6.891: Lecture 24 (December 8th, 2003)

Kernel Methods

Overview

e Recap: global linear models

e New representations from old representations
e A computational trick

e Kernels for NLP structures

e Conclusions: 10 Ideas from the Course

Three Components of Global Linear Models

e ® is afunction that maps a structure y) to afeature vector
P(z,y) € R

e GEN Is a function that maps an inputto a set ocandidates
GEN(x)

e W is a parameter vector (also a membeRro®f

e Training data is used to set the value\df

Component 1: ¢

e & maps a candidate tofaature vector € R

e ® defines theepresentationof a candidate

nnnnnnnnn

ppppppp

tttttt

] P

(1,0,2,0,0,15,5)

Component 2: GEN

e GEN enumerates a set ondidatesfor a sentence

She announced a program to promote safety in trucks and vans

| GEN

Component 2: GEN

e GEN enumerates a set oandidatesfor an inputx

e Some examples of howt EIN(z) can be defined:

— Parsing:GEN(z) is the set of parses far under a grammar

— Any task: GEN(x) is the top N most probable parses under a
history-based model

— Tagging: GEN (x) is the set of all possible tag sequences with the
same length as

— Translation: GEN(z) is the set of all possible English translations
for the French sentence

Component 3: W

e W is aparameter vector ¢ R?

e & andW together map a candidate to a real-valued score

nnnnnnnnn

ppppppp

tttttt

J @
(1,0,2,0,0,15,5)
Jo-W
(1,0,2,0,0,15,5) - (1.9,-0.3,0.2,1.3,0,1.0, —2.3) = 5.8

Putting it all Together

e X' Is set of sentenced) is set of possible outputs (e.g. trees)
e Need tolearn a functionn : X —)
e GEN, &, W define
r) =arg max P(z,y)- W
() ygEGEN(x) (y)

Choose the highest scoring candidate as the most plausible
structure

e Given examplesz;, y;), how to setW?

She announced a program to promote safety in trucks and vans

| GEN

<i>%\\ ////\\\\ ;(/\\\ ;(j:%>\ ////\\\\ /<5\>K

(e e |1 4 e U@

(1,1,3,5) (2,0,0,5) (1,0,1,5) (0,0, 3,0) (0,1,0,5) (0,0,1,5)

|- W [W (& W [& W |[&- W [& W
13.6 12.2 12.1 3.3 94 11.1

|} arg max

nnnnnnn

A Variant of the Perceptron Algorithm

Inputs: Training set(x;,y;) fori =1...n
Initialization: W =0
Define: () = argmaxyccen@G) ®(z,y) - W
Algorithm: Fort=1...T,:=1...n

zi = Fl(x;)

If (2 #vyi) W =W+ ®(x,y) — P4, 21)

Output: ParametersVv

Theory Underlying the Algorithm

e Definition: GEN(z;) = GEN(z;) — {y;}

e Definition: The training set iseparable with marginJ,
if there is a vectolU € R? with ||U|| = 1 such that

Vi,Vz € GEN(z;) U-®(z;,y,) — U-P(x;,2) >0

GEOMETRIC INTUITION BEHIND SEPARATION

e = Correct candidate

® = Incorrect candidates

GEOMETRIC INTUITION BEHIND SEPARATION

e = Correct candidate

® = Incorrect candidates

ALL EXAMPLES ARE SEPARATED

@ = Correct candidate (2)

B = Incorrect candidates (2)

THEORY UNDERLYING THE ALGORITHM

Theorem: For any training sequende;, y;) which is separable
with margind, then for the perceptron algorithm

2

Number of mistakes< %

whereR is a constant such thet, vz € GEN(z;)
| ®(zi,yi) — (24, 2)|| < R

Proof: Direct modification of the proof for the classification case.

Proof:

Let W* be the weights before thgth mistake. W! = 0
If the £'th mistake is made atth example,
andz; = argmax,cgen(z;) ®) - W*, then

WHHL = WF 4 &(y) — ®(2)
=U- W'l = U W'+U ®(y;) —U-B(%)
> U-WF4§
> kb
= |[[WFH| > k6§
Also,
[WEEH2 = [[WH2 + (| @(5) — @(20)]17 +2WF - ((3i) — D(2))
< [[WEIPP + R?
:>||Wk+1||2 < kR2
= k*6* < |[WH]? < kR?
=k < R*/§*

Overview

Recap: global linear models
New representations from old representations
A computational trick

Kernels for NLP structures

New Representations from Old Representations

e Say we have an existing representatidfx, y)

e Our global linear model will learn parametéfg such that

(x) = argmax, capn @ (2, y) - W

e This is alinear model:
but perhaps the linearity assumption is bad?

