6.891: Lecture 23 (December 3rd, 2003) Optimality Theory

Overview

- An introduction to Optimality Theory (OT) linguistic examples, formal definitions
- Learning algorithm 1: Constraint Demotion [Tesar and Smolensky]
- Learning algorithm 2: [Boersma] An application to Finnish
- Learning algorithm 3: [Goldwater and Johnson]
- Open questions

Optimality Theory (OT)

- A "grammar" is a function that maps input forms $x \in \mathcal{X}$ to output forms $y \in \mathcal{Y}$
- OT provides a way of defining a function *F* : X → Y, and a method for defining a "hypothesis space" H of possible grammars/functions
- Main application of OT is to *phonology* (although more recent work has investigated application to syntax)
- The framework was introduced by Prince and Smolensky

Syllable Structure

- Syllables consist of three portions: *onset, nucleus, coda*
- In general the nucleus has to be a vowel, onsets and codas have to be consonants
- Possible patterns:

$$\begin{bmatrix} \sigma CVC \\ \sigma CV \end{bmatrix}$$
$$\begin{bmatrix} \sigma CV \end{bmatrix}$$
$$\begin{bmatrix} \sigma V \end{bmatrix}$$
$$\begin{bmatrix} \sigma VC \end{bmatrix}$$

An Example from Phonology

- An input form can map to several possible surface forms $/VCVC/ \rightarrow [_{\sigma}V][_{\sigma}CVC]$ $V[_{\sigma}CV]C$ $V[_{\sigma}CV][_{\sigma}C\dot{\Box}]$ $[_{\sigma}\Box V][_{\sigma}CV]C$
- Notes:
 - $[\sigma \ldots]$ is a syllable
 - In some cases, vowels or consonents in the **input** are not seen in the **output** ("underparsing") (e.g., $V[{}_{\sigma}CV]C$)
 - In some cases, vowels or consonants in the **output** are not seen in the **input** ("overparsing"): □ and □ are "extra" elements inserted in onset or nucleus position

An Example from Phonology

- An example from Maori ([Prince and Smolensky]): $/inum/ \rightarrow [\sigma i][\sigma nu]m$ (pronounced "inu") is an instance of $/VCVC/ \rightarrow [\sigma V][\sigma CV]C$
- An example from Maori ([Prince and Smolensky]):

/VCVC/	\rightarrow	$[{}_{\sigma}V][{}_{\sigma}CVC]$	$[\sigma i][\sigma num]$	"inum"
		$V[_{\sigma}CV]C$	$i[_{\sigma}nu]m$	"nu"
		$V[{}_{\sigma}CV][{}_{\sigma}C\acute{\Box}]$	$i[_{\sigma}nu][_{\sigma}ma]$	"numa"
		$[{}_{\sigma}\Box V][{}_{\sigma}CV]C$	$[_{\sigma}mi][_{\sigma}nu]m$	"minu"

Constraints

- Say \mathcal{X} is set of possible input forms, \mathcal{Y} is set of possible output forms
- Then a **constraint** is a function $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{N}$ (here \mathbb{N} is the set of non-negative integers)
- $\phi(x, y)$ is the number of times that the input/output pair (x, y) violates the constraint ϕ

Constraint Examples

From [Tesar and Smolensky, 2000]:

- $\phi_{ONSET}(x, y)$ = number of times y has a syllable which has no onset
- $\phi_{\text{NOCODA}}(x, y)$ = number of times y has a syllable which has a coda
- $\phi_{\text{FILL-NUC}}(x, y) = \text{number of nucleus positions in } y \text{ filled with a vowel that is not in } x$
 - $\phi_{\text{PARSE}}(x, y) = \text{number of vowels/consonants in } x \text{ which are not realised in } y$
- $\phi_{\text{FILL-ONS}}(x, y) = \text{number of onset positions in } y \text{ filled with a consonent that is not in } x$

