6.891: Lecture 23 (December 3rd, 2003)

Optimality Theory



Overview

e An introduction to Optimality Theory (OT)
linguistic examples, formal definitions

e Learning algorithm 1: Constraint Demotion
[Tesar and Smolensky]

e Learning algorithm 2[Boersmalj
An application to Finnish

e Learning algorithm 3[Goldwater and Johnson]

e Open questions



Optimality Theory (OT)

e A “grammar” is a function that maps input formse X’ to output forms
yey

e OT provides a way of defining a function: X — ),
and a method for defining a “hypothesis spac#’ of possible
grammars/functions

e Main application of OT is tgphonology
(although more recent work has investigated application to syntax)

e The framework was introduced by Prince and Smolensky



Syllable Structure

e Syllables consist of three portionsnset, nucleus, coda

¢ In general the nucleus has to be a vowel, onsets and codas have
to be consonants

e Possible patterns:

L,CVC]
CV
V]

VT




An Example from Phonology

e An input form can map to several possible surface forms
/veve/, — G V][eCV O]
Vi.CV]|C
V[,CV][,CO]

OV][-CV]C
e Notes:

— |o...] IS asyllable

— In some cases, vowels or consonents initipeit are not seen in the
output (*underparsing”) (e.g.V|[,CV]C)

— In some cases, vowels or consonants indhbgut are not seen in
theinput (“overparsing”):J and(] are “extra” elements inserted in
onset or nucleus position



An Example from Phonology

e An example from Maori[Prince and Smolensk)]

/inum/ — [si][snulm (pronounced “inu”) is an instance of
/voeve) — [ V],0VIC

e An example from Maori[Prince and Smolensk)]

/veve/) — |G V][eCV O] [o%][onum] "inum”
V],CV]C ilonulm "nu”
Vi,CV] [O.Cﬁ] ilonul[y,mal  "numa”

OV][sCV]C [cmi][onulm  "minu”



Constraints

e SayX’ is set of possible input form3) is set of possible output
forms

e Then aconstraint is a functiong : X x Y — N
(hereN is the set of non-negative integers)

e ¢(x,y) is the number of times that the input/output pairy)
violates the constraint



Constraint Examples

From[Tesar and Smolensky, 2000]

PONSET(Z; Y)
PNOCODA(Z, Y)
PFILL-NUC (T,y) =

PPARSE T, Y)
PFILL-ONS(Z, Y)

number of timeg, has a syllable which has no onset

number of timeg, has a syllable which has a coda

number of nucleus positions nfilled with a vowel that is not inc
number of vowels/consonants:irwhich are not realised in
number of onset positions infilled with a consonent that is not in

Candidates Onset| NoCoda| Fill-Nuc | Parse| Fill-Ons
/VCeve/) —
- V],CVC] 1 1 0 0 0
Vi.CV]C 0) 0) 0 2 0
VI,CV][-c] || 0 0 1 1 0
LOV],CVI]C || O 0) 0 1 1




More Formalities

e We take(GEN to be a function that maps an input fonno a
set of candidate&EN (x) C Y

e Say we haveéV constraintsg; fori =1... N

e The n-dimensional feature vector for afw,y) pair is

(I)(iL‘,y) — {d)l(xvy)? gb?(xvy) s ng(CL‘,y)}

e Note the similarity to global linear models: in GLM’s we'd
have a parameter vectdy < R, and define

B (1) = argmax,cenn (7, y) - W

e OT uses an alternative to a parameter vestoe R?:
Instead, uses a stricanking over the constraints



Constraint Rankings

e A constraint ranking is simply a total order over the constraints

e Notation: U; for ;j = 1...N is the ranking of thej’th
constraint. Eacl; € {1... N}. EachU; € {1... N}, and
no two valuesg # j' can havd/, = U

e Example: say

$1 = QONSET 92 = ®PNOCODA: 3 = PEILL-NUC
®4 = PPARSE @5 = PFILL-ONS

and

{U1,U3,Us3,U4,Us} = {1,4,3,2,5}
then the ordering on constraints is
1 > P4 > Q3> P2 > @5



More Formalities

e Notation: we usey; >y- to mean thay, is preferred tqy,

e DefineCost;(x,y, U) for an inputz, and a candidater, y), to be

Costi(x,y, U) = Z P;(z,y)

J:Uj=1

l.e.,Cost;(x,y, U) is the total number of constraints with weight, = ¢
which are violated byz, y)

e Under these definitions, to choose which of formsandy, are more
optimal:
— Defined = min;{i : Cost;(z,y1, U) # Cost;(x,y2, U)}
— If Costyg(x,y1) < Costq(x,ys) theny; =ys
— If Costy(z,y2) > Costy(x,y1) thenys =y,



