6.891: Lecture 24 (December 8th, 2003) Kernel Methods

Overview

- Recap: global linear models
- New representations from old representations
- A computational trick
- Kernels for NLP structures
- Conclusions: 10 Ideas from the Course

Three Components of Global Linear Models

- Φ is a function that maps a structure (x, y) to a **feature vector** $\Phi(x, y) \in \mathbb{R}^d$
- GEN is a function that maps an input x to a set of candidates GEN(x)
- W is a parameter vector (also a member of \mathbb{R}^d)
- Training data is used to set the value of W

Component 1: Ф

- Φ maps a candidate to a **feature vector** $\in \mathbb{R}^d$
- \bullet defines the **representation** of a candidate

 $\langle 1, 0, 2, 0, 0, 15, 5 \rangle$

Component 2: GEN

• GEN enumerates a set of candidates for a sentence

She announced a program to promote safety in trucks and vans

 $\Downarrow \mathbf{GEN}$

Component 2: GEN

- **GEN** enumerates a set of **candidates** for an input x
- Some examples of how GEN(x) can be defined:
 - Parsing: GEN(x) is the set of parses for x under a grammar
 - Any task: $\mathbf{GEN}(x)$ is the top N most probable parses under a history-based model
 - Tagging: GEN(x) is the set of all possible tag sequences with the same length as x
 - Translation: $\mathbf{GEN}(x)$ is the set of all possible English translations for the French sentence x

Component 3: W

- W is a parameter vector $\in \mathbb{R}^d$
- •
 • and W together map a candidate to a real-valued score

Putting it all Together

- \bullet \mathcal{X} is set of sentences, \mathcal{Y} is set of possible outputs (e.g. trees)
- Need to learn a function $F: \mathcal{X} \to \mathcal{Y}$
- **GEN**, Φ , W define

$$F(x) = \underset{y \in \mathbf{GEN}(x)}{\operatorname{arg max}} \Phi(x, y) \cdot \mathbf{W}$$

Choose the highest scoring candidate as the most plausible structure

• Given examples (x_i, y_i) , how to set **W**?

She announced a program to promote safety in trucks and vans

↓ GEN

$$\downarrow \Phi \cdot \mathbf{W} \qquad \downarrow \Phi \cdot \mathbf{W} \qquad 13.6 \qquad 12.2 \qquad 12.1 \qquad 3.3 \qquad 9.4 \qquad 11.1$$

 $\Downarrow \arg \max$

A Variant of the Perceptron Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: W = 0

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$

Algorithm: For $t=1\ldots T, i=1\ldots n$ $z_i=F(x_i)$ If $(z_i\neq y_i)$ $\mathbf{W}=\mathbf{W}+\mathbf{\Phi}(x_i,y_i)-\mathbf{\Phi}(x_i,z_i)$

Output: Parameters W

Theory Underlying the Algorithm

• **Definition:** $\overline{\mathbf{GEN}}(x_i) = \mathbf{GEN}(x_i) - \{y_i\}$

• **Definition:** The training set is **separable with margin** δ , if there is a vector $\mathbf{U} \in \mathbb{R}^d$ with $||\mathbf{U}|| = 1$ such that

$$\forall i, \forall z \in \overline{\mathbf{GEN}}(x_i) \quad \mathbf{U} \cdot \mathbf{\Phi}(x_i, y_i) - \mathbf{U} \cdot \mathbf{\Phi}(x_i, z) \ge \delta$$

GEOMETRIC INTUITION BEHIND SEPARATION

GEOMETRIC INTUITION BEHIND SEPARATION

- = Correct candidate
- = Incorrect candidates

ALL EXAMPLES ARE SEPARATED

THEORY UNDERLYING THE ALGORITHM

Theorem: For any training sequence (x_i, y_i) which is separable with margin δ , then for the perceptron algorithm

Number of mistakes
$$\leq \frac{R^2}{\delta^2}$$

where R is a constant such that $\forall i, \forall z \in \overline{\mathbf{GEN}}(x_i)$

$$||\mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, z)|| \le R$$

Proof: Direct modification of the proof for the classification case.

