6.891: Lecture 4 (September 15, 2003)
Stochastic Parsing |l



Overview

e Heads in context-free rules

e Dependency representations of parse trees

e A first model for dependencies: (Charniak 1997)

e A second model for dependencies: (Collins 1997)



Heads in Context-Free Rules

Add annotations specifying the*head” of each rule:

S = NP P Vi = sleeps

: Vit = saw
VP = VI NN = man
VP = Vit NP NN = woman
vP = VP PP NN = telescope
NP = DT NN T e &
NP = NP PP N i
PP = IN NP =

IN = 1In

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition



More about Heads

e Each context-free rule has one “special’ child that is the head
of the rule. e.g.,

S = NP VP (VP is the head)
VP = Vt NP (Vtis the head)
NP = DT NN NN (NN is the head)

e A core idea in linguistics
(X-bar Theory, Head-Driven Phrase Structure Grammar)

e Some Iintuitions:

— The central sub-constituent of each rule.
— The semantic predicate in each rule.



Rules which Recover Heads:
An Example of rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP
Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,
NP = DT NNP NN
NP = DT NN NNP
NP = NP PP
NP = DT JJ
NP = DT



Rules which Recover Heads:
An Example of rules for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt
Else If the rule contains an VP: Choose the leftmost VP

Else Choose the leftmost child

e.g.,
VP = Vit NP

VP = VP PP



Adding Headwords to Trees

S

T

NP VP
tr|1e Iavxlyer | N
guestioned DT NN
the witness
Y
S(questionell

NP(awyer) VP(questionell

/\ /\
DT NN :

| | Vit NP(witnes9
the lawyer | N

questioned DT NN
| |

the withess



Adding Headwords to Trees

S(questionedl

T

NP(awyer) VP(questionell

DmN TN

| | Vit NP(witnes9

the lawyer | N
Y questioned DT NN

the withess

e A constituent receives itseadwordrom its head child.

S = NP VP (S receives headword from VP)
VP = Vit NP (VP receives headword from Vt)
NP = DT NN (NP receives headword from NN)



Adding Headtags to Trees

S(guestioned, it

NP(awyer, NN VP(questioned, Wt
/\
DT NN
| | \Yi NP(witness, NN
the lawyer | RN

questioned DT NN
| |

the withess

e Also propogatgpart-of-speech tagap the trees
(We'll see soon why this is useful!)



Heads and Semantics

S = like(Bill, Clinton)

T

NP VP

Bill Vit NP

likes Clinton

Syntactic structure =
Semantics/Logical form/Predicate-argument structure



Adding Predicate Argument Structure to our Grammar

¢ |dentify words with lambda terms:

likes  Ay,z like(z,y)
Bill Bill
Clinton Clinton

e Semantics for an entire constituent is formed by applying
semantics of head (predicate) to the other children (arguments)

Ay, x like(x,y)] |Clinton]

VP = = Az like(z, Clinton)]

/\
vVt NP

likes Clinton



Adding Predicate-Argument Structure to our Grammar

Ay, z like(z,y)] [Clinton]

VP = :[)\gj lzke(l‘,ClZntOn)]

/\
vVt NP

likes Clinton

Ax like(x, Clinton)] | Bill]

S = _ [like(Bill, Clinton)]

N
NP VP

Note that/:ke Is the predicate for both the VP and the S,
and provides the head for both rules



Headwords and Dependencies

e A new representation: a tree Is represented as a set of
dependenciesot a set otontext-free rules



Headwords and Dependencies

e A dependencys an 8-tuple:

(headword, headtag,
modifer-word, modifer-tag,
parent non-terminal, head non-terminal,
modifier non-terminal, direction)

e Each rule withn children contribute$n — 1) dependencies.

