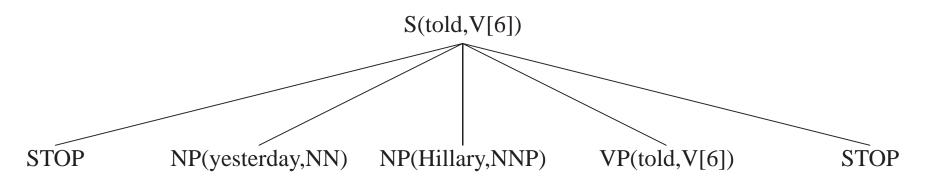
 $P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_d(\text{NP(Hillary,NNP)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 1)$

A Refinement: Adding a Distance Variable

• $\Delta = 1$ if position is adjacent to the head.

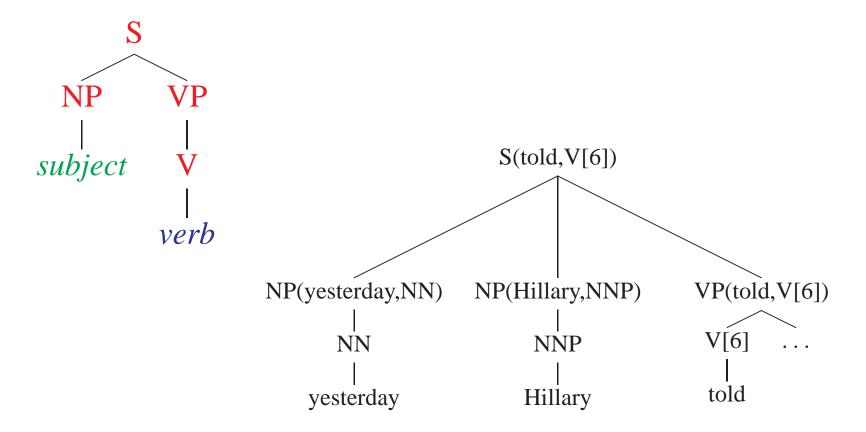


The Final Probabilities



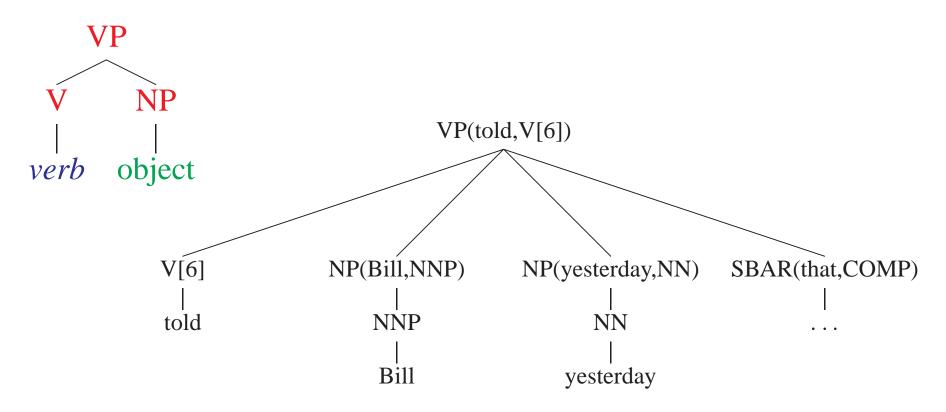
 $P_{h}(\text{VP} \mid \text{S, told, V[6]}) \times P_{d}(\text{NP(Hillary,NNP)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 1) \times P_{d}(\text{NP(yesterday,NN)} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 0) \times P_{d}(\text{STOP} \mid \text{S,VP,told,V[6],LEFT,} \Delta = 0) \times P_{d}(\text{STOP} \mid \text{S,VP,told,V[6],RIGHT,} \Delta = 1)$

Adding the Complement/Adjunct Distinction



- *Hillary* is the subject
- *yesterday* is a temporal modifier
- But nothing to distinguish them.

