
6.891: Lecture 23 (December 3rd, 2003)

Optimality Theory



Overview
� An introduction to Optimality Theory (OT)

linguistic examples, formal definitions

� Learning algorithm 1: Constraint Demotion
[Tesar and Smolensky]

� Learning algorithm 2:[Boersma]
An application to Finnish

� Learning algorithm 3:[Goldwater and Johnson]

� Open questions



Optimality Theory (OT)
� A “grammar” is a function that maps input formsx 2 X to output forms

y 2 Y

� OT provides a way of defining a functionF : X ! Y ,
and a method for defining a “hypothesis space”H of possible
grammars/functions

� Main application of OT is tophonology
(although more recent work has investigated application to syntax)

� The framework was introduced by Prince and Smolensky



Syllable Structure
� Syllables consist of three portions:onset, nucleus, coda

� In general the nucleus has to be a vowel, onsets and codas have
to be consonants

� Possible patterns:

[�CV C]

[�CV ]

[�V ]

[�V C]



An Example from Phonology
� An input form can map to several possible surface forms

=V CV C= ! [�V ][�CV C]

V [�CV ]C

V [�CV ][�C ��]

[��V ][�CV ]C

� Notes:

– [�: : :] is a syllable

– In some cases, vowels or consonents in theinput are not seen in the
output (“underparsing”) (e.g.,V [�CV ]C)

– In some cases, vowels or consonants in theoutput are not seen in
the input (“overparsing”):� and �� are “extra” elements inserted in
onset or nucleus position



An Example from Phonology
� An example from Maori ([Prince and Smolensky]):

=inum= ! [�i][�nu]m (pronounced “inu”) is an instance of

=V CV C= ! [�V ][�CV ]C

� An example from Maori ([Prince and Smolensky]):

=V CV C= ! [�V ][�CV C] xxxxx [�i][�num] ”inum”
V [�CV ]C i[�nu]m ”nu”

V [�CV ][�C ��] i[�nu][�ma] ”numa”

[��V ][�CV ]C [�mi][�nu]m ”minu”



Constraints
� SayX is set of possible input forms,Y is set of possible output

forms

� Then aconstraint is a function� : X � Y ! N

(hereN is the set of non-negative integers)

� �(x; y) is the number of times that the input/output pair(x; y)

violates the constraint�



Constraint Examples

From[Tesar and Smolensky, 2000]:

�ONSET(x; y) = number of timesy has a syllable which has no onset

�NOCODA(x; y) = number of timesy has a syllable which has a coda

�FILL-NUC(x; y) = number of nucleus positions iny filled with a vowel that is not inx

�PARSE(x; y) = number of vowels/consonants inx which are not realised iny

�FILL-ONS(x; y) = number of onset positions iny filled with a consonent that is not inx

Candidates Onset NoCoda Fill-Nuc Parse Fill-Ons

=V CV C=!

xxx [�V ][�CV C] 1 1 0 0 0
xxx V [�CV ]C 0 0 0 2 0
xxx V [�CV ][�C ��] 0 0 1 1 0
xxx [��V ][�CV ]C 0 0 0 1 1



More Formalities
� We takeGEN to be a function that maps an input formx to a

set of candidatesGEN(x) � Y

� Say we haveN constraints,�i for i = 1 : : : N

� The n-dimensional feature vector for an(x; y) pair is

�(x; y) = f�1(x; y); �2(x; y) : : : �N (x; y)g

� Note the similarity to global linear models: in GLM’s we’d
have a parameter vectorW 2 R

N , and define

�(x) = argmaxy2GEN(x)�(x; y) �W

� OT uses an alternative to a parameter vectorW 2 R
d:

instead, uses a strictranking over the constraints



Constraint Rankings
� A constraint ranking is simply a total order over the constraints

� Notation: Uj for j = 1 : : : N is the ranking of thej’th
constraint. EachUj 2 f1 : : : Ng. EachUj 2 f1 : : : Ng, and
no two valuesj 6= j0 can haveUj = Uj0