Proof:

Let \mathbf{W}^k be the weights before the k'th mistake. $\mathbf{W}^1 = 0$ If the k'th mistake is made at i'th example, and $z_i = \operatorname{argmax}_{y \in \mathbf{GEN}(x_i)} \Phi(y) \cdot \mathbf{W}^k$, then

$$\mathbf{W}^{k+1} = \mathbf{W}^k + \mathbf{\Phi}(y_i) - \mathbf{\Phi}(z_i)$$

$$\Rightarrow \mathbf{U} \cdot \mathbf{W}^{k+1} = \mathbf{U} \cdot \mathbf{W}^k + \mathbf{U} \cdot \mathbf{\Phi}(y_i) - \mathbf{U} \cdot \mathbf{\Phi}(z_i)$$

$$\geq \mathbf{U} \cdot \mathbf{W}^k + \delta$$

$$\geq k\delta$$

$$\Rightarrow ||\mathbf{W}^{k+1}|| \geq k\delta$$

Also,

$$||\mathbf{W}^{k+1}||^{2} = ||\mathbf{W}^{k}||^{2} + ||\mathbf{\Phi}(y_{i}) - \mathbf{\Phi}(z_{i})||^{2} + 2\mathbf{W}^{k} \cdot (\mathbf{\Phi}(y_{i}) - \mathbf{\Phi}(z_{i}))$$

$$\leq ||\mathbf{W}^{k}||^{2} + R^{2}$$

$$\Rightarrow ||\mathbf{W}^{k+1}||^{2} \leq kR^{2}$$

$$\Rightarrow k^{2}\delta^{2} \leq ||\mathbf{W}^{k+1}||^{2} \leq kR^{2}$$

$$\Rightarrow k \leq R^{2}/\delta^{2}$$

Overview

- Recap: global linear models
- New representations from old representations
- A computational trick
- Kernels for NLP structures

New Representations from Old Representations

- Say we have an existing representation $\Phi(x, y)$
- Our global linear model will learn parameters W such that

$$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$$

• This is a **linear** model: but perhaps the linearity assumption is bad?

New Representations from Old Representations

• Say we have an existing representation of size d=2

$$\mathbf{\Phi}(x,y) = \{\mathbf{\Phi}_1(x,y), \mathbf{\Phi}_2(x,y)\}\$$

• We define a new representation $\Phi'(x,y)$ of dimension $d' = O(d^2)$, that contains every quadratic term in $\Phi(x,y)$

$$\mathbf{\Phi}'(x,y) = \{\mathbf{\Phi}_1(x,y), \mathbf{\Phi}_2(x,y), \mathbf{\Phi}_1(x,y)^2, \mathbf{\Phi}_2(x,y)^2, \mathbf{\Phi}_1(x,y)\mathbf{\Phi}_2(x,y)\}$$

• A global linear model under representation Φ' is **linear** in the new space Φ' , but **non-linear** in the old space Φ :

$$\mathbf{\Phi}'(x,y)\cdot\mathbf{W}' = \mathbf{W}'_{1}\mathbf{\Phi}_{1}(x,y) + \mathbf{W}'_{2}\mathbf{\Phi}_{2}(x,y) + \mathbf{W}'_{3}\mathbf{\Phi}_{1}(x,y)^{2} + \mathbf{W}'_{4}\mathbf{\Phi}_{2}(x,y)^{2} + \mathbf{W}'_{5}\mathbf{\Phi}_{1}(x,y)\mathbf{\Phi}_{2}(x,y)$$

Basic idea: explicitly form new feature vectors Φ' from Φ , and run the perceptron in the new space

More Generally

• Say we have an existing representation (writing Φ_i instead of $\Phi_i(x, y)$ for brevity):

$$\mathbf{\Phi}(x,y) = \{\mathbf{\Phi}_1, \mathbf{\Phi}_2, \dots, \mathbf{\Phi}_d\}$$