Candidates	Onset	NoCoda	Fill-Nuc	Parse	Fill-Ons
$/VCVC/ \rightarrow$					
$[{}_{\sigma}V][{}_{\sigma}CVC]$	1	1	0	0	0
$V[_{\sigma}CV]C$	0	0	0	2	0
$V[_{\sigma}CV][_{\sigma}C\dot{\Box}]$	0	0	1	1	0
$[_{\sigma} \Box V] [_{\sigma} CV] C$	0	0	0	1	1

More Formalities

- We take GEN to be a function that maps an input form x to a set of candidates GEN(x) ⊂ Y
- Say we have N constraints, ϕ_i for $i = 1 \dots N$
- The *n*-dimensional feature vector for an (x, y) pair is $\Phi(x, y) = \{\phi_1(x, y), \phi_2(x, y) \dots \phi_N(x, y)\}$
- Note the similarity to global linear models: in GLM's we'd have a parameter vector $\mathbf{W} \in \mathbb{R}^N$, and define

$$\Phi(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$$

• OT uses an alternative to a parameter vector $\mathbf{W} \in \mathbb{R}^d$: instead, uses a strict **ranking** over the constraints

Constraint Rankings

- A constraint ranking is simply a total order over the constraints
- Notation: U_j for $j = 1 \dots N$ is the ranking of the j'th constraint. Each $U_j \in \{1 \dots N\}$. Each $U_j \in \{1 \dots N\}$, and no two values $j \neq j'$ can have $U_j = U_{j'}$

• Example: say

 $\phi_1 = \phi_{\text{ONSET}}, \phi_2 = \phi_{\text{NOCODA}}, \phi_3 = \phi_{\text{FILL-NUC}}, \\ \phi_4 = \phi_{\text{PARSE}}, \phi_5 = \phi_{\text{FILL-ONS}}$

and

 $\{U_1, U_2, U_3, U_4, U_5\} = \{1, 4, 3, 2, 5\}$

then the ordering on constraints is

 $\phi_1 \gg \phi_4 \gg \phi_3 \gg \phi_2 \gg \phi_5$

More Formalities

- Notation: we use $y_1 \succ y_2$ to mean that y_1 is preferred to y_2
- Define $Cost_i(x, y, \mathbf{U})$ for an input x, and a candidate (x, y), to be

$$Cost_i(x, y, \mathbf{U}) = \sum_{j:U_j=i} \Phi_j(x, y)$$

i.e., $Cost_i(x, y, \mathbf{U})$ is the total number of constraints with weight $\mathbf{U}_j = i$ which are violated by (x, y)

- Under these definitions, to choose which of forms y_1 and y_2 are more optimal:
 - Define $d = \min_i \{i : Cost_i(x, y_1, \mathbf{U}) \neq Cost_i(x, y_2, \mathbf{U})\}$
 - If $Cost_d(x, y_1) < Cost_d(x, y_2)$ then $y_1 \succ y_2$
 - If $Cost_d(x, y_2) > Cost_d(x, y_1)$ then $y_2 \succ y_1$

The basic idea: find the highest ranked constraint on which two output forms differ, and take the output form which violates this constraint the least number of times

Examples

Under

 $\phi_{\text{ONSET}} \gg \phi_{\text{NOCODA}} \gg \phi_{\text{FILL-NUC}} \gg \phi_{\text{PARSE}} \gg \phi_{\text{FILL-ONS}}$

Candidates	Onset	NoCoda	Fill-Nuc	Parse	Fill-Ons
$/VCVC/ \rightarrow$					
$[_{\sigma}V][_{\sigma}CVC]$	1	1	0	0	0
$V[_{\sigma}CV]C$	0	0	0	2	0
$V[_{\sigma}CV][_{\sigma}C\dot{\Box}]$	0	0	1	1	0
$[{}_{\sigma}\Box V][{}_{\sigma}CV]C$	0	0	0	1	1

Examples

Under

 $\phi_{\text{ONSET}} \gg \phi_{\text{FILL-ONS}} \gg \phi_{\text{NOCODA}} \gg \phi_{\text{FILL-NUC}} \gg \phi_{\text{PARSE}}$