� Example: say

�1 = �ONSET, �2 = �NOCODA, �3 = �FILL-NUC,

�4 = �PARSE, �5 = �FILL-ONS

and

fU1; U2; U3; U4; U5g = f1; 4; 3; 2; 5g

then the ordering on constraints is

�1 � �4 � �3 � �2 � �5



More Formalities
� Notation: we usey1�y2 to mean thaty1 is preferred toy2

� DefineCosti(x; y;U) for an inputx, and a candidate(x; y), to be

Costi(x; y;U) =

X
j:Uj=i
�j(x; y)

i.e.,Costi(x; y;U) is the total number of constraints with weightUj = i

which are violated by(x; y)

� Under these definitions, to choose which of formsy1 and y2 are more
optimal:

– Defined = minifi : Costi(x; y1;U) 6= Costi(x; y2;U)g

– If Costd(x; y1) < Costd(x; y2) theny1�y2
– If Costd(x; y2) > Costd(x; y1) theny2�y1



The basic idea: find the highest ranked constraint on which two
output forms differ, and take the output form which violates this
constraint the least number of times



Examples

Under

�ONSET� �NOCODA� �FILL-NUC � �PARSE� �FILL-ONS

Candidates Onset NoCoda Fill-Nuc Parse Fill-Ons

=V CV C=!

xxx [�V ][�CV C] 1 1 0 0 0
xxx V [�CV ]C 0 0 0 2 0
xxx V [�CV ][�C ��] 0 0 1 1 0
xxx [��V ][�CV ]C 0 0 0 1 1



Examples

Under

�ONSET� �FILL-ONS � �NOCODA� �FILL-NUC � �PARSE

Candidates Onset NoCoda Fill-Nuc Parse Fill-Ons

=V CV C=!

xxx [�V ][�CV C] 1 1 0 0 0
xxx V [�CV ]C 0 0 0 2 0
xxx V [�CV ][�C ��] 0 0 1 1 0
xxx [��V ][�CV ]C 0 0 0 1 1



Summary
� Task is to define a mapping fromX toY

� Three components to an OT model:

– GEN(x) enumerates a set of candidates forx

– �(x; y) maps any(x; y) pair inX � Y to a vector inN N (�(x; y)

is a vector summarizing the number of violations of each of theN

constraints)

– U 2 N
N is a ranking over theN constraints (Uj is the ranking of

thej’th constraint)

� F (x;U) is then the member ofGEN(x) which dominates
every other member ofGEN(x)



Learning in OT
� Task is to learn a mapping fromX toY

� Three components to an OT model:GEN(x),�(x; y), andU.

� F (x;U) is the member ofGEN(x) which dominates every other member
ofGEN(x)

� Each rankingU defines a different functionF (x;U)

� There areN ! possible rankings (N is number of constraints)

� Learning= choose a value forU, given some form of supervision



The Constraint Demotion Algorithm
� Assume we have a sequence(xi; yi) for i = 1 : : : n

� How do we learn a rankingW from these examples?

� First algorithm we’ll consider:
Constraint Demotion[Tesar and Smolensky]



Partial Orders on Constraints
� Algorithm deals withpartial ordersover the contraints

� A partial order is again defined by a vectorW 2 N
N

� For example: fW1;W2;W3;W4;W5g = f1; 2; 1; 2; 1g,
represents the partial ordering

f�1; �3; �5g � f�2; �4g

� In the constraint demotion algorithm, initial partial order is

W = �1, so that partial order is

f�1; �2; �3; �4; �5g



Applying a Partial Order

Our method for deciding between candidatesy1 and y2 is well-
defined under a partial order:

� DefineCosti(x; y;U) for an inputx, and a candidate(x; y), to be

Costi(x; y;U) =

X
j:Uj=i
�j(x; y)

� Under these definitions, to choose which of formsy1 and y2 are more
optimal:

– Defined = minifi : Costi(x; y1;U) 6= Costi(x; y2;U)g

– If Costd(x; y1) < Costd(x; y2) theny1�y2
– If Costd(x; y2) > Costd(x; y1) theny2�y1