• We define a new representation $\Phi'(x,y)$ of dimension $d' = O(d^2)$, that contains every quadratic term in $\Phi(x,y)$

$$\Phi'(x,y) = \{\Phi'_1, \Phi'_2, \dots, \Phi'_{d'}\}$$

$$= \{\Phi_1, \Phi_2, \dots, \Phi_d$$

$$\Phi_1^2, \Phi_2^2, \dots, \Phi_d^2,$$

$$\Phi_1\Phi_2, \Phi_1\Phi_3, \dots, \Phi_1\Phi_d,$$

$$\Phi_2\Phi_1, \Phi_2\Phi_3, \dots, \Phi_2\Phi_d,$$

$$\dots$$

$$\Phi_d\Phi_1, \Phi_d\Phi_2, \dots, \Phi_d\Phi_{d-1}, \}$$

Problem: size of Φ' quickly gets very large \Rightarrow computational efficiency becomes a real problem

Overview

- Recap: global linear models
- New representations from old representations
- A computational trick
- Kernels for NLP structures

A Computational Trick (Part 1)

• Now, take feature vectors for a first example (x, y), and for a second example (v, w):

$$\Phi(x,y) = \{\Phi_1, \Phi_2\}$$
 $\Phi(v,w) = \{\rho_1, \rho_2\}$

• Consider a function *K*:

$$K((x,y),(v,w)) = (1 + \mathbf{\Phi}(x,y) \cdot \mathbf{\Phi}(v,w))^2 = (1 + \mathbf{\Phi}_1 \mathbf{\rho}_1 + \mathbf{\Phi}_2 \mathbf{\rho}_2)^2$$

• For example, if

$$\Phi(x,y) = \{1,3\}$$
 $\Phi(v,w) = \{2,4\}$

then

$$K((x,y),(v,w)) = (1+1\times 2+3\times 4)^2 = 225$$

A Computational Trick (Part 1)

• Consider a function *K*:

$$K((x,y),(v,w)) = (1 + \mathbf{\Phi}(x,y) \cdot \mathbf{\Phi}(v,w))^2 = (1 + \mathbf{\Phi}_1 \mathbf{\rho}_1 + \mathbf{\Phi}_2 \mathbf{\rho}_2)^2$$

• **Key point:** It can be shown that

$$K((x,y),(v,w)) = \mathbf{\Phi}'(x,y) \cdot \mathbf{\Phi}'(v,w)$$

where

$$\Phi'(x,y) = \{1, \sqrt{2}\Phi_1, \sqrt{2}\Phi_2, \Phi_1^2, \Phi_2^2, \sqrt{2}\Phi_1\Phi_2\}
\Phi'(v,w) = \{1, \sqrt{2}\rho_1, \sqrt{2}\rho_2, \rho_1^2, \rho_2^2, \sqrt{2}\rho_1\rho_2\}$$

So: K is an inner product in a new space that contains all quadratic terms in the original space Φ

Proof:

$$\begin{split} &K((x,y),(v,w))\\ &= & (1+\boldsymbol{\Phi}(x,y)\cdot\boldsymbol{\Phi}(v,w))^2\\ &= & (1+\boldsymbol{\Phi}_1\boldsymbol{\rho}_1+\boldsymbol{\Phi}_2\boldsymbol{\rho}_2)^2\\ &= & 1+\boldsymbol{\Phi}_1^2\boldsymbol{\rho}_1^2+\boldsymbol{\Phi}_2^2\boldsymbol{\rho}_2^2+2\boldsymbol{\Phi}_1\boldsymbol{\rho}_1\boldsymbol{\Phi}_2\boldsymbol{\rho}_2+2\boldsymbol{\Phi}_1\boldsymbol{\rho}_1+2\boldsymbol{\Phi}_2\boldsymbol{\rho}_2\\ &= & \{1,\sqrt{2}\boldsymbol{\Phi}_1,\sqrt{2}\boldsymbol{\Phi}_2,\boldsymbol{\Phi}_1^2,\boldsymbol{\Phi}_2^2,\sqrt{2}\boldsymbol{\Phi}_1\boldsymbol{\Phi}_2\}\cdot\{1,\sqrt{2}\boldsymbol{\rho}_1,\sqrt{2}\boldsymbol{\rho}_2,\boldsymbol{\rho}_1^2,\boldsymbol{\rho}_2^2,\sqrt{2}\boldsymbol{\rho}_1\boldsymbol{\rho}_2\} \end{split}$$