Candidates	Onset	NoCoda	Fill-Nuc	Parse	Fill-Ons
$/VCVC/ \rightarrow$					
$[_{\sigma}V][_{\sigma}CVC]$	1	1	0	0	0
$V[_{\sigma}CV]C$	0	0	0	2	0
$V[_{\sigma}CV][_{\sigma}C\dot{\Box}]$	0	0	1	1	0
$[{}_{\sigma}\Box V][{}_{\sigma}CV]C$	0	0	0	1	1

Summary

- $\bullet\,$ Task is to define a mapping from ${\mathcal X}$ to ${\mathcal Y}$
- Three components to an OT model:
 - **GEN**(x) enumerates a set of candidates for x
 - $\Phi(x, y)$ maps any (x, y) pair in $\mathcal{X} \times \mathcal{Y}$ to a vector in \mathbb{N}^N ($\Phi(x, y)$ is a vector summarizing the number of violations of each of the *N* constraints)
 - $\mathbf{U} \in \mathbb{N}^N$ is a ranking over the N constraints (\mathbf{U}_j is the ranking of the *j*'th constraint)
- $F(x, \mathbf{U})$ is then the member of $\mathbf{GEN}(x)$ which dominates every other member of $\mathbf{GEN}(x)$

Learning in OT

- Task is to learn a mapping from \mathcal{X} to \mathcal{Y}
- Three components to an OT model: **GEN**(x), $\Phi(x, y)$, and **U**.
- $F(x, \mathbf{U})$ is the member of $\mathbf{GEN}(x)$ which dominates every other member of $\mathbf{GEN}(x)$
- Each ranking **U** defines a different function $F(x, \mathbf{U})$
- There are *N*! possible rankings (N is number of constraints)
- Learning = choose a value for \mathbf{U} , given some form of supervision

The Constraint Demotion Algorithm

- Assume we have a sequence (x_i, y_i) for $i = 1 \dots n$
- How do we learn a ranking W from these examples?
- First algorithm we'll consider: *Constraint Demotion* [Tesar and Smolensky]

Partial Orders on Constraints

- Algorithm deals with *partial orders* over the contraints
- A partial order is again defined by a vector $\mathbf{W} \in \mathbb{N}^N$
- For example: $\{\mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3, \mathbf{W}_4, \mathbf{W}_5\} = \{1, 2, 1, 2, 1\},$ represents the partial ordering

$$\{\phi_1, \phi_3, \phi_5\} \gg \{\phi_2, \phi_4\}$$

• In the constraint demotion algorithm, initial partial order is $W = \overline{1}$, so that partial order is

 $\{\phi_1, \phi_2, \phi_3, \phi_4, \phi_5\}$

Applying a Partial Order

Our method for deciding between candidates y_1 and y_2 is welldefined under a partial order:

• Define $Cost_i(x, y, \mathbf{U})$ for an input x, and a candidate (x, y), to be

$$Cost_i(x, y, \mathbf{U}) = \sum_{j: \mathbf{U}_j = i} \mathbf{\Phi}_j(x, y)$$

- Under these definitions, to choose which of forms y_1 and y_2 are more optimal:
 - Define $d = \min_i \{i : Cost_i(x, y_1, \mathbf{U}) \neq Cost_i(x, y_2, \mathbf{U})\}$
 - If $Cost_d(x, y_1) < Cost_d(x, y_2)$ then $y_1 \succ y_2$
 - If $Cost_d(x, y_2) > Cost_d(x, y_1)$ then $y_2 \succ y_1$

An Example

Under

 $\{\phi_{\text{ONSET}}, \phi_{\text{NOCODA}}, \phi_{\text{FILL-NUC}}\} \gg \{\phi_{\text{PARSE}}, \phi_{\text{FILL-ONS}}\}$

Candidates	Onset	NoCoda	Fill-Nuc	Parse	Fill-Ons
$/VCVC/ \rightarrow$					
$[_{\sigma}V][_{\sigma}CVC]$	1	1	0	0	0
$V[_{\sigma}CV]C$	0	0	0	2	0
$V[_{\sigma}CV][_{\sigma}C\dot{\Box}]$	0	0	1	1	0
$[{}_{\sigma}\Box V][{}_{\sigma}CV]C$	0	0	0	1	1