An Example

Under
f�ONSET; �NOCODA; �FILL-NUCg � f�PARSE; �FILL-ONSg

Candidates Onset NoCoda Fill-Nuc Parse Fill-Ons

=V CV C=!

xxx [�V ][�CV C] 1 1 0 0 0
xxx V [�CV ]C 0 0 0 2 0
xxx V [�CV ][�C ��] 0 0 1 1 0
xxx [��V ][�CV ]C 0 0 0 1 1



The Constraint Demotion Algorithm

Inputs: Training set(xi; yi) for i = 1 : : : n

Initialization: W = �1
Define: F (x;W) = optimal output for inputx under partial orderW

Algorithm:
For i = 1 : : : n

zi = F (xi;W)

If (zi 6= yi)

� Setd = argminj2fj:�j(x;zi)<�j(x;yi)gWj

� Sete = argminj2fj:�j(x;zi)>�j(x;yi)gWj (Note thatWe �Wd)

� SetWd =We + 1

Note:d is the highest ranked constraint which preferszi overyi

Note:e is the highest ranked constraint which prefersyi overzi

Output: Partial orderW



A Theorem Underlying the Constraint Demotion Algorithm

Theorem: (Equivalent to results in Tesar and Smolensky). For any sequence

(xi; yi) for i = 1 : : : n, for anyGEN;� combination where� involvesN

constraints, if there exists some total orderU such thatF (xi;U) = yi for all

i = 1 : : : n, then the constraint demotion algorithm makes at mostN(N � 1)=2

mistakes on the sequence.



A Proof
� DefineWk to be the partial order after thek’th mistake has been made

From initialization:W0 = �1

� First property: for all k, xx k +N �
PN

j=1W

k
j

Follows by induction. True fork = 0. Each mistake implies that one
component ofW is increased by at least a value of1, so the property is
maintained

� Second property: for all j; k,Wk
j � Uj

We’ll prove this shortly

� Theorem then follows easily:

) for all k,

P
jW

k
j �
P

jUj = N(N + 1)=2

) for all k, k +N �
PN

j=1W

k
j � N(N + 1)=2

) for all k, k � N(N � 1)=2



Proof of the Second Property
� Proof by induction onk:

true for the base case ofk = 0, asW0
j = 1 for all j, andUj � 1 for all j

� Inductive case: assumeWk
j � Uj for all j, and prove that the demotion

algorithm givesWk+1

j � Uj for all j

� The demotion step, plus one additional definition:

d = argminj2fj:�j(x;zi)<�j(x;yi)gW
k

j

e = argminj2fj:�j(x;zi)>�j(x;yi)gW
k

j (Note thatWk
e �W
k

d)

f = argminj2fj:�j(x;zi)>�j(x;yi)gUj
SetWk+1

d =Wk
e + 1

SetWk+1

j =Wk
j for all j 6= d

Note:d is the highest ranked constraint underW which preferszi overyi

Note: e is the highest ranked constraint underW which prefersyi overzi

Note:f is the highest ranked constraint underU which prefersyi overzi



� We then have

W

k
e �W
k

f � Uf < Ud

hence

W

k+1

d =Wk
e + 1 � Ud

hence the propertyWk+1

d � Ud holds for the constraintd, andWk+1

j =

W

k
j for j 6= d means thatWk+1

j � Uj for all j by the inductive
hypothesis.

� The inequalities hold because of the following arguments:

– Wk
e � W

k
f because we must have�f (x; zi) > �f (x; yi)

for f to be argminj2fj:�j(x;zi)>�j(x;yi)gUj , and e is defined as

argminj2fj:�j(x;zi)>�j(x;yi)gW
k

j

– Wk
f � Uf by the inductive hypothesis

– Uf < Ud becauseU defines a total order, and ifUd > Uf then
constraintd would be chosen ahead off



The (Minimal) Gradual Learning Algorithm

Inputs: Training set(xi; yi) for i = 1 : : : n

Initialization: W = �1

Define: F (x;W) = optimal output for inputx under partial orderW

Algorithm:
For i = 1 : : : n

zi = F (xi;W)

If (zi 6= yi)

� Setd = argminj2fj:�j(x;zi)<�j(x;yi)gWj

� SetWd =Wd + 1

Note:d is the highest ranked constraint which preferszi overyi

Output: Partial orderW

This algorithm also makes at mostN(N � 1)=2 mistakes, through a very similar
proof to that for constraint demotion



An Example from Finnish
� [Boersma and Hayes, 1999]:

Empirical tests of the gradual learning algorithm.