More Generally

• Say we have an existing representation

$$\mathbf{\Phi}(x,y) = \{\mathbf{\Phi}_1, \mathbf{\Phi}_2, \dots, \mathbf{\Phi}_d\}$$

and we take

$$K((x,y),(v,w)) = (1 + \mathbf{\Phi}(x,y) \cdot \mathbf{\Phi}(v,w))^2$$

• Then it can be shown that $K((x,y),(v,w)) = \Phi'(x,y) \cdot \Phi'(v,w)$ where

$$\Phi'(x,y) = \{\Phi'_1, \Phi'_2, \dots, \Phi'_{d'}\}
= \{1, \sqrt{2}\Phi_1, \sqrt{2}\Phi_2, \dots, \sqrt{2}\Phi_d,
\Phi_1^2, \Phi_2^2, \dots, \Phi_d^2,
\sqrt{2}\Phi_1\Phi_2, \sqrt{2}\Phi_1\Phi_3, \dots, \sqrt{2}\Phi_1\Phi_d,
\sqrt{2}\Phi_2\Phi_1, \sqrt{2}\Phi_2\Phi_3, \dots, \sqrt{2}\Phi_2\Phi_d,
\dots
\sqrt{2}\Phi_d\Phi_1, \sqrt{2}\Phi_d\Phi_2, \dots, \sqrt{2}\Phi_d\Phi_{d-1}, \}$$

A Variant of the Perceptron Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: W = 0

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$

Algorithm: For $t=1\ldots T, i=1\ldots n$ $z_i=F(x_i)$ If $(z_i\neq y_i)$ $\mathbf{W}=\mathbf{W}+\mathbf{\Phi}(x_i,y_i)-\mathbf{\Phi}(x_i,z_i)$

Output: Parameters W

A Computational Trick (Part 2)

• In standard perceptron, we store a parameter vector **W**, and

$$F(x) = \arg\max_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$$

• In "dual form" perceptron, we store weights

$$\alpha_{i,y}$$
 for all i , and for all $y \in \mathbf{GEN}(x_i)$

and assume the equivalence:

$$\mathbf{W} = \sum_{i,z \in \mathbf{GEN}(x_i)} \alpha_{i,z} \mathbf{\Phi}(x_i,z)$$

• We then have

$$F(x) = \arg \max_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$$

$$= \arg \max_{y \in \mathbf{GEN}(x)} \left(\sum_{i, z \in \mathbf{GEN}(x_i)} \alpha_{i, z} \Phi(x_i, z) \cdot \Phi(x, y) \right)$$

Dual Form of the Perceptron Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: $\alpha_{i,y} = 0$ for all i, for all $y \in \mathbf{GEN}(x_i)$

Define:

$$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \left(\sum_{i,z \in \mathbf{GEN}(x_i)} \alpha_{i,z} \Phi(x_i, z) \cdot \Phi(x, y) \right)$$

Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$ $z_i = F(x_i)$ If $(z_i \neq y_i)$ $\alpha_{i,y_i} = \alpha_{i,y_i} + 1$

 $\alpha_{i,z_i} = \alpha_{i,z_i} - 1$

Output: Parameters $\alpha_{i,y}$

Equivalence:
$$\mathbf{W} = \sum_{i,z \in \mathbf{GEN}(x_i)} \alpha_{i,z} \mathbf{\Phi}(x_i,z)$$