The Constraint Demotion Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: $W = \overline{1}$

Define: $F(x, \mathbf{W}) = \text{optimal output for input } x \text{ under partial order } \mathbf{W}$

Algorithm:

For
$$i = 1 \dots n$$

 $z_i = F(x_i, \mathbf{W})$
If $(z_i \neq y_i)$
• Set $d = \arg \min_{j \in \{j: \phi_j(x, z_i) < \phi_j(x, y_i)\}} \mathbf{W}_j$
• Set $e = \arg \min_{j \in \{j: \phi_j(x, z_i) > \phi_j(x, y_i)\}} \mathbf{W}_j$ (Note that $\mathbf{W}_e \ge \mathbf{W}_d$)
• Set $\mathbf{W}_d = \mathbf{W}_e + 1$

Note: *d* is the highest ranked constraint which prefers z_i over y_i *e* is the highest ranked constraint which prefers y_i over z_i

Output: Partial order W

Theorem: (Equivalent to results in Tesar and Smolensky). For any sequence (x_i, y_i) for $i = 1 \dots n$, for any **GEN**, Φ combination where Φ involves N constraints, if there exists some total order **U** such that $F(x_i, \mathbf{U}) = y_i$ for all $i = 1 \dots n$, then the constraint demotion algorithm makes at most N(N-1)/2 mistakes on the sequence.

<u>A Proof</u>

- Define \mathbf{W}^k to be the partial order after the k'th mistake has been made From initialization: $\mathbf{W}^0 = \overline{1}$
- First property: for all k, k + N ≤ ∑_{j=1}^N W_j^k
 Follows by induction. True for k = 0. Each mistake implies that one component of W is increased by at least a value of 1, so the property is maintained
- Second property: for all $j, k, \mathbf{W}_j^k \leq \mathbf{U}_j$ We'll prove this shortly
- Theorem then follows easily:
 - for all k, $\sum_{j} \mathbf{W}_{j}^{k} \leq \sum_{j} \mathbf{U}_{j} = N(N+1)/2$ $\Rightarrow \text{ for all } k,$ $k + N \leq \sum_{j=1}^{N} \mathbf{W}_{j}^{k} \leq N(N+1)/2$ $k \leq N(N-1)/2$

Proof of the Second Property

- Proof by induction on k: true for the base case of k = 0, as W⁰_j = 1 for all j, and U_j ≥ 1 for all j
- Inductive case: assume $\mathbf{W}_j^k \leq \mathbf{U}_j$ for all j, and prove that the demotion algorithm gives $\mathbf{W}_j^{k+1} \leq \mathbf{U}_j$ for all j
- The demotion step, plus one additional definition:

$$d = \arg\min_{j \in \{j:\phi_j(x,z_i) < \phi_j(x,y_i)\}} \mathbf{W}_j^k$$

$$e = \arg\min_{j \in \{j:\phi_j(x,z_i) > \phi_j(x,y_i)\}} \mathbf{W}_j^k \text{ (Note that } \mathbf{W}_e^k \ge \mathbf{W}_d^k)$$

$$f = \arg\min_{j \in \{j:\phi_j(x,z_i) > \phi_j(x,y_i)\}} \mathbf{U}_j$$

Set $\mathbf{W}_d^{k+1} = \mathbf{W}_e^k + 1$
Set $\mathbf{W}_j^{k+1} = \mathbf{W}_j^k$ for all $j \neq d$

Note: d is the highest ranked constraint under W which prefers z_i over y_i e is the highest ranked constraint under W which prefers y_i over z_i f is the highest ranked constraint under U which prefers y_i over z_i • We then have

$$\mathbf{W}_{e}^{k} \leq \mathbf{W}_{f}^{k} \leq \mathbf{U}_{f} < \mathbf{U}_{d}$$

hence

$$\mathbf{W}_d^{k+1} = \mathbf{W}_e^k + 1 \le \mathbf{U}_d$$

hence the property $\mathbf{W}_d^{k+1} \leq \mathbf{U}_d$ holds for the constraint d, and $\mathbf{W}_j^{k+1} = \mathbf{W}_j^k$ for $j \neq d$ means that $\mathbf{W}_j^{k+1} \leq \mathbf{U}_j$ for all j by the inductive hypothesis.