� Finnish genitive plurals can be formed in two ways:
with a weak ending (usually/-jen/) or a strong ending
(typically /-iden/)

� In some cases,both endings are possible, and are seen in
corpora

– e.g.,naapuri(neighbour)) n�aapurien, orn�aapur�eiden

� Questions:

– How can we build models that handle free variation?

– How can we learn these models from data?



Stochastic Optimality Theory [Boersma]
� Before, we had a deterministic method for calculating

F (x;W)

� A stochastic method:

– Randomly draw a new vectorW0, where eachW0
j =Wj+ gaussian

noise with variance�
– Output is thenF (x;W0), where F is as defined before (a

deterministic function ofx andW0

We’ll call this method F �(x;W)

� Intuition: if two valuesWj andWj0 are close together in value (i.e., close
w.r.t. �), then there is some chance that they will be switched

� Motivation: free variation. Sometimes more than one surface form is
possible for a given input, and different frequencies are observed in data



The Maximal Gradual Learning Algorithm

Inputs: Training set(xi; yi) for i = 1 : : : n

Gaussian variance� > 0, “plasticity” parameter� > 0

Initialization: W = �1
Define: F�(x;W) = stochastic output for inputx under partial orderW

Algorithm:
For i = 1 : : : n

zi = F (xi;W)

If (zi 6= yi)

� For anyj such that�j(x; zi) < �j(x; yi), setWj =Wj + �

� For anyj such that�j(x; zi) > �j(x; yi), setWj =Wj � �

Output: Partial orderW



Properties of The Maximal Gradual Learning Algorithm
� Questions:

– Does the maximal gla converge?

– If so, does it converge to a model that matches the frequencies seen
in training data?

� Main results appear to be empirical (rather than theoretical)



Experiments on Finnish
� Constraints used:

– Number of stressed syllables that aren’t heavy

– Number of heavy syllables that aren’t stressed

– Number of stressed syllables with the vowel I/O/A
(3 constraints, one for each vowel)

– Number of unstressed syllables with the vowel I/O/A
(3 constraints, one for each vowel)

– Number of instances of consecutive heavy syllables

– Number of instances of consecutive light syllables

– Number of instances of consecutive unstressed syllables



Experiments on Finnish
� Data set has 5698 tokens, 22 different phonological stem

structures

� Algorithm run over 388,000 instances,
with parameter schedule:

Data Plasticity �

First 22,000 2 10
Second 22,000 2 2
Third 22,000 0.2 2
Fourth 22,000 0.02 10
Last 300,000 0.002 10

� Results: final model does a good job of modeling frequencies
of the different forms



A Log-Linear Model
� [Goldwater and Johnson, 2003]:

Learning OT Constraint Rankings Using a Maximum Entropy Model

� Work defines a distribution over possible outputs:

P (y j x;W) =

e�(x;y)�WP
y02GEN(x) e
�(x;y0)�W

� Parameters are estimated by maximizing

L(W) =
X

i

logP (yi j xi;W)� C
X

k

W

2
k

� Output under parameter valuesW is

F (x;W) = argmaxy2GEN(x)�(x; y) �W

� Results are very close to that of the GLA



Equivalence Between Constraint Rankings and Linear Models
� In OT, we haveF (x;U) whereU is arankingor partial order

over the constraints

� In linear models, we have
F (x;W) = argmaxy2GEN(x)�(x; y) �W

whereW 2 R
N

� If for any constraint, there is an upper boundb on the number
of violations, i.e.,