The basic idea: find the highest ranked constraint on which two
output forms differ, and take the output form which violates this
constraint the least number of times



Examples

Under

PONSET > PNOCODA => PFILL-NUC > PPARSE-> ?FILL-ONS

Candidates Onset| NoCoda| Fill-Nuc | Parse| Fill-Ons
/VCevC/) —
- V][,CVC] 1 1 0 0 0)
Vi,CV]C 0 0 0 2 0
VI,CV][,CcO] || 0 0 1 1 0
OV][,CV]C || O 0 0 1 1




Examples

Under

PONSET > PFILL-ONS => ®PNOCODA > PFILL-NUC > PPARSE

Candidates Onset| NoCoda| Fill-Nuc | Parse| Fill-Ons
/VCevC/) —
- V][,CVC] 1 1 0 0 0)
Vi,CV]C 0 0 0 2 0
VI,CV][,CcO] || 0 0 1 1 0
OV][-CV]C || O 0 0 1 1




Summary

e Task is to define a mapping froAi to Y

e Three components to an OT model:

— GEN(z) enumerates a set of candidates:for

— ®(x,y) maps any(z,y) pair in X x Y to a vector inN" (®(z, y)
IS a vector summarizing the number of violations of each of/¥he
constraints)

— U e N¥ is a ranking over théV constraints | ; Is the ranking of
the 5’th constraint)

e /(x,U) is then the member ofzEN(x) which dominates
every other member ¢k EN (z)



Learning in OT

Task is to learn a mapping frodi to
Three components to an OT modelEN (x), ®(z,y), and

(z, U) is the member o EN(z) which dominates every other member
of GEN(x)

Each ranking defines a different function (z, U)
There areV! possible rankings (N is number of constraints)

Learning= choose a value for/, given some form of supervision



The Constraint Demotion Algorithm

e Assume we have a sequenag,y;) forc =1...n
e How do we learn a rankin§jV from these examples?

e First algorithm we’ll consider:
Constraint DemotiofTesar and Smolensky]



Partial Orders on Constraints

e Algorithm deals withpartial ordersover the contraints
e A partial order is again defined by a vectdr ¢ NV

e For example: {W, Wy, W3, Wy, W5} = {1,2,1,2,1},
represents the partial ordering

{01, 03, 05} > { P2, 4}

e In the constraint demotion algorithm, initial partial order is
— 1, so that partial order is

{¢17 ¢27 ¢37 ¢47 ¢5}



Applying a Partial Order

Our method for deciding between candidates;; and y- Is well-
defined under a partial order:

e DefineCost;(x,y, U) for an inputz, and a candidatér, y), to be

Cost;(z,y, ZCI)xy

e Under these definitions, to choose which of forpnsand y, are more
optimal:
— Defined = min;{i : Cost;(x,y1, U) # Cost;(x,y2, U)}
— If Costy(x,y1) < Costq(z,y2) theny, =ys
— If Costy(x,y2) > Costq(x,y1) thenys >y,



Under

An Example

{9ONSET PNOCODA: PFILL-NUC } > {9PARSE PFILL-ONS}

Candidates

Onset

NoCoda Fill-Nuc

Parse

Fill-Ons

/VCevC/) —
V][CVC]
V[,CV]C
V[,CV][,cO]
OV][,CV]C

oo ok

OO or

oOPrr OO

R, DNO

O OO




The Constraint Demotion Algorithm

Inputs: Training sef(x;,y;) fori =1...n
Initialization: =1
Define: (x, W) = optimal output for inputr under partial ordet
Algorithm:
Fort:=1...n
i = (xiv )
If (2; # i)

o Seld = argminje (¢, (z,)<s (.y:)t W
e Sete = arg MIN; e (G, (2,2:)>b; (2,y:)} j (Note that\W, > d)
o SetW, = e+ 1

Note: d is the highest ranked constraint which prefersvery;
e IS the highest ranked constraint which prefgreverz;

Output: Partial order



A Theorem Underlying the Constraint Demotion Algorithm

Theorem: (Equivalent to results in Tesar and Smolensky). For any sequence
(z;,y;) for « = 1...n, for any GEN, ® combination where® involves N
constraints, if there exists some total ordérsuch that/'(z;, U) = y; for all

i = 1...n, then the constraint demotion algorithm makes at mogyv — 1)/2
mistakes on the sequence.