Original Form

Initialization: W = 0

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(y) \cdot \mathbf{W}$

Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$

 $z_i = F(x_i)$

If $(z_i \neq y_i)$ $\mathbf{W} = \mathbf{W} + \mathbf{\Phi}(y_i) - \mathbf{\Phi}(z_i)$

Dual Form

Initialization: $\alpha_{i,y} = 0$ for all i, for all $y \in \mathbf{GEN}(x_i)$

Define: $F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \left(\sum_{i,z \in \mathbf{GEN}(x_i)} \alpha_{i,z} \Phi(x_i,z) \cdot \Phi(x,y) \right)$

Algorithm: For $t=1\ldots T, i=1\ldots n$ $z_i=F(x_i)$ If $(z_i\neq y_i)$ $\alpha_{i,y_i}=\alpha_{i,y_i}+1,$ $\alpha_{i,z_i}=\alpha_{i,z_i}-1$

Dual (Kernel) Form of the Perceptron Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: $\alpha_{i,y} = 0$ for all i, for all $y \in \mathbf{GEN}(x_i)$

Define:

$$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \left(\sum_{i, z \in \mathbf{GEN}(x_i)} \alpha_{i, z} K((x_i, z), (x, y)) \right)$$

Algorithm: For $t = 1 \dots T$, $i = 1 \dots n$

$$z_i = F(x_i)$$

$$\text{If } (z_i \neq y_i) \quad \alpha_{i,y_i} = \alpha_{i,y_i} + 1$$

$$\alpha_{i,z_i} = \alpha_{i,z_i} - 1$$

Output: Parameters $\alpha_{i,y}$

Dual (Kernel) Form of the Perceptron Algorithm

• For example, if we choose

$$K((x,y),(v,w)) = (1 + \mathbf{\Phi}(x,y) \cdot \mathbf{\Phi}(v,w))^2$$

then the kernel form learns a global linear model

$$F(x) = \arg\max_{y \in \mathbf{GEN}(x)} \Phi'(x, y) \cdot \mathbf{W}$$

where Φ' is a representation that contains all quadratic terms of the original representation Φ

• The algorithm returns coefficients $\alpha_{i,y}$ which implicitly define

$$\mathbf{W} = \sum_{i,z \in \mathbf{GEN}(x_i)} \alpha_{i,z} \mathbf{\Phi}'(x_i,z)$$

and

$$F(x) = \arg \max_{y \in \mathbf{GEN}(x)} \Phi'(x, y) \cdot \mathbf{W}$$

$$= \arg \max_{y \in \mathbf{GEN}(x)} \left(\sum_{i, z \in \mathbf{GEN}(x_i)} \alpha_{i, z} K((x_i, z), (x, y)) \right)$$

We never have to manipulate parameter vectors \mathbf{W} or representations $\Phi'(x,y)$ directly: everything in training and testing is computed indirectly, through inner products or kernels

- Computational efficiency:
 - Say I is the time taken to calculate K((x,y),(v,w))
 - Say $N = \sum_{i} |\mathbf{GEN}(x_i)|$ is size of the training set
 - In taking T passes over the training set, at most 2Tn values of $\alpha_{i,y}$ can take values other than $0, \rightarrow$

$$\sum_{i,z \in \mathbf{GEN}(x_i)} \alpha_{i,z} K((x_i,z),(x,y))$$

takes O(nTI) time

- And T passes over the training set takes $O(nT^2IN)$ time

Kernels

• A kernel K is a function of two objects,

$$K((x_1,y_1),(x_2,y_2))$$

for example, two sentence/tree pairs (x_1, y_1) and (x_2, y_2)