VP(questioned,Vt) = Vi(questioned,Vt) NP(lawyer,NN)

e
(questioned, Vt, lawyer, NN, VP, Vt, NP, RIGHT)



Headwords and Dependencies

VP(told,V[6])

V[6](told,V[6])  NP(Clinton,NNP) SBAR(that,COMP)

U

(told, V[6], Clinton, NNP, VP, VV[6], NP, RIGHT)
(told, V[6], that, COMP, VP, V[6], SBAR, RIGHT)



Headwords and Dependencies

S(told, V[6])

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

U

(told, V[6], yesterday, NN, S, VP, NP, LEFT)
(told, V[6], Hillary, NNP, S, VP, NP, LEFT)



A Special Case: the Top of the Tree

TOP

S(toId|,V[6])

U

., told, V[6], TOP, S, _, SPECIAL)



S(told,V[6])

NP(Hillary,NNP) VP(told,V[6])
Nll\lP
Hilllary
V6] (tolld,V[G]) NP(CIinTon,NNP) SBAR(that,COMP)
V[6 NNP
to[llci Clinton CO'\"F’/\S
tha T
NP(she,PRP) VP(was,Vt)
P:RP Vit NP (president,NN)
she W|as NIN
preslident
(__ _ told V[6] TOP S _ SPECIAL)
(told V[6] Hillary NNP S VP NP LEFT)
(told V[6] Clinton NNP VP V[6] NP RIGHT)
(told V[6] that COMP VP V[6] SBAR RIGHT)
(that COMP was \Yi SBAR COMP S RIGHT)
(was Vit she PRP S VP NP LEFT)
(was Vit president NP VP Vit NP RIGHT)



CHARNIAK (1997)

S(questioned, V1)

J P(NP(__,NN) VP | S(questioned, V1)

S(questioned, Vt)

NP(_,NN) VP(questioned,Vt)
J P(lawyer| S,VP,NP,NN, questioned,Vit)

S(questioned, Vt)

NP(awyer,NN) VP(questioned,Vt)



Smoothed Estimation

P(NP(__,NN) VP | S(questioned,V})=

count(S(questioned, VOYNP(__,NN) VP

AL X count(S(questioned, Vi)
Count(S(__,Vt)—>N P(__,NN) VP)
+A2 X Count(S(__,Vt))

e Where0 < A\, Ay < 1,and\; + Xy =1



Smoothed Estimation

P(lawyer| S,VP,NP,NN,questioned,Vt

Ao x count(lawyer| S,VP,NP,NN,questioned,\Vt
1 Count(S,VP,NP,NN,queStiOned,)\/t

o X C’ount(lawyer\ S,VP,NP,NN,VI
2 C’ount(S,VP,NP,NN,VI

C’ount(lawyer\ NN)

+A3 X Count(NN)

o Wherel < A\, Ao, A3 < 1,andA; + X+ A3 =1



P(NP(lawyer,NN) VP| S(questioned, V)=

count(S(questioned,VOINP(__,NN) VP

(A1 % count(S(Questioned, Vi)
C’ount(S(__,Vt)—>N P(__,NN) VP)
—|_>\2 % C’ount(S(__,Vt)) )

X (A x count(lawyer| S,VP,NP,NN,questioned,V/t
: count(S,VP,NP,NN,questioned, Vi

1o X C’ount(lawyer| S,VP,NP,NN,VI
2 Count(S,VP,NP,NN,VI

C’ount(lawyer| NN) )

—|_)\3 x C’ount(NN)



Motivation for Breaking Down Rules

e First step of decomposition of (Charniak 1997):
S(questioned,Vt)

J P(NP(_,NN) VP | S(questioned, V1)

S(questioned,Vt)

TN

NP(__,NN) VP(questioned,Vt)

e Relies on counts of entire rules

e These counts argparse

— 40,000 sentences from Penn treebank have 12,409 rules.

— 15% of all test data sentences contain a rule never seen in training



Motivation for Breaking Down Rules

Rule Count|| No. of Rules| Percentage| No. of Rules| Percentage
by Type by Type by token by token

1 6765 54.52 6765 0.72
2 1688 13.60 3376 0.36
3 695 5.60 2085 0.22
4 457 3.68 1828 0.19
5 329 2.65 1645 0.18
6..10 835 6.73 6430 0.68
11... 20 496 4.00 7219 0.77
21 ... 50 501 4.04 15931 1.70
51...100 204 1.64 14507 1.54
> 100 439 3.54 879596 93.64

Statistics for rules taken from sections 2-21 of the treebank
(Table taken from my PhD thesis).