New Representations from Old Representations

e Say we have an existing representation of gize 2
®(z,y) = {®1(z,y), P2(z,y)}
e We define a new representatidr (z,y) of dimensiond’ = O(d?), that
contains every quadratic term #(z, y)
(I)/(ZU,y) — {(I)l(CC,y),(]:)Q(CC,y),q)l(ZU,y)2,(1)2($,y)2,(]:)1(56,y)(]:)2($,y)}

e A global linear model under representati® is linear in the new space
®’, butnon-linear in the old spaceb:

@' (z,y) W = Wi®,(z,y)+Wods(z,y)+W5B1 (2, y) +WiPs(z,y) +WED1 (z, y) B2 (2, y)

Basic idea: explicitly form new feature vectors®’ from @, and
run the perceptron in the new space

More Generally

e Say we have an existing representation
(writing @, instead of®; (x, y) for brevity):

q)(CC,y) — {@17@27 . '7@61}

e We define a new representatidr(z, y) of dimensiond’ = O(d?), that
contains every quadratic term #(x, y)

@ (r,y) = {®|,P,,..., 9}
— {@17@27"'7@61
$° B, ..., P2,

q)11)27 q)lq)?)a ceey q)lq)da
PPy, Py P3,..., PPy,
Q;P,, 2,Ps,..., 24P, 1,}

Problem: size of®’ quickly gets very large
= computational efficiency becomes a real problem

Overview

Recap: global linear models
New representations from old representations
A computational trick

Kernels for NLP structures

A Computational Trick (Part 1)

e Now, take feature vectors for a first exampie y),
and for a second examp(e, w):

(I)(ﬁ,y) — {(I)lv (1)2} (I)(va) — {/017:02}

e Consider a functiod:

K((@,y), (v,w)) = (1+ @(2,y) - ®(v,w))" = (1 + B1py + B2py)’

e For example, if
®(z,y) =1{1,3} ®(v,w) =1{2,4}

then
K((z,y),(v,w)) = (1 +1x2+3x4)* =225

A Computational Trick (Part 1)

e Consider a functior :

K((z,y), (v,w)) = (L + ®(z,y) - ®(v,w))* = (1 + R1p; + P2py)°

e Key point: It can be shown that
K((:C, y)? (?J, w)) — CI)/(:C, y) ' (I)/(U7 w)
where

(I)/(ZU,y) — {17\/5@17\/5@27@%7@37\/5@1@2}
(I)/(an) — {17\/51017\/51027:0%7:037\/5101)02}

So: K Is an inner product in a new space that contains all
guadratic terms in the original space®

Proof:

K((z,y), (v,w))
= (1+2(z,y) 2(v,w))”
= (14 @1p; + Papy)”
= 1+ ®ip] + ®3p3 + 2@1p, Pap, + 281p; + 22,

— {17 \/5(1)17 \/5(1)27 (I)%v (I)gv \/5(1)1(1)2} . {17 \/51017 \/5102710%71037 \/5101102}

More Generally

e Say we have an existing representation
(I)<£E,y) = {(I)l, (I)Q, coey (I)d}
and we take

K((z,y), (v,w)) = (1+ ®(z,y) - ®(v,w))"

e Then it can be shown th& ((z,), (v,w)) = ®'(z,y) - ®'(v, w) where

& (z,y) = {®,,P,,..., 8}
= {1,V2®,,V2®,,...,V2®,,
$° B, ..., P2,

V2B, Dy, V28, D3, ..., V28, By,
V28,81,V 28,P3,..., V28,8,

V28,91, V22,®,,..., V28,841, }

A Variant of the Perceptron Algorithm

Inputs: Training set(x;,y;) fori =1...n
Initialization: W =0
Define: () = argmaxyccen@G) ®(z,y) - W
Algorithm: Fort=1...T,:=1...n

zi = Fl(x;)

If (2 #vyi) W =W+ ®(x,y) — P4, 21)

Output: ParametersVv

A Computational Trick (Part 2)

e |n standard perceptron, we store a parameter védtpand
r)=arg max P(zr,y)- W
(1) =arg _max @(z,y)
e In “dual form” perceptron, we store weights
«;, foralli, andforally € GEN(z;)

and assume the equivalence:

W = Z a; Pz, 2)

i,ZEGEN(xi)
e We then have
= arg ma P(z,y)- W
() arg _max (z,y)
— arg ma a; ,P(x;, z) P,
arg _max > =P (i, 2) - B(z,y)

1,2 GEN(x;)

Dual Form of the Perceptron Algorithm

Inputs: Training set(x;,y;) fori =1...n
Initialization: a;, = 0forall, forally €e GEN(z;)
Define:

(CE) — argmaXyGGEN(x) (Zi,zGGEN(wi) O‘z’,zq)(ajia Z)) q)(ﬂf, y))

Algorithm: Fort=1...T,:=1...n
If (20 # 4i) Quy, = iy, +1
gy — Oz — 1

Output: Parameters; ,

EquivalenceW =37, ccrN() a; . P(z;, 2)

Original Form

Initialization: W =0
Define: (r) = argmax,ccen(z) ®(y) - W
Algorithm: Fort=1...T,1:=1...n

If (zi Zyi) W =W+ ®(y;) — ®(2;)

Dual Form

Initialization: a;, = 0foralli, forally € GEN(z;)

Define: () = argmax,cGEN(z) <Z¢,ZGGEN(%) @i P(xi,2) - P(z, y))
Algorithm: Fort=1...T,1:=1...n

2 = I'(@i)
If (ZZ - yl) Qiy, = Qiy, + 1, Qi zy = Oz — 1

Dual (Kernel) Form of the Perceptron Algorithm

Inputs: Training set(x;,y;) fori =1...n
Initialization: a;, = 0forall, forally €e GEN(z;)
Define:

(CU) — arginaxy,cGEN(z) (Zi,zeGEN(:ci) &i,zK((%‘a Z)v (%?ﬁ))

Algorithm: Fort=1...T,:=1...n
If (20 # 4i) Quy, = iy, +1
gy — Oz — 1

Output: Parameters; ,

Dual (Kernel) Form of the Perceptron Algorithm

e For example, if we choose
K((z,9), (v,w)) = (1+ @(z,y) - ®(v,w))’
then the kernel form learns a global linear model

- ' (z,y) W
(2) = arg, s, ¥

where®’ is a representation that contains all quadratic terms of the original
representatiod®

e The algorithm returns coefficients , whichimplicitly define

W = Z ;P (z;,2)

1,2 GEN (x;)

Fx) = argyegl§§(x) &' (z,y) - W

— ZZK 3 9 y
arg max | > i K((wi,2),(z,y))
1,2 GEN(x;)

We never have to manipulate parameter vectordV or representations
®'(z,y) directly: everything in training and testing is computed
indirectly, through inner products or kernels

e Computational efficiency:

— Say/ is the time taken to calculat& ((z, y), (v, w))
— SayN =) . |GEN(z;)| is size of the training set

— In takingl" passes over the training set, at mgist. values ofa; ,,
can take values other than—

Z ai,zK(<xi7z)7(xay)>

1,2 GEN (x;)

takesO(nT'I) time
— And T passes over the training set takeg 71 N) time

Kernels

e A kernel K is a function of two objects,

K((71,91), (22, 12))

for example, two sentence/tree paits, y1) and(xzs, y-)

e Intuition: K ((z1,y1), (x2,y2)) IS @ measure of the similarity
betweenzy,y,) and(xs, y2)

e Formally: K((x1,y1),(z2,y2)) is a kernel if it can be shown
that there is some feature vector mappiage, y) such that

K((z1,91), (v2,92)) = P(x1,y1) - P(w2,92)

for all z1,y1, 2, Yo

A (Trivial) Example of a Kernel

e Given an existing feature vector representatiprdefine

K((z1,91), (v2,92)) = P(71,y1) - P(T2,2)

A More Interesting Kernel

e Given an existing feature vector representatinrdefine

K((xlvyl)v (vayQ)) — (1 + (I)(:Clvyl)) (I)(:C27y2))2

This can be shown to be an inner product in a new sggcevhere ®’
contains all quadratic terms df

e More generally,

K((w1,y1), (w2,2)) = (1 4+ @(z1,91) - ®(22,92))"

can be shown to be an inner product in a new s@gevhere®’ contains
all polynomial terms ofP up to degree

Question: can we come up with “specialized” kernels for NLP
structures?