Adding the Complement/Adjunct Distinction



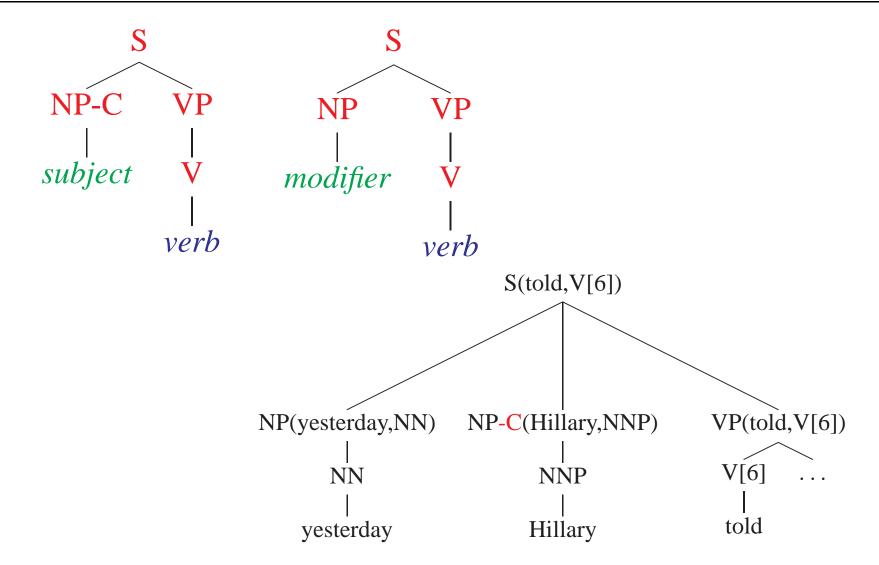
- *Bill* is the object
- *yesterday* is a temporal modifier
- But nothing to distinguish them.

Complements vs. Adjuncts

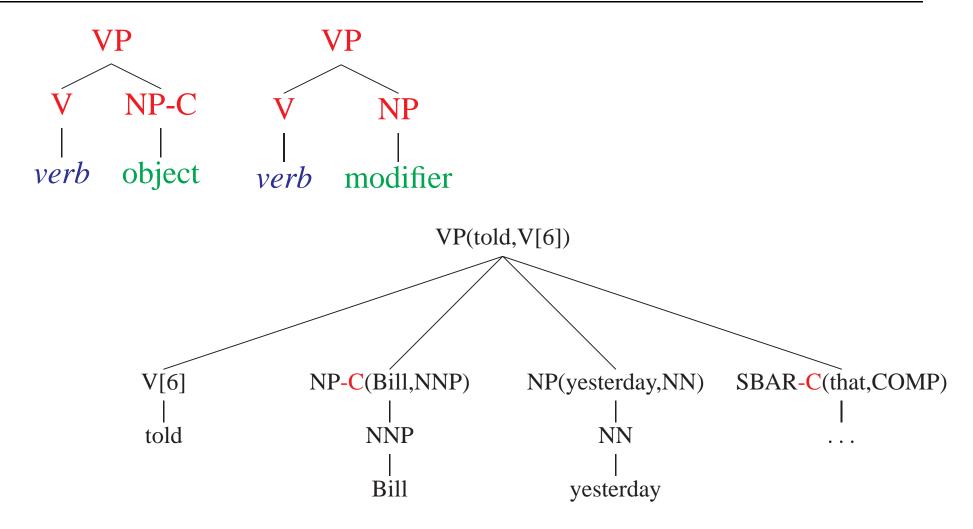
- Complements are closely related to the head they modify, adjuncts are more indirectly related
- Complements are usually arguments of the thing they modify yesterday Hillary told . . . ⇒ *Hillary* is doing the *telling*
- Adjuncts add modifying information: time, place, manner etc. yesterday Hillary told . . . ⇒ *yesterday* is a *temporal modifier*
- Complements are usually required, adjuncts are optional

yesterday Hillary told . . . (grammatical) vs. Hillary told . . . (grammatical) vs. yesterday told . . . (ungrammatical)

Adding Tags Making the Complement/Adjunct Distinction



Adding Tags Making the Complement/Adjunct Distinction



Adding Subcategorization Probabilities

• Step 1: generate category of head child

```
S(told,V[6])
↓
S(told,V[6])
↓
VP(told,V[6])
```