A Proof

DefineW” to be the partial order after thiéth mistake has been made
From initialization: W° = 1

First property: forallk, k+N <y Wi

Follows by induction. True fok = 0. Each mistake implies that one
component of\W is increased by at least a value Igfso the property is
maintained

Second property: for all j, k, W < U;
We’'ll prove this shortly

Theorem then follows easily:
for all &, > WE < N(N +1)/2

= for all &, k+N <Y, W< N(N+1)/2

= for all &, k< N(N-1)/2



Proof of the Second Property

e Proof by induction ork:

true for the base case bf= 0, asW"

; = 1forall j,andU; > 1forall

e Inductive case: assunié f < U; for all 7, and prove that the demotion

algorithm givesw ™! < U for all

e The demotion step, plus one additional definition:

d = argmije (j:¢;(z,2)<d; (x.y:)} ) )

€ = arg Millje (., (z,2)>0; (e.5:)} VW5 (NOWE hAtWe > W)

J = arg MINGef5:¢,(z,2:)>¢;(z,y:)} i

Setwh*!l — Wk 1
k+1 __ k .

SetW, " = Wy forallj #d

Note: d is the highest ranked constraint und&r which prefers:; overy;
e Is the highest ranked constraint und&r which prefersy; overz;
f is the highest ranked constraint undémwhich prefergy; overz;



e We then have

P<WE < U< Uy
hence

ZH: Pr1< Uy

hence the property ’3*1 < Uy, holds for the constraint, and f“ =
¥ for j # d means thatW™' < U; for all j by the inductive

hypothesis. !

e The inequalities hold because of the following arguments:

- Wr < WY because we must haves(z,z) > ¢s(z,y;)
for f to beargmin;cyj.¢,(z,2)>¢,(x,y:)} Uj» ande is defined as
. k
arg MIge{j:¢,(x,2;)>¢;(x,y:)} V5
— W% < Uy by the inductive hypothesis

— Uy < Uy becausel defines a total order, and if ; > U/ then
constraintd would be chosen ahead 6f



The (Minimal) Gradual Learning Algorithm

Inputs: Training set(x;,y;) fori =1...n
Initialization: =1
Define: (x, W) = optimal output for input: under partial order
Algorithm:
Fori=1...n
g = (xh )
If (2 # yi)

o Setd = arg MiN e (.. (z,2:) <, (w,ys)} WV j
e SetW,;,=W,;+1

Note: d is the highest ranked constraint which prefersvery;

Output: Partial order

This algorithm also makes at maSt( NV — 1) /2 mistakes, through a very similar
proof to that for constraint demotion



An Example from Finnish

e [Boersma and Hayes, 1999]
Empirical tests of the gradual learning algorithm.

e Finnish genitive plurals can be formed in two ways:
with a weak ending (usually-jen/) or a strong ending
(typically /-iden))

e In some caseshoth endings are possible, and are seen In
corpora
— e.g.,naapuri(neighbour)= naapurien, or naapureiden
e Questions:

— How can we build models that handle free variation?
— How can we learn these models from data?



Stochastic Optimality Theory [Boersmaj

e Before, we had a deterministic method for calculating

(z, W)

e A stochastic method:

— Randomly draw a new vectai/’, where eachV’. = W ;+ gaussian

- - - ‘7
noise with variancer

— Output is then /'(z, W'), where ' is as defined before (a
deterministic function of: and W'

We'll call this method /', (z, W)

e Intuition: if two valuesW ; andW ;, are close together in value (i.e., close
w.r.t. o), then there is some chance that they will be switched

e Motivation: free variation Sometimes more than one surface form is
possible for a given input, and different frequencies are observed in data



The Maximal Gradual Learning Algorithm

Inputs: Training set(x;,y;) fori =1...n
Gaussian variance > 0, “plasticity” parametep > 0

Initialization: =1
Define: -(x, W) = stochastic output for input under partial order
Algorithm:
Fort:=1...n
i = (xia )
If (z: # yi)
e FOr anyj such thatbj (ZC, ZZ) < qu (LU, yi), set j = j +p
e For anyj such thaw;(z, z;) > ¢i(x,y;), setW,; = W, —p

Output: Partial order



Properties of The Maximal Gradual Learning Algorithm

e Questions:

— Does the maximal gla converge?