Overview

Recap: global linear models
New representations from old representations
A computational trick

Kernels for NLP structures

NLP Structures

e [rees
S
/\
NP VP
| N

John saw NP

|
Mary

e Tagged sequences, e.g., named entity tagging

S — C —N— N —N—

Napoleon Bonaparte was exiled

S = Start entity
C = Continue entity
N = Not an entity

to

Feature Vectors: @

e & defines theepresentationof a structure

e & maps a structure tofaature vector € r?

nnnnnnnnn

ooooooo

ssssss

tttttt

| ®

(1,0,2,0,0,15, 5)

Features

e A “feature” is a function on a structure, e.g.,

h(x) = Numberoftimes A |isseenin

PN
B C
7 A 15 A
N /\
B C B C
e U e P Y
D E F G D E F A
I [I B
d e f ¢ d e h B C
|
b ¢

Feature Vectors

e A set of functionsh, ... h; define afeature vector

®(z) = (hi(x),ho(x) ... hq(x))

TlA T2 A
N /\
B C B C
e e e U
D E F G D E F A
I I I B
d e f ¢ d e h B C
|
b ¢

&(T)) = (1,0,0,3) B(Ty) = (2,0,1,1)

“All Subtrees” Representation [Bod, 1998]

e Given: Non-Terminal symbol§A, B, ...}

Terminal symbols

e An infinite set of subtrees

A A A

e U N
B C B E B C

> b A B

{a,b,c...}

e An infinite set of features, e.qg.,

hs(x,y) = Number of times

D

N

>
o

IS seen inz, y)

All Sub-fragments for Tagged Sequences

e Given: State symbols {S,C,N}
Terminal symbols {a,b,c,...}

e An infinite set of sub-fragments
S S S—C S—C
| |

a b

e An infinite set of features, e.qg.,

hs(x) = Number of times$ | |isseenine

Inner Products

o &(z) = (h(z), ho(). .. ha(z))

e Inner product (Kernel”) between two structures; and’s:

B(TY) - B(Ty) = ;hi(Tl)hi(Tz)

T A T5 A
Py /\
B C B C
PN N Pl N
D E F G D E F A
[. I N
d e f g d e h B C
| |
b ¢
&(T)) = (1,0,0,3) B(T) = (2,0,1,1)

®(Ty)-P(T5) =1x240x0+0x1+3x1=5

“All Subtrees” Representation

e Given: Non-Terminal symbol§A, B, .. .}
Terminal symbols {a,b,c...}

e An Infinite set of subtrees

A A A A
Pl PN N N
B C B E B C B A

| | P
b b A B B C
|
b
o Step 1:

Choose an (arbitrary) mapping from subtrees to integers
h;(x) = Number of times subtress seen inc

®(z) = (hy(x), ho(z), hs(x)...)

All Subtrees Representation

e ® is now huge

e But inner product®(7}) - ®(73) can be computed
efficiently using dynamic programming.

Computing the Inner Product

Define —N; and N, are sets of nodes [y, and; respectively.

_I(x) = 1 if 7'th subtree Is rooted at.
7\ 0 otherwise

Follows that:
hi(Ti) = Xnieny Lilny) and hi(Tz) = 32, en, Li(n2)

P(T1) - P(12) = > hi(T1)hi(T2) = 32 (Cnen, Li(na)) Cn,en, Li(n2))
— aneNl Z’I’LQENQ Zz [’&(nl)ll(nQ)

— anENl Z’I’LQENQ A<n]—7 n2)

where A(ny,ne) = >, I;(n1);(ng) is the number of common
subtrees at;, o

An Example

Tl A T2 A
/\ /\
B C B C
N PN N PN
D E F G D E F G
I I B
d e f ¢ d e h |
B(T1)-B(T) = AA, A)+A(A,B) ...+ A(B,A)+A(B,B)...+ A(G,G)

e Most of these terms afe(e.g. A(A, B)).
e Some are non-zero, e.0\(B, B) =4
B B B B
N N N N
D E D E D E D E
| | |
d e d e

Recursive Definition of A(nq, ns)

e |f the productions at; andn, are different

A(nl, nz) =0

e Else ifn;, ny are pre-terminals,

A(nl,ng) =1
e Else
ne(ny)
A(nlanQ) — H (1 T A(Ch(nlaj)v Ch(”%])))
j=1

nc(ny) IS number of children of node;;
ch(ny, 7) is the;’th child of n;.

lllustration of the Recursion

A A
/\ /\

B C B C
e U e U
D E F G D E F G
I o
d e f ¢ d e h i

How many subtrees do noddsand A have in common? i.e., Whati8(A, A)?