�j(x; y) � b for all x; y; j

then there is a parameter settingW 2 R
d such that the global

linear model defines the same functionF as the OT model
with parametersU



An Example
� Say the ranking over constraints is

fU1;U2;U3;U4;U5g = f1; 3; 4; 2; 5g

i.e.,

�1 � �4 � �2 � �3 � �5

� Say the number of constraint violations is bounded byb = 9

for every constraint

� Then we can choose

fW1;W2;W3;W4;W5g = f105; 103; 102; 104; 10g



Open Issues
� Language acquisition: How do humans acquire constraint

rankings?
(critical issue: input forms are not seen)

� How robust are the learning algorithms to noise?



Language Acquisition
� The learning algorithms (Tesar and Smolensky, Boersma,

Goldwater and Johnson) are intended as models ofhuman
language acquisition

� Address a basic question in linguistics: how do people acquire
language?

� An unrealistic part of these algorithms:they assume that
both input and output forms (xi; yi) pairs are observed by
the learning algorithm. In human language learning, only
outputs are seen.



One Proposed Solution to This Problem
� Tesar and Smolensky talk quite a bit about this issue

� Their assumption: given a surface formyi, and the current
constraint rankingW, we takex0i to be the input form such that

F (x0i;W) = yi. The pair(x0i; yi) forms a training example.

� This requires aparsing algorithm: a method that takes an
output formyi, a constraint rankingW, and returns an input
form that producesyi

� Assumption: x0i = xi,
i.e., the recovered input is the same as the “true” input
This appears to be a very strong assumption



Robustness to Noise
� What happens if the(xi; yi) sequence is not consistent with

anyconstraint rankingU?

� This means there isnoisein the training examples

� “Noise” examples could occur for a number of reasons:

– The speaker makes an error in production

– The hearer makes an error in perception of the phoneme sequence

– The hearer interacts with a community of speakers with slightly
different grammars

– There is some acoustic noise in the environment, which leads to the
hearer making a perceptual error



A New Framework: Relative Loss Bounds
� In the case that the(xi; yi) sequenceis consistent with some constraint

rankingU, we’ve shown that the algorithms make at mostN(N � 1)=2

mistakes on any sequence

� In the noisy case, consider theminimum-error ranking:

U
� = argmin

U

X
i

[[F (xi;U) 6= yi]]

and defineError(U�) =
P

i [[F (xi;U
�) 6= yi]]

� For any online algorithmA, protocol is:

– InitializeW to some value

– Receive an inputxi

– Make a predictiony0i = F (xi;W)

– Receive the true outputyi, and make a mistake ifyi 6= y0i

– UpdateW if necessary according to the algorithmA



� We defineL(A) to be the number of mistakes made by the algorithm
Our aim is to come up with an algorithmA such that

L(A) � �Error(U�) + �

holds forall (xi; yi) sequences, where� and� are “small”

� Intuition : we can’t achieve0 errors, but we can at least get close to the
number of errors of the optimal rankingU�



Results for Constraint Demotion Algorithms
� For constraint demotion (Tesar and Smolensky), it can be shown that

L(A) � O(N2)Error(U�) +O(N2)

and the bound is tight for some sequences

� For the minimal gradual learning algorithm (Boersma) it can be shown that
L(A) � O(N)Error(U�) +O(N2)

and the bound is tight for some sequences

� ) Boersma’s algorithm is more robust to noise than Tesar and
Smolensky’s

� But in the worst case, ifN is large (say 100), then both algorithms can be
badly mislead by noisy examples
(with 100 constraints, with a noise rate of 1% the bound is vacuous)



Are There Better Algorithms?
� It’s probably difficult to come up withefficientalgorithms which do better

thanO(N)Error(U�) (the problem is very closely related to decision list
learning, and as far as I know efficient algorithms with better coefficents
are not known)

� But we’ll consider algorithms which require a vote to be taken across all

N ! rankings
(the weighted majority algorithm)

� The algorithm is not efficient (N ! is large!) but it’s interesting that the
algorithm ismuchmore robust to noise

� The algorithm has a loss bound of

L(A) � 2:63Error(U�) + 2:63 logN !