— If so, does it converge to a model that matches the frequencies seen
In training data?

e Main results appear to be empirical (rather than theoretical)



Experiments on Finnish

e Constraints used:

— Number of stressed syllables that aren’t heavy
— Number of heavy syllables that aren’t stressed

— Number of stressed syllables with the vowel I/O/A
(3 constraints, one for each vowel)

— Number of unstressed syllables with the vowel I/O/A
(3 constraints, one for each vowel)

— Number of instances of consecutive heavy syllables
— Number of instances of consecutive light syllables
— Number of instances of consecutive unstressed syllables



Experiments on Finnish

e Data set has 5698 tokens, 22 different phonological stem
structures

e Algorithm run over 388,000 instances,
with parameter schedule:

Data Plasticity o
First 22,000 2 10
Second 22,000 2 2
Third 22,000 0.2 2
Fourth 22,000 0.02 10

Last 300,000 0.002 10

e Results: final model does a good job of modeling frequencies
of the different forms



A Log-Linear Model

|Goldwater and Johnson, 2003]
Learning OT Constraint Rankings Using a Maximum Entropy Model

Work defines a distribution over possible outputs:

6q)(x7y)'w
Ply|z,W) =

Zy’ €eGEN/(x) e®(@y’) W

Parameters are estimated by maximizing
L(W) =Y logP(y; | z;, W) —C Y Wi
7 k
Output under parameter valu@é is

(z, W) = argmax, cgen() ®(z,y) - W

Results are very close to that of the GLA



Equivalence Between Constraint Rankings and Linear Models

e In OT, we have''(x, U) wherelU is arankingor partial order
over the constraints

e In linear models, we have
(z, W) = argmaxyeGEN(x)‘I)(% y) - W

whereW e RY

e |f for any constraint, there is an upper boundn the number
of violations, I.e.,

®;(z,y) <b forallz,y,j

then there is a parameter settiig € R such that the global
linear model defines the same functienas the OT model

with parameters



An Example

e Say the ranking over constraints is

{ 1y Y2y, Y3y, Y4, 5} — {173747275}
l.e.,
P1 > Q4 > P2 > P53 > @5

e Say the number of constraint violations is bounded by 9
for every constraint

e Then we can choose

{ Ly 2 39 4, 5} — {105,103,102,104,10}



Open Issues

e Language acquisition: How do humans acquire constraint
rankings?
(critical issue: input forms are not seen)

e How robust are the learning algorithms to noise?



Language Acquisition

e The learning algorithms (Tesar and Smolensky, Boersma,
Goldwater and Johnson) are intended as modelsumhan
language acquisition

e Address a basic question in linguistics: how do people acquire
language?

e An unrealistic part of these algorithmghey assume that
both input and output forms (z;, y;) pairs are observed by
the learning algorithm. In human language learning, only
outputs are seen.



One Proposed Solution to This Problem

e Tesar and Smolensky talk quite a bit about this issue

e Their assumption: given a surface fomn and the current
constraint rankingV, we taker’ to be the input form such that
(i, W) = y,;. The pair(z}, y;) forms a training example.
e This requires gyarsing algorithm a method that takes an
output formy;, a constraint rankingV, and returns an input
form that producesg;

e Assumption: z! = x;,
l.e., the recovered input is the same as the “true” input
This appears to be a very strong assumption



Robustness to Noise

e What happens if théz;, ;) sequence is not consistent with
anyconstraint ranking /?

e This means there 13oisein the training examples

e “Noise” examples could occur for a number of reasons:

— The speaker makes an error in production
— The hearer makes an error in perception of the phoneme sequence

— The hearer interacts with a community of speakers with slightly
different grammars

— There is some acoustic noise in the environment, which leads to the
hearer making a perceptual error



A New Framework: Relative Loss Bounds

e In the case that théz;,y;) sequencas consistent with some constraint
ranking U, we've shown that the algorithms make at mo&tN — 1)/2
mistakes on any sequence

¢ In the noisy case, consider thenimum-error ranking:

* argminz [ (s, U) # ]

and definelrror(U™) = > [[F/(xs, UT) # yi]
e For any online algorithnm¥, protocol is:

— Initialize W to some value
— Recelive an input;
— Make a predictiory’ = /' (z;, W)

/
{

— Receive the true output, and make a mistakeif;, # y
— UpdateW if necessary according to the algorith#n



e We defineL(A) to be the number of mistakes made by the algorithm
Our aim is to come up with an algorithrh such that

L(A) < aError(U") + 5
holds forall (z;,y;) sequences, whereand are “small”

e Intuition : we can’t achieve errors, but we can at least get close to the
number of errors of the optimal rankirng®



Results for Constraint Demotion Algorithms

For constraint demotion (Tesar and Smolensky), it can be shown that
L(A) < O(N*)Error(U*) + O(N?)