- Intuition: $K((x_1, y_1), (x_2, y_2))$ is a measure of the similarity between (x_1, y_1) and (x_2, y_2)
- Formally: $K((x_1, y_1), (x_2, y_2))$ is a kernel if it can be shown that there is some feature vector mapping $\Phi(x, y)$ such that

$$K((x_1, y_1), (x_2, y_2)) = \Phi(x_1, y_1) \cdot \Phi(x_2, y_2)$$

for all x_1, y_1, x_2, y_2

A (Trivial) Example of a Kernel

• Given an existing feature vector representation Φ , define

$$K((x_1, y_1), (x_2, y_2)) = \mathbf{\Phi}(x_1, y_1) \cdot \mathbf{\Phi}(x_2, y_2)$$

A More Interesting Kernel

• Given an existing feature vector representation Φ , define

$$K((x_1, y_1), (x_2, y_2)) = (1 + \mathbf{\Phi}(x_1, y_1) \cdot \mathbf{\Phi}(x_2, y_2))^2$$

This can be shown to be an inner product in a new space Φ' , where Φ' contains all quadratic terms of Φ

• More generally,

$$K((x_1,y_1),(x_2,y_2)) = (1 + \mathbf{\Phi}(x_1,y_1) \cdot \mathbf{\Phi}(x_2,y_2))^p$$

can be shown to be an inner product in a new space Φ' , where Φ' contains all polynomial terms of Φ up to degree p

Question: can we come up with "specialized" kernels for NLP structures?

Overview

- Recap: global linear models
- New representations from old representations
- A computational trick
- Kernels for NLP structures

NLP Structures

• Trees

• Tagged sequences, e.g., named entity tagging

S = Start entity

C = Continue entity

N = Not an entity

Feature Vectors: •

- \bullet defines the **representation** of a structure
- ullet maps a structure to a **feature vector** $\in \mathbb{R}^d$

 $\langle 1, 0, 2, 0, 0, 15, 5 \rangle$

Features

• A "feature" is a function on a structure, e.g.,

$$h(x) =$$
Number of times

$$h(T_1) = 1$$

$$h(T_2) = 2$$

Feature Vectors

• A set of functions $h_1 \dots h_d$ define a **feature vector**

$$\mathbf{\Phi}(x) = \langle h_1(x), h_2(x) \dots h_d(x) \rangle$$

$$\Phi(T_1) = \langle 1, 0, 0, 3 \rangle$$
 $\Phi(T_2) = \langle 2, 0, 1, 1 \rangle$

"All Subtrees" Representation [Bod, 1998]

- Given: Non-Terminal symbols $\{A, B, \ldots\}$ Terminal symbols $\{a, b, c \ldots\}$
- An infinite set of subtrees

• An infinite set of features, e.g.,

 $h_3(x,y) =$ Number of times

is seen in (x, y)

All Sub-fragments for Tagged Sequences

- Given: State symbols $\{S, C, N\}$ Terminal symbols $\{a, b, c, \ldots\}$
- An infinite set of sub-fragments

• An infinite set of features, e.g.,

$$h_3(x) =$$
Number of times $\begin{vmatrix} s & -c \\ b \end{vmatrix}$ is seen in x

Inner Products

- Inner product ("**Kernel**") between two structures T_1 and T_2 :

$$\mathbf{\Phi}(T_1) \cdot \mathbf{\Phi}(T_2) = \sum_{i=1}^d h_i(T_1) h_i(T_2)$$

 $\Phi(T_1) \cdot \Phi(T_2) = 1 \times 2 + 0 \times 0 + 0 \times 1 + 3 \times 1 = 5$

"All Subtrees" Representation

- Given: Non-Terminal symbols $\{A, B, \ldots\}$ Terminal symbols $\{a, b, c \ldots\}$
- An infinite set of subtrees

• Step 1:

Choose an (arbitrary) mapping from subtrees to integers

 $h_i(x) =$ Number of times subtree i is seen in x

$$\mathbf{\Phi}(x) = \langle h_1(x), h_2(x), h_3(x) \dots \rangle$$

All Subtrees Representation

- Φ is now huge
- **But** inner product $\Phi(T_1) \cdot \Phi(T_2)$ can be computed efficiently using dynamic programming.