 $P_h(\mathbf{VP} \mid \mathbf{S}, \text{told}, \mathbf{V[6]})$

Adding Subcategorization Probabilities

• Step 2: choose left subcategorization frame

```
S(told,V[6])

|

VP(told,V[6])

↓

S(told,V[6])

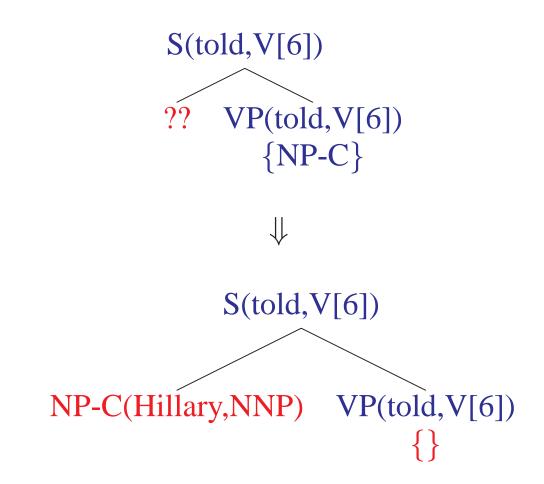
|

VP(told,V[6])

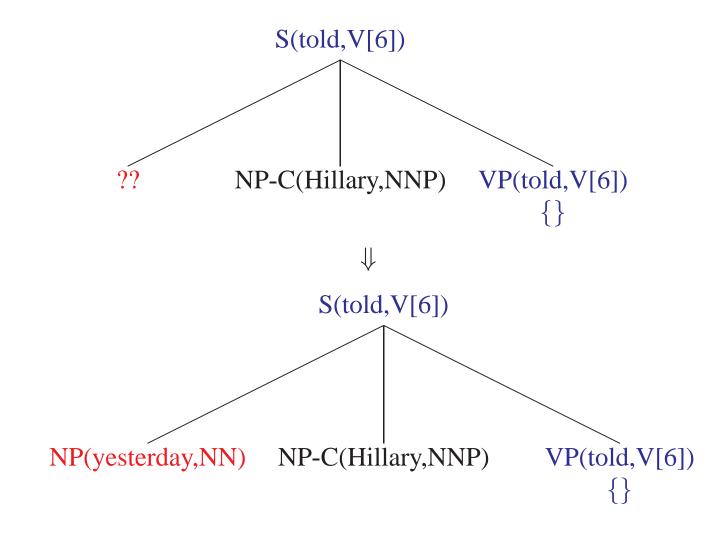
{NP-C}
```

 $P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_{lc}(\{\text{NP-C}\} \mid \text{S, VP, told, V[6]})$

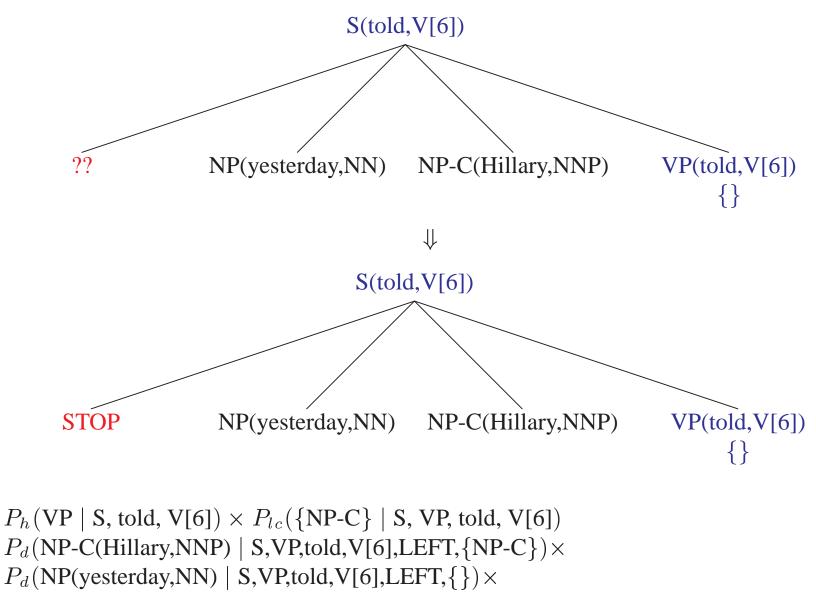
• Step 3: generate left modifiers in a Markov chain



 $P_h(\text{VP} \mid \text{S, told, V[6]}) \times P_{lc}(\{\text{NP-C}\} \mid \text{S, VP, told, V[6]}) \times P_d(\text{NP-C(Hillary,NNP)} \mid \text{S,VP,told,V[6],LEFT,}\{\text{NP-C}\})$