and the bound is tight for some sequences

For the minimal gradual learning algorithm (Boersma) it can be shown that
L(A) < O(N)Error(U*) + O(N?)

and the bound is tight for some sequences

= Boersma’s algorithm is more robust to noise than Tesar and
Smolensky’s

But in the worst case, IV is large (say 100), then both algorithms can be
badly mislead by noisy examples
(with 100 constraints, with a noise rate of 1% the bound is vacuous)



Are There Better Algorithms?

e It's probably difficult to come up witkefficientalgorithms which do better
thanO(N)Error(U™) (the problem is very closely related to decision list
learning, and as far as | know efficient algorithms with better coefficents
are not known)

e But we’ll consider algorithms which require a vote to be taken across all
N! rankings
(the weighted majority algorithm)

e The algorithm is not efficient/X! is large!) but it's interesting that the
algorithm ismuchmore robust to noise

e The algorithm has a loss bound of

L(A) < 263Error(U")+ 2.631log N!
< 2.63Error(U") + 2.63N log N

e e.g., see the tutorial bylanfred Warmutrat COLT 1999



A Warm Up for the Weighted-Majority Algorithm:
The Halving Algorithm

Simple case: assume our training sequence is a series(af, y;, z;) triples,
where either y; or z; is the correct output for z;, and the algorithm must
predict which of y; or z; is correct

e Initialize: Take S to be the set of all possible grammars (constraint
ranking)

e For:=1...n:

— DefineS; ={U : I'(x;, U) = y;}
So ={U: F(z;,U) = z}
— If |S1| > |S2|, then prediciy; as the output, otherwise predigt
— If algorithm proposeg;, and this is a mistake, thefi= S
— If algorithm proposes;, and this is a mistake, theh= S,
— ElseS remains unchanged



e |f a grammar withD errors exists, the algorithm makes at most
log, N!errors

e Proof sketch: every time a mistake is made, the siz8 isfat
least halved. At the end of the training sequence(-akror
hypotheses remain i}, so|S| > 0 at the end of the algorithm.
Initial size is|S| = N!, so at mosiog, N! mistakes can be
made



The Weighted Majority Algorithm

e Initialize: Take S to be the set of all possible grammars (constraint
rankings). For each grammaure S, assign an initial weight of, = 1

e For:=1...n:

— DefineS; = {U : /'(z;, U) = y;}
Sy = { : (xia ) — Z‘L}
— DefineVy =3 s vs

‘/2 — ZSGSQ st
— If V1 > V5, then predicty; as the output, otherwise predigt

— If true output isy;, then for alls € S,
setv, = vs x Swhere0 < 5 < 1

— If true output isz;, then for alls € S,
setvy = vy X O

Intuition: take a weighted vote across the possible grammars.
Each time a grammar makes an error, its weight is decreased
by a factor of 3



Theorem:
If Error(U") is the number of errors of the best grammar
on the sequencéz;,y;, z;), and there areN! grammars under
consideration, then the number of errors of the weighted majority
algorithm A is such that

1
logg Error(U") + 5
148 08 15

if 3 =1/e, then this gives
L(A) < 2.63Error(U*) + 2.631og N!

L(A) <

< log N
log

This is much better than the constraint demotion boundd,) <
O(N)Error(U*) + O(N?) but the algorithm requires dealing
explicitly with all N! possible grammars. Smomputationallythe
algorithm is impractical, but it izery robust to noise. Could we
find some efficient/approximate implementation of this algorithm?



The Weighted Majority Algorithm: Proof
(See tutorial by Manfred Warmuth at COLT 99)

e Definen = number of training examples
e DefineS = number of grammars\(! in our case)
e mg,; = number of mistakes made by grammayefore:'th example
o v, ,; = [ = weight of s before:'th example
o V; =) . v,,; = total weight before’th example
Then if no mistake is made at thigh example,
Vi < Viq

(becaus® or more hypotheses are downweighted®)y
Else if a mistake is made at thi¢h example,

1
Vi <0.5Vi_q + 0.58V,_1 = %BVH

(because all grammars in the majority vote are downweighted, @nd these
grammars account for at least halflgf_)



Hence ifM is the total number of mistakes made by the algorithm,
1 M
Vg1 < (%ﬁ) Vi

We also have

Vn+1 — sz7n+1 — Z/BMs,n+1 Z /BM
S S

whereM™* is the minimum number of errors made ayy of the grammars

Hence v v
rre() e () 0

whereS = N!is the number of grammars under consideration
Solving for M gives

log +
M< —2 M+ ——

08 115 0% 1+

log S