Computing the Inner Product

Define $-N_1$ and N_2 are sets of nodes in T_1 and T_2 respectively.

$$-I_i(x) = \begin{cases} 1 \text{ if } i \text{'th subtree is rooted at } x. \\ 0 \text{ otherwise.} \end{cases}$$

Follows that:

$$h_i(T_1) = \sum_{n_1 \in N_1} I_i(n_1)$$
 and $h_i(T_2) = \sum_{n_2 \in N_2} I_i(n_2)$

$$\Phi(T_1) \cdot \Phi(T_2) = \sum_i h_i(T_1) h_i(T_2) = \sum_i \left(\sum_{n_1 \in N_1} I_i(n_1) \right) \left(\sum_{n_2 \in N_2} I_i(n_2) \right)$$

$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \sum_i I_i(n_1) I_i(n_2)$$

$$= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \Delta(n_1, n_2)$$

where $\Delta(n_1, n_2) = \sum_i I_i(n_1) I_i(n_2)$ is the number of common subtrees at n_1, n_2

An Example

$$\Phi(T_1) \cdot \Phi(T_2) = \Delta(A, A) + \Delta(A, B) \dots + \Delta(B, A) + \Delta(B, B) \dots + \Delta(G, G)$$

- Most of these terms are 0 (e.g. $\Delta(A, B)$).
- Some are non-zero, e.g. $\Delta(B, B) = 4$

Recursive Definition of $\Delta(n_1, n_2)$

• If the productions at n_1 and n_2 are different

$$\Delta(n_1, n_2) = 0$$

• Else if n_1, n_2 are pre-terminals,

$$\Delta(n_1, n_2) = 1$$

• Else

$$\Delta(n_1, n_2) = \prod_{j=1}^{nc(n_1)} (1 + \Delta(ch(n_1, j), ch(n_2, j)))$$

 $nc(n_1)$ is number of children of node n_1 ; $ch(n_1, j)$ is the j'th child of n_1 .

Illustration of the Recursion

How many subtrees do nodes A and A have in common? i.e., What is $\Delta(A, A)$?

$$\Delta(B, B) = 4$$

$$\Delta(C, C) = 1$$

$$\stackrel{\text{B}}{\bigcap} E \stackrel{\text{D}}{\bigcap} E \stackrel{\text{D}}{\bigcap} E \stackrel{\text{D}}{\bigcap} E$$

$$\stackrel{\text{I}}{\bigcup} \stackrel{\text{I}}{\bigcup} \stackrel{\text{$$

$$\Delta(A, \mathbf{A}) = (\Delta(B, \mathbf{B}) + 1) \times (\Delta(C, \mathbf{C}) + 1) = 10$$

The Inner Product for Tagged Sequences

- Define N_1 and N_2 to be sets of states in T_1 and T_2 respectively.
- By a similar argument,

$$\Phi(T_1) \cdot \Phi(T_2) = \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \Delta(n_1, n_2)$$

where $\Delta(n_1, n_2)$ is number of common sub-fragments at n_1, n_2

e.g.,
$$T_1 = \begin{pmatrix} A - B - C - D \\ a & b & c \end{pmatrix} = \begin{pmatrix} A - B - C - E \\ a & b & c \end{pmatrix} = \begin{pmatrix} A - B - C - E \\ a & b & e \end{pmatrix}$$

$$\Phi(T_1) \cdot \Phi(T_2) = \Delta(A, A) + \Delta(A, B) \dots + \Delta(B, A) + \Delta(B, B) \dots + \Delta(D, E)$$

e.g.,
$$\Delta(B, \mathbf{B}) = 4$$
,

The Recursive Definition for Tagged Sequences

- Define N(n) = state following n, W(n) = word at state n
- Define $\pi[W(n_1), W(n_2)] = 1$ iff $W(n_1) = W(n_2)$
- Then if labels at n_1 and n_2 are the same,