- The inequalities hold because of the following arguments:
 - $\mathbf{W}_{e}^{k} \leq \mathbf{W}_{f}^{k} \text{ because we must have } \phi_{f}(x, z_{i}) > \phi_{f}(x, y_{i})$ for f to be $\arg\min_{j \in \{j: \phi_{j}(x, z_{i}) > \phi_{j}(x, y_{i})\}} \mathbf{U}_{j}$, and e is defined as $\arg\min_{j \in \{j: \phi_{j}(x, z_{i}) > \phi_{j}(x, y_{i})\}} \mathbf{W}_{j}^{k}$
 - $-\mathbf{W}_{f}^{k} \leq \mathbf{U}_{f}$ by the inductive hypothesis
 - $\mathbf{U}_f < \mathbf{U}_d$ because \mathbf{U} defines a total order, and if $\mathbf{U}_d > \mathbf{U}_f$ then constraint d would be chosen ahead of f

The (Minimal) Gradual Learning Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$

Initialization: $W = \overline{1}$

Define: $F(x, \mathbf{W}) = \text{optimal output for input } x \text{ under partial order } \mathbf{W}$

Algorithm:

For
$$i = 1 \dots n$$

 $z_i = F(x_i, \mathbf{W})$
If $(z_i \neq y_i)$
• Set $d = \arg \min_{j \in \{j: \phi_j(x, z_i) < \phi_j(x, y_i)\}} \mathbf{W}_j$
• Set $\mathbf{W}_d = \mathbf{W}_d + 1$

Note: d is the highest ranked constraint which prefers z_i over y_i

Output: Partial order W

This algorithm also makes at most N(N-1)/2 mistakes, through a very similar proof to that for constraint demotion

An Example from Finnish

- [Boersma and Hayes, 1999]: Empirical tests of the gradual learning algorithm.
- Finnish genitive plurals can be formed in two ways: with a weak ending (usually /-jen/) or a strong ending (typically /-iden/)
- In some cases, *both* endings are possible, and are seen in corpora

- e.g., *naapuri* (neighbour) \Rightarrow *náapurien*, or *náapurèiden*

- Questions:
 - How can we build models that handle free variation?
 - How can we learn these models from data?

Stochastic Optimality Theory [Boersma]

- Before, we had a deterministic method for calculating $F(x, \mathbf{W})$
- A stochastic method:
 - Randomly draw a new vector \mathbf{W}' , where each $\mathbf{W}'_j = \mathbf{W}_j + gaussian$ noise with variance σ
 - Output is then $F(x, \mathbf{W}')$, where F is as defined before (a deterministic function of x and \mathbf{W}'

We'll call this method $F_{\sigma}(x, \mathbf{W})$

- Intuition: if two values W_j and $W_{j'}$ are close together in value (i.e., close w.r.t. σ), then there is some chance that they will be switched
- Motivation: *free variation*. Sometimes more than one surface form is possible for a given input, and different frequencies are observed in data

The Maximal Gradual Learning Algorithm

Inputs: Training set (x_i, y_i) for $i = 1 \dots n$ Gaussian variance $\sigma > 0$, "plasticity" parameter $\rho > 0$

Initialization: $W = \overline{1}$

Define: $F_{\sigma}(x, \mathbf{W}) = \text{stochastic output for input } x \text{ under partial order } \mathbf{W}$

Algorithm:

For $i = 1 \dots n$ $z_i = F(x_i, \mathbf{W})$ If $(z_i \neq y_i)$ • For any j such that $\phi_j(x, z_i) < \phi_j(x, y_i)$, set $\mathbf{W}_j = \mathbf{W}_j + \rho$ • For any j such that $\phi_j(x, z_i) > \phi_j(x, y_i)$, set $\mathbf{W}_j = \mathbf{W}_j - \rho$