Modeling Rule Productions as Markov Processes

e Step 1: generate category of head child

S(told, V[6])

U
S(told, V[6])
VP(toI|d,V[6])

P,(VP | S, told, V[6))



Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])
22 VP(told,V[6])
Y

S(told,V[6])

NP(Hillary,NNP) VP(told,V[6])

P,(VP | S, told, V[6]) x P;(NP(Hillary,NNP)| S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])

ez NP(Hillary,NNP) VP(told,V[6])

U
S(told,V[6])

NP (yesterday,NN) NP(Hillary,NNP) VP(told,VI[6])

P, (VP | S, told, V[6]) x P;(NP(Hillary,NNP)| S,VPtold,V[6],LEFT) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])
?7? NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])
Y
S(told,V[6])
STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

P, (VP | S, told, V[6]) x P;(NP(Hillary,NNP)| S,VP,told,V[6],LEFT) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT) x P;(STOP| S,VP,told,V[6],LEFT)



Modeling Rule Productions as Markov Processes

e Step 3: generate right modifiers in a Markov chain

S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) ?7?

U
S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) STOP

P, (VP | S, told, V[6]) x Py (NP(Hillary,NNP)| S,VP,told,V[6],LEFT) x
P,(NP(yesterday,NN) S,VP,told,V[6],LEFT) x P,;(STOP| S,VPtold,V[6],LEFT) x
P,(STOP| S,VP,told,V[6],RIGHT)



A Refinement: Adding aDistanceVariable

e A = 1 if position is adjacent to the head.

S(told, V[6])
27 VP(told,V[6])

4

S(told, V[6])

NP(Hillary,NNP) VP(told,V[6])

P,(VP| S, told, V[6]) x
P,(NP(Hillary,NNP)| S,VP,told,V[6],LEFTA = 1)



A Refinement: Adding aDistanceVariable

e A = 1 if position is adjacent to the head.

S(told,V[6])

ez NP(Hillary,NNP) VP(told,V[6])

U
S(told,V[6])

NP (yesterday,NN) NP(Hillary,NNP) VP(told,VI[6])

P,(VP| S, told, V[6]) x P;(NP(Hillary,NNP)| S,VP,told,V[6],LEFT)
P,(NP(yesterday,NN) S,VPtold,V[6],LEFTA = 0)



The Final Probabilities

S(told,V[6])

STOP NP(yesterday,NN) NP (Hillary,NNP) VP(told,V[6]) STOP

P,(VP | S, told, V[6]) x

P,(NP(Hillary,NNP)| S,VP,told,V[6],LEFTA = 1)x
P,;(NP(yesterday,NN) S,VP,told,V[6],LEFTA = 0)x
P,(STOP| S,VP,told,V[6],LEFTA = 0)x

P,(STOP| S,VP,told,V[6],RIGHTA = 1)



Adding the Complement/Adjunct Distinction

S

/\
NP VP

subject V S(told,V[6])

verb

NP(yesterday,NN) NP(Hillary,NNP) VP(told,VI[6])

| |
NN NNP V[6]

| | |
yesterday Hillary told

e Hillary is the subject
e yesterdays a temporal modifier
e But nothing to distinguish them.



Adding the Complement/Adjunct Distinction

VP

TN
V NP

‘ ‘ VP(told,V[6])
verb object

V[6] NP (Bill,NNP) NP(yesterday,NN) SBAR(that,COMP)
| | | |
told NNP NN .
| |
Bill yesterday

e Bill is the object
e yesterdays a temporal modifier
e But nothing to distinguish them.