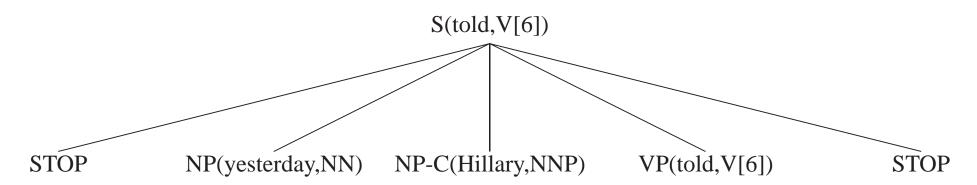


 $P_{h}(\text{VP} \mid \text{S, told, V[6]}) \times P_{lc}(\{\text{NP-C}\} \mid \text{S, VP, told, V[6]})$ $P_{d}(\text{NP-C}(\text{Hillary,NNP}) \mid \text{S,VP,told,V[6],LEFT,}\{\text{NP-C}\}) \times P_{d}(\text{NP(yesterday,NN)} \mid \text{S,VP,told,V[6],LEFT,}\{\})$



 $P_d(\text{STOP} \mid \text{S,VP,told,V[6],LEFT,}\})$

The Final Probabilities



 $\begin{array}{l} P_{h}(\mathrm{VP} \mid \mathrm{S}, \mathrm{told}, \mathrm{V[6]}) \times \\ P_{lc}(\{\mathrm{NP-C}\} \mid \mathrm{S}, \mathrm{VP}, \mathrm{told}, \mathrm{V[6]}) \times \\ P_{d}(\mathrm{NP-C}(\mathrm{Hillary}, \mathrm{NNP}) \mid \mathrm{S}, \mathrm{VP}, \mathrm{told}, \mathrm{V[6]}, \mathrm{LEFT}, \Delta = 1, \{\mathrm{NP-C}\}) \times \\ P_{d}(\mathrm{NP}(\mathrm{yesterday}, \mathrm{NN}) \mid \mathrm{S}, \mathrm{VP}, \mathrm{told}, \mathrm{V[6]}, \mathrm{LEFT}, \Delta = 0, \{\}) \times \\ P_{d}(\mathrm{STOP} \mid \mathrm{S}, \mathrm{VP}, \mathrm{told}, \mathrm{V[6]}, \mathrm{LEFT}, \Delta = 0, \{\}) \times \\ P_{rc}(\{\} \mid \mathrm{S}, \mathrm{VP}, \mathrm{told}, \mathrm{V[6]}) \times \\ P_{d}(\mathrm{STOP} \mid \mathrm{S}, \mathrm{VP}, \mathrm{told}, \mathrm{V[6]}, \mathrm{RIGHT}, \Delta = 1, \{\}) \end{array}$

Another Example VP(told, V[6])NP-C(Bill,NNP) V[6](told, V[6])NP(yesterday,NN) SBAR-C(that,COMP) $P_h(V[6] | VP, told, V[6]) \times$ $P_{lc}(\{\} \mid VP, V[6], told, V[6]) \times$ $P_d(\text{STOP} \mid \text{VP}, \text{V[6]}, \text{told}, \text{V[6]}, \text{LEFT}, \Delta = 1, \{\}) \times$ $P_{rc}(\{\text{NP-C}, \text{SBAR-C}\} \mid \text{VP}, \text{V[6]}, \text{told}, \text{V[6]}) \times$ $P_d(\text{NP-C(Bill,NNP)} | \text{VP,V[6],told,V[6],RIGHT,} \Delta = 1, \{\text{NP-C, SBAR-C}\}) \times$ $P_d(\text{NP(yesterday,NN)} | \text{VP,V[6],told,V[6],RIGHT,} \Delta = 0, \{\text{SBAR-C}\}) \times$ $P_d(\text{SBAR-C(that,COMP)} | \text{VP,V[6],told,V[6],RIGHT,} \Delta = 0, \{\text{SBAR-C}\}) \times$

 $P_d(\text{STOP} \mid \text{VP}, \text{V[6]}, \text{told}, \text{V[6]}, \text{RIGHT}, \Delta = 0, \{\})$

Summary

- Identify heads of rules \Rightarrow dependency representations
- Presented two variants of PCFG methods applied to *lexicalized grammars*.
 - Break generation of rule down into small (markov process) steps
 - Build dependencies back up (distance, subcategorization)
- Next: we'll talk about the effectiveness of these parsers