� 2:63Error(U�) + 2:63N logN

� e.g., see the tutorial byManfred Warmuthat COLT 1999



A Warm Up for the Weighted-Majority Algorithm:
The Halving Algorithm

Simple case: assume our training sequence is a series of(xi; yi; zi) triples,
where either yi or zi is the correct output for xi, and the algorithm must
predict which of yi or zi is correct

� Initialize: Take S to be the set of all possible grammars (constraint
ranking)

� For i = 1 : : : n:

– DefineS1 = fU : F (xi;U) = yig

DefineS2 = fU : F (xi;U) = zig
– If jS1j � jS2j, then predictyi as the output, otherwise predictzi

– If algorithm proposesyi, and this is a mistake, thenS = S2

– If algorithm proposeszi, and this is a mistake, thenS = S1

– ElseS remains unchanged



� If a grammar with0 errors exists, the algorithm makes at most
log2N ! errors

� Proof sketch: every time a mistake is made, the size ofS is at
least halved. At the end of the training sequence, all0-error
hypotheses remain inS, sojSj > 0 at the end of the algorithm.
Initial size is jSj = N !, so at mostlog2N ! mistakes can be
made



The Weighted Majority Algorithm
� Initialize: Take S to be the set of all possible grammars (constraint

rankings). For each grammars 2 S, assign an initial weight ofvs = 1

� For i = 1 : : : n:

– DefineS1 = fU : F (xi;U) = yig

DefineS2 = fU : F (xi;U) = zig

– DefineV1 =
P

s2S1
vs

DefineV2 =
P

s2S2
vs

– If V1 � V2, then predictyi as the output, otherwise predictzi

– If true output isyi, then for alls 2 S2,
setvs = vs � � where0 � � < 1

– If true output iszi, then for alls 2 S1,
setvs = vs � �

Intuition: take a weighted vote across the possible grammars.
Each time a grammar makes an error, its weight is decreased
by a factor of �



Theorem:
If Error(U�) is the number of errors of the best grammar
on the sequence(xi; yi; zi), and there areN ! grammars under
consideration, then the number of errors of the weighted majority
algorithmA is such that

L(A) �

log 1
�

log 2
1+�
Error(U�) +

1
log 2
1+�

logN !

if � = 1=e, then this gives

L(A) � 2:63Error(U�) + 2:63 logN !

This is much better than the constraint demotion bounds,L(A) �

O(N)Error(U�) + O(N2) but the algorithm requires dealing
explicitly with all N ! possible grammars. Socomputationallythe
algorithm is impractical, but it isvery robust to noise. Could we
find some efficient/approximate implementation of this algorithm?



The Weighted Majority Algorithm: Proof
(See tutorial by Manfred Warmuth at COLT 99)

� Definen = number of training examples

� DefineS = number of grammars (N ! in our case)

� ms;i = number of mistakes made by grammars beforei’th example

� vs;i = �ms;i = weight ofs beforei’th example

� Vi =
P

s vs;i = total weight beforei’th example

Then if no mistake is made at thei’th example,
Vi � Vi�1

(because0 or more hypotheses are downweighted by�)
Else if a mistake is made at thei’th example,

Vi � 0:5Vi�1 + 0:5�Vi�1 =
1 + �

2

Vi�1

(because all grammars in the majority vote are downweighted by�, and these
grammars account for at least half ofVi�1)



Hence ifM is the total number of mistakes made by the algorithm,

Vn+1 �
�

1 + �
2

�M
V1

We also have
Vn+1 =
X

s

vs;n+1 =
X

s

�Ms;n+1 � �M
�

whereM� is the minimum number of errors made byanyof the grammars
Hence

�M
�

�
�

1 + �
2

�M
V1 =
�

1 + �
2

�M
S

whereS = N ! is the number of grammars under consideration
Solving forM gives

M �

log 1
�

log 2
1+�
M� +

1

log 2
1+�

logS