Complements vs. Adjuncts

e Complements are closely related to the head they modify,
adjuncts are more indirectly related

e Complements are usually arguments of the thing they modify
yesterday Hillary told .. = Hillary is doing thetelling

e Adjuncts add modifying information: time, place, manner etc.
yesterday Hillary told . . = yesterdays atemporal modifier

e Complements are usually required, adjuncts are optional

yesterday Hillary told . . (grammatical)
vs. Hillary told. .. (grammatical)
VS. yesterday told. . (ungrammatical)



Adding Tags Making the Complement/Adjunct Distinction

S S
/\
NP.C VP Nmp
) | | |
subject V modifier V
| |
verb verb

S(told,V[6])

NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])

| |
NN NNP VI[6]

| | |
yesterday Hillary told



Adding Tags Making the Complement/Adjunct Distinction

VP VP

/\
V. NP-C V/\Np

verb object verb modifier

VP(told,V[6])

V[6] NP-C(Bill,NNP) NP(yesterday,NN) SBAR-C(that, COMP)
| | | |
told NNP NN .

| |
Bill yesterday



Adding Subcategorization Probabilities

e Step 1: generate category of head child

S(told, V[6])

4

S(told,V[6])

VP(toI|d,V[6])

P,(VP | S, told, V[6])



Adding Subcategorization Probabilities

e Step 2: choose lefflubcategorization frame

S(told, V[6])

VP(toI|d,V[6])

4

S(told, V[6])

VP(toI|d,V[6])

{NP-C}

P,(VP | S, told, V[6]) x P.({NP-C} | S, VP, told, V[6)



e Step 3: generate left modifiers in a Markov chain

S(told, V[6])

27 VP(told,V[6])
{NP-C}

4

S(told,V[6])

NP-C(Hillary,NNP) VP(told,V[6])
{}

P, (VP | S, told, V[6]) x P..({NP-C} | S, VP, told, V[6] x
P,(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C})



S(told,V[6])

77 NP-C(Hillary,NNP) VP(told,V[6])
{}
U
S(told, V[6])

NP (yesterday,NN) NP-C(Hillary,NNP) VP(told,VI[6])
8

P, (VP | S, told, V[6]) x P,.({NP-C} | S, VP, told, V[6)
P;(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C}) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT{ })



S(told,V[6])

?7? NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
i
U
S(told,V[6])
STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
i
P, (VP | S, told, V[6]) x P.({NP-C} | S, VP, told, V[6)
P;(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C}) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT{}) x
P;(STOP| S,VP,told,V[6],LEFT{ })



The Final Probabilities

S(told,V[6])

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6]) STOP

P.(VP| S, told, V[6]) x

P.({NP-C} | S, VP, told, V[6) x

P;(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFTA = 1,{NP-C}) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFTA = 0,{}) x
P;(STOP| S,VP,told,V[6],LEFTA = 0,{}) x

P..({}|S, VP, told, V[6) x
P,(STOP| S,VP,told,V[6],RIGHTA = 1,{})



Another Example

VP(told,V[6])

V[6](told, V[6]) NP-C(BillLlNNP)  NP(yesterday,NN) SBAR-C(that, COMP)

P, (V[6] | VP, told, V[6]) x

P.({} | VP, V[6], told, V[6]) x

P;(STOP| VP,V[6],told,V[6],LEFTA = 1,{})x

P,..({NP-C, SBAR-G | VP, V[6], told, V[6]) x

P;(NP-C(BIill,NNP) | VP,V[6],told,V[6],RIGHT,A = 1,{NP-C, SBAR-G) x
P;(NP(yesterday,NN) VP,V[6],told,V[6],RIGHT,A = 0,{ SBAR-C}) x
P,;(SBAR-C(that, COMP) VP,V[6],told,V[6],RIGHT,A = 0,{SBAR-C}) x
P,;(STOP| VP,V[6],told,V[6],RIGHT,A = 0,{})



Summary

¢ |dentify heads of rules>- dependency representations

e Presented two variants of PCFG methods applied to
lexicalized grammairs

— Break generation of rule down into small (markov
process) steps

— Build dependencies back up (distance, subcategorization)

e Next: we’ll talk about the effectiveness of these parsers