Output: Partial order W

Properties of The Maximal Gradual Learning Algorithm

- Questions:
 - Does the maximal gla converge?
 - If so, does it converge to a model that matches the frequencies seen in training data?
- Main results appear to be empirical (rather than theoretical)

Experiments on Finnish

- Constraints used:
 - Number of stressed syllables that aren't heavy
 - Number of heavy syllables that aren't stressed
 - Number of stressed syllables with the vowel I/O/A (3 constraints, one for each vowel)
 - Number of unstressed syllables with the vowel I/O/A (3 constraints, one for each vowel)
 - Number of instances of consecutive heavy syllables
 - Number of instances of consecutive light syllables
 - Number of instances of consecutive unstressed syllables

Experiments on Finnish

- Data set has 5698 tokens, 22 different phonological stem structures
- Algorithm run over 388,000 instances, with parameter schedule:

Data	Plasticity	σ
First 22,000	2	10
Second 22,000	2	2
Third 22,000	0.2	2
Fourth 22,000	0.02	10
Last 300,000	0.002	10

• Results: final model does a good job of modeling frequencies of the different forms

A Log-Linear Model

- [Goldwater and Johnson, 2003]: Learning OT Constraint Rankings Using a Maximum Entropy Model
- Work defines a distribution over possible outputs:

$$P(y \mid x, \mathbf{W}) = \frac{e^{\mathbf{\Phi}(x, y) \cdot \mathbf{W}}}{\sum_{y' \in \mathbf{GEN}(x)} e^{\mathbf{\Phi}(x, y') \cdot \mathbf{W}}}$$

• Parameters are estimated by maximizing

$$L(\mathbf{W}) = \sum_{i} \log P(y_i \mid x_i, \mathbf{W}) - C \sum_{k} \mathbf{W}_k^2$$

• Output under parameter values W is

$$F(x, \mathbf{W}) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$$

• Results are very close to that of the GLA

Equivalence Between Constraint Rankings and Linear Models

- In OT, we have $F(x, \mathbf{U})$ where \mathbf{U} is a *ranking* or *partial order* over the constraints
- In linear models, we have

$$F(x, \mathbf{W}) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$$

where $\mathbf{W} \in \mathbb{R}^N$

• If for any constraint, there is an upper bound *b* on the number of violations, i.e.,

$$\Phi_j(x,y) \le b$$
 for all x, y, j

then there is a parameter setting $\mathbf{W} \in \mathbb{R}^d$ such that the global linear model defines the same function F as the OT model with parameters \mathbf{U}

An Example

• Say the ranking over constraints is

$$\{\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_3, \mathbf{U}_4, \mathbf{U}_5\} = \{1, 3, 4, 2, 5\}$$

i.e.,

$$\phi_1 \gg \phi_4 \gg \phi_2 \gg \phi_3 \gg \phi_5$$

- Say the number of constraint violations is bounded by b = 9 for every constraint
- Then we can choose

{**W**₁, **W**₂, **W**₃, **W**₄, **W**₅} = {10⁵, 10³, 10², 10⁴, 10}

Open Issues

- Language acquisition: How do humans acquire constraint rankings? (critical issue: input forms are not seen)
- How robust are the learning algorithms to noise?

Language Acquisition

- The learning algorithms (Tesar and Smolensky, Boersma, Goldwater and Johnson) are intended as models of *human* language acquisition
- Address a basic question in linguistics: how do people acquire language?
- An unrealistic part of these algorithms: they assume that both input and output forms (x_i, y_i) pairs are observed by the learning algorithm. In human language learning, only outputs are seen.