A(B, B) = 4 A(C,C) =1
B B B B C
N N PN N P
D E D E D E D E F G
é A

A(A, A) = (A(B, B) + 1) x (A(C,C) +1) = 10

W — o

A —T

W — o

The Inner Product for Tagged Sequences

e Define N; and N, to be sets of states ifi and’, respectively.

e By a similar argument,

®(11) - ®(12) = Xpien Lnsen, Alna, 1)

whereA(nq,ns) is number of common sub-fragmentsat n,

A—B —C—D A—B —C—E
eg. 1= | | | | Ty= | | |

a b C d a b e =
(1)) - ®(Th) = A(A, A)+A(A,B) ...+ A(B,A)+A(B,B) ...+ A(D, E)

e.0.,.A(B, B) =4,

The Recursive Definition for Tagged Sequences

e Define N(n) = state followingn, W (n) = word at state:
® Definew[W(nl), W(nz)] = 1 Iff W(nl) — W(nz)
e Then If labels at,; andn, are the same,

A(ny,ng) = (1+m[W(n1), W(ng)]) x (1+A(N(n1), N(n2))

A—B —C—D A—B —C—E
eg.]t = | | | | Ty= | | | |
a b C d a b = =

A(AA) = (1+7wla,a]) x (1+A(B, B))
— (141) % (1+4) =10

Refinements of the Kernels

¢ Include log probability from the baseline model:
®(T7) is representation under all sub-fragments kernel
L('T) is log probability under baseline model

New representatio®’ where
(1) - ®'(Tz) = BL(T1) L(T3) + ®(T1) - (T2

(includesL(T;) as an additional component with weigli)

e Allows the perceptron to use original ranking as default

Refinements of the Kernels

e Downweighting larger sub-fragments

d
> NI (T) hi(T)

1=1

where0 < A\ < 1,
S1Z E; 1s number of states/rules tfth fragment

e Simple modification to recursive definitions, e.g.,

A(ny,ng) = (1+7[W(ny), W(ng)]) X (1+AXA(N(nq), N(nsg))

Refinement of the Tagging Kernel

e Sub-fragments sensitive to spelling features
(e.g.,Capitalization)

e Definer|z,y| = 1 if x andy are identical,
m|x,y] = 0.5 if x andy share same capitalization features

A(ny,ng) = (147 W (ny), Wi(ng)|) X (1+AXA(N(ny), N(ns))

e Sub-fragments now include capitalization features

N — N — S N — N — S
exi'led {o E'Iba exi'led ﬂo C%\p

N — N N —

— S N S
No'cap {o éap No'cap NA cap tap

Experimental Results

Parsing Wall Street Journal

MODEL < 100 Words (2416 sentences)
LR LP | CBs| 0CBs| 2CBs
C0O99 | 88.1%| 88.3%| 1.06| 64.0%| 85.1%
VP 88.6% | 88.9%| 0.99| 66.5% | 86.3%

VP gives 5.1% relative reduction in error (CO99 = my thesis parser)

Named Entity Tagging on Web Data

P R F
Max-Ent 84.4% | 86.3% | 85.3%
Perc. 86.1%| 89.1%| 87.6%
Improvement| 10.9%| 20.4% | 15.6%

VP gives 15.6% relative reduction in error

Summary

e For any representatio®(x),
Efficient computation ofb(x) - ®(y) =
Efficient learning through kernel form of the perceptron

e Dynamic programming can be used to calcukbte) - &(y)
under “all sub-fragments” representations

e Several refinements of the inner products:

— Including probabillities from baseline model
— Downweighting larger sub-fragments
— Sensitivity to spelling features

© N o 0 bk

10

Conclusions: 10 Ideas from the Course

. Smoothed estimation

. Probabilistic Context-Free Grammars, and history-based models

= lexicalized parsing

Feature-vector representations, and log-linear models
= log-linear models for tagging, parsing

The EM algorithm: hidden structure

Machine translation: making use of the EM algorithm

Global linear models: new representations (global features)

Global linear models: new learning algorithms (perceptron, boosting)

Partially supervised methods: applications to word sense disambiguation,
named entity recognition, and relation extraction

Structured models for information extraction, and dialogue systems

A final representational trickernels