$$\Delta(n_1, n_2) = (1 + \pi[W(n_1), W(n_2)]) \times (1 + \Delta(N(n_1), N(n_2)))$$

e.g.,
$$T_1 = \begin{pmatrix} A - B - C - D \\ | & | & | & T_2 = \\ a & b & c & d \end{pmatrix} = \begin{pmatrix} A - B - C - E \\ | & | & | & \\ a & b & e \end{pmatrix}$$

$$\Delta(A, A) = (1 + \pi[a, a]) \times (1 + \Delta(B, B))$$

= $(1 + 1) \times (1 + 4) = 10$

Refinements of the Kernels

• Include log probability from the baseline model:

 $\Phi(T_1)$ is representation under all sub-fragments kernel

 $L(T_1)$ is log probability under baseline model

New representation Φ' where

$$\mathbf{\Phi}'(T_1) \cdot \mathbf{\Phi}'(T_2) = \beta L(T_1) L(T_2) + \mathbf{\Phi}(T_1) \cdot \mathbf{\Phi}(T_2)$$

(includes $L(T_1)$ as an additional component with weight $\sqrt{\beta}$)

• Allows the perceptron to use original ranking as default

Refinements of the Kernels

• Downweighting larger sub-fragments

$$\sum_{i=1}^{d} \lambda^{SIZE_i} h_i(T_1) h_i(T_2)$$

where $0 < \lambda \le 1$, $SIZE_i$ is number of states/rules in *i*'th fragment

• Simple modification to recursive definitions, e.g.,

$$\Delta(n_1, n_2) = (1 + \pi[W(n_1), W(n_2)]) \times (1 + \lambda \Delta(N(n_1), N(n_2)))$$

Refinement of the Tagging Kernel

- Sub-fragments sensitive to spelling features (e.g., Capitalization)
 - Define $\pi[x, y] = 1$ if x and y are identical, $\pi[x, y] = 0.5$ if x and y share same capitalization features

$$\Delta(n_1, n_2) = (1 + \pi[W(n_1), W(n_2)]) \times (1 + \lambda \Delta(N(n_1), N(n_2)))$$

• Sub-fragments now include capitalization features

Experimental Results

Parsing Wall Street Journal

MODEL	≤ 100 Words (2416 sentences)					
	LR	LP	CBs	0 CBs	2 CBs	
CO99	88.1%	88.3%	1.06	64.0%	85.1%	
VP	88.6%	88.9%	0.99	66.5%	86.3%	

VP gives 5.1% relative reduction in error (CO99 = my thesis parser)

Named Entity Tagging on Web Data

	P	R	F
Max-Ent	84.4%	86.3%	85.3%
Perc.	86.1%	89.1%	87.6%
Improvement	10.9%	20.4%	15.6%

VP gives 15.6% relative reduction in error

Summary

- For any representation $\Phi(x)$, Efficient computation of $\Phi(x) \cdot \Phi(y) \Rightarrow$ Efficient learning through kernel form of the perceptron
- Dynamic programming can be used to calculate $\Phi(x) \cdot \Phi(y)$ under "all sub-fragments" representations
- Several refinements of the inner products:
 - Including probabilities from baseline model
 - Downweighting larger sub-fragments
 - Sensitivity to spelling features

Conclusions: 10 Ideas from the Course

- 1. Smoothed estimation
- 2. Probabilistic Context-Free Grammars, and history-based models
 - \Rightarrow lexicalized parsing
- 3. Feature-vector representations, and log-linear models
 - \Rightarrow log-linear models for tagging, parsing
- 4. The EM algorithm: hidden structure
- 5. Machine translation: making use of the EM algorithm
- 6. Global linear models: new representations (global features)
- 7. Global linear models: new learning algorithms (perceptron, boosting)
- 8. Partially supervised methods: applications to word sense disambiguation, named entity recognition, and relation extraction
- 9. Structured models for information extraction, and dialogue systems
- 10. A final representational trick, *kernels*