One Proposed Solution to This Problem

- Tesar and Smolensky talk quite a bit about this issue
- Their assumption: given a surface form y_i , and the current constraint ranking **W**, we take x'_i to be the input form such that $F(x'_i, \mathbf{W}) = y_i$. The pair (x'_i, y_i) forms a training example.
- This requires a *parsing algorithm*: a method that takes an output form y_i , a constraint ranking W, and returns an input form that produces y_i
- Assumption: $x'_i = x_i$,

i.e., the recovered input is the same as the "true" input This appears to be a very strong assumption

Robustness to Noise

- What happens if the (x_i, y_i) sequence is not consistent with *any* constraint ranking U?
- This means there is *noise* in the training examples
- "Noise" examples could occur for a number of reasons:
 - The speaker makes an error in production
 - The hearer makes an error in perception of the phoneme sequence
 - The hearer interacts with a community of speakers with slightly different grammars
 - There is some acoustic noise in the environment, which leads to the hearer making a perceptual error

A New Framework: Relative Loss Bounds

- In the case that the (x_i, y_i) sequence is consistent with some constraint ranking U, we've shown that the algorithms make at most N(N-1)/2 mistakes on any sequence
- In the noisy case, consider the *minimum-error ranking*:

$$\mathbf{U}^* = \arg\min_{\mathbf{U}} \sum_i \left[\left[F(x_i, \mathbf{U}) \neq y_i \right] \right]$$

and define $Error(\mathbf{U}^*) = \sum_i [[F(x_i, \mathbf{U}^*) \neq y_i]]$

- For any online algorithm A, protocol is:
 - Initialize W to some value
 - Receive an input x_i
 - Make a prediction $y'_i = F(x_i, \mathbf{W})$
 - Receive the true output y_i , and make a mistake if $y_i \neq y'_i$
 - Update \mathbf{W} if necessary according to the algorithm A

• We define L(A) to be the number of mistakes made by the algorithm Our aim is to come up with an algorithm A such that

 $L(A) \le \alpha Error(\mathbf{U}^*) + \beta$

holds for all (x_i, y_i) sequences, where α and β are "small"

• Intuition: we can't achieve 0 errors, but we can at least get close to the number of errors of the optimal ranking U*

Results for Constraint Demotion Algorithms

• For constraint demotion (Tesar and Smolensky), it can be shown that

 $L(A) \leq O(N^2)Error(\mathbf{U}^*) + O(N^2)$

and the bound is tight for some sequences

• For the minimal gradual learning algorithm (Boersma) it can be shown that

 $L(A) \leq O(N)Error(\mathbf{U}^*) + O(N^2)$

and the bound is tight for some sequences

- → Boersma's algorithm is more robust to noise than Tesar and Smolensky's
- **But** in the worst case, if N is large (say 100), then both algorithms can be badly mislead by noisy examples (with 100 constraints, with a noise rate of 1% the bound is vacuous)

Are There Better Algorithms?

- It's probably difficult to come up with *efficient* algorithms which do better than $O(N)Error(\mathbf{U}^*)$ (the problem is very closely related to decision list learning, and as far as I know efficient algorithms with better coefficients are not known)
- **But** we'll consider algorithms which require a vote to be taken across all *N*! rankings (the weighted majority algorithm)
- The algorithm is not efficient (N! is large!) but it's interesting that the algorithm is *much* more robust to noise
- The algorithm has a loss bound of

 $L(A) \leq 2.63 Error(\mathbf{U}^*) + 2.63 \log N!$ $\leq 2.63 Error(\mathbf{U}^*) + 2.63 N \log N$

• e.g., see the tutorial by Manfred Warmuth at COLT 1999

A Warm Up for the Weighted-Majority Algorithm: The Halving Algorithm

Simple case: assume our training sequence is a series of (x_i, y_i, z_i) triples, where either y_i or z_i is the correct output for x_i , and the algorithm must predict which of y_i or z_i is correct

- Initialize: Take S to be the set of all possible grammars (constraint ranking)
- For i = 1 ... n:
 - Define $S_1 = \{ \mathbf{U} : F(x_i, \mathbf{U}) = y_i \}$ $S_2 = \{ \mathbf{U} : F(x_i, \mathbf{U}) = z_i \}$
 - If $|S_1| \ge |S_2|$, then predict y_i as the output, otherwise predict z_i
 - If algorithm proposes y_i , and this is a mistake, then $S = S_2$
 - If algorithm proposes z_i , and this is a mistake, then $S = S_1$
 - Else S remains unchanged

- If a grammar with 0 errors exists, the algorithm makes at most $\log_2 N!$ errors
- Proof sketch: every time a mistake is made, the size of S is at least halved. At the end of the training sequence, all 0-error hypotheses remain in S, so |S| > 0 at the end of the algorithm. Initial size is |S| = N!, so at most log₂ N! mistakes can be made

The Weighted Majority Algorithm

- Initialize: Take S to be the set of all possible grammars (constraint rankings). For each grammar $s \in S$, assign an initial weight of $v_s = 1$
- For i = 1 ... n:

- Define
$$S_1 = \{ \mathbf{U} : F(x_i, \mathbf{U}) = y_i \}$$

 $S_2 = \{ \mathbf{U} : F(x_i, \mathbf{U}) = z_i \}$

- Define $V_1 = \sum_{s \in S_1} v_s$ $V_2 = \sum_{s \in S_2} v_s$
- If $V_1 \ge V_2$, then predict y_i as the output, otherwise predict z_i
- If true output is y_i , then for all $s \in S_2$, set $v_s = v_s \times \beta$ where $0 \le \beta < 1$
- If true output is z_i , then for all $s \in S_1$, set $v_s = v_s \times \beta$

Intuition: take a weighted vote across the possible grammars. Each time a grammar makes an error, its weight is decreased by a factor of β

Theorem:

If $Error(\mathbf{U}^*)$ is the number of errors of the best grammar on the sequence (x_i, y_i, z_i) , and there are N! grammars under consideration, then the number of errors of the weighted majority algorithm A is such that

$$L(A) \le \frac{\log \frac{1}{\beta}}{\log \frac{2}{1+\beta}} Error(\mathbf{U}^*) + \frac{1}{\log \frac{2}{1+\beta}} \log N!$$

if $\beta = 1/e$, then this gives

 $L(A) \le 2.63 Error(\mathbf{U}^*) + 2.63 \log N!$

This is much better than the constraint demotion bounds, $L(A) \leq O(N)Error(\mathbf{U}^*) + O(N^2)$ but the algorithm requires dealing explicitly with all N! possible grammars. So *computationally* the algorithm is impractical, but it is *very* robust to noise. Could we find some efficient/approximate implementation of this algorithm?

The Weighted Majority Algorithm: Proof

(See tutorial by Manfred Warmuth at COLT 99)

- Define n = number of training examples
- Define S = number of grammars (N! in our case)
- $m_{s,i}$ = number of mistakes made by grammar *s* before *i*'th example
- $v_{s,i} = \beta^{m_{s,i}} =$ weight of *s* before *i*'th example
- $V_i = \sum_s v_{s,i}$ = total weight before *i*'th example

Then if no mistake is made at the i'th example,

$$V_i \le V_{i-1}$$

(because 0 or more hypotheses are downweighted by β) Else if a mistake is made at the *i*'th example,

$$V_i \le 0.5V_{i-1} + 0.5\beta V_{i-1} = \frac{1+\beta}{2}V_{i-1}$$

(because all grammars in the majority vote are downweighted by β , and these grammars account for at least half of V_{i-1})

Hence if M is the total number of mistakes made by the algorithm,

$$V_{n+1} \le \left(\frac{1+\beta}{2}\right)^M V_1$$

We also have

$$V_{n+1} = \sum_{s} v_{s,n+1} = \sum_{s} \beta^{M_{s,n+1}} \ge \beta^{M^*}$$

where M^* is the minimum number of errors made by *any* of the grammars Hence

$$\beta^{M^*} \le \left(\frac{1+\beta}{2}\right)^M V_1 = \left(\frac{1+\beta}{2}\right)^M S$$

where S = N! is the number of grammars under consideration Solving for M gives

$$M \le \frac{\log \frac{1}{\beta}}{\log \frac{2}{1+\beta}} M^* + \frac{1}{\log \frac{2}{1+\beta}} \log S$$