6.891: Lecture 17 (November 5th, 2003) Theories of Generalization

Generalization

- So far in the couse, we've seen many ways to estimate parameters:
 - Maximum-likelihood estimation in language modeling, probabilistic context-free grammars, etc.
 - Smoothing of maximum-likelihood estimates:

 $P(dog \mid the, green) = \lambda_1 P_{ML} P(dog \mid the, green) + \lambda_2 P_{ML} P(dog \mid the) + \lambda_3 P_{ML} P(dog)$

- Perceptron, boosting, log-linear models for global linear models (feature selection, penalties for large parameter values)
- Today's lecture: theory and intuition behind various estimates

Overview

- A statistical framework
- Properties of maximum-likelihood estimates
- A first result, through Chernoff/Hoeffding bounds
- Generalization bounds for finite hypothesis spaces
- Structural Risk Minimization
- Generalization bounds for boosting
- Generalization bounds based on margins

The Basic Framework

- We have an input domain \mathcal{X} and output domain \mathcal{Y} . e.g., \mathcal{X} is a set of possible sentences, \mathcal{Y} is set of possible parse trees.
- The task is to learn a function $F : \mathcal{X} \to \mathcal{Y}$
- We have a training set (x_i, y_i) where for $i = 1 \dots m$ with $x_i \in \mathcal{X}, y_i \in \mathcal{Y}$

Loss functions

- Say we have a new test example x, whose true label is y
- The function F(x) has the output \hat{y}
- A loss function is a function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- $L(\hat{y}, y)$ is cost of proposing \hat{y} for an example x when y is the true label
- One example loss function: "0-1 loss"

$$L(\hat{y}, y) = \begin{cases} 0 & \text{If } y = \hat{y} \\ 1 & \text{otherwise} \end{cases}$$

• Another example: percentage of correct dependency relations in a parse

From now on, we'll assume $L(\hat{y}, y)$ is 0-1 loss

Empirical Loss

• We can now define the *empirical loss* of the function F, as

$$\hat{Er}(F) = \frac{1}{m} \sum_{i} L(F(x_i), y_i)$$

- $\hat{Er}(F)$ is the average loss on the training samples
- If *L* is the 0-1 loss, then $\hat{Er}(F)$ is the percentage of errors on the training sample

A Statistical Assumption

- We assume that both training and test samples are generated from some distribution D(x, y)
- D(x, y) is fixed, but also unknown
- Crucial point: both training and test samples are drawn from the same distribution D(x, y). This allows us to learn properties/functions from the training data which generalize to new, test examples

Expected Loss

• We now define the *expected loss* for a function F as

$$Er(\mathbf{F}) = \sum_{x,y} D(x,y) L(\mathbf{F}(x),y)$$

- If L is 0-1 loss, then Er(F) is the *probability of an error* on a newly drawn test example
- Er(F) is the measure of how "good" a function is: our aim is to find an F such that Er(F) is a low as possible

Summary

- \bullet We have input/output domains ${\mathcal X}$ and ${\mathcal Y}$
- \bullet We assume there is some distribution D(x,y) generating examples
- (x₁, y₁)...(x_m, y_m) is a training sample drawn from D
 this is the only evidence we have about D
- For any function $F : \mathcal{X} \to \mathcal{Y}$, we define

$$Er(\mathbf{F}) = \sum_{x,y} D(x,y) L(\mathbf{F}(x),y)$$
$$\hat{Er}(\mathbf{F}) = \frac{1}{n} \sum_{i} L(\mathbf{F}(x_i),y_i)$$

• Our aim is to find a function F with a low value for Er(F)

The Bayes Optimal Hypothesis

• The *bayes optimal* function is

$$F_B(x) = \operatorname{argmax}_y D(x, y)$$

- Intuition: for an input x, simply return the most likely label
- It can be shown that F_B has the lowest possible value for Er(F)
- We can never construct this function: it is a function of *D*, which is unknown. But it is a useful theoretical construct.

Overview

- A statistical framework
- Properties of maximum-likelihood estimates
- A first result, through Chernoff/Hoeffding bounds
- Generalization bounds for finite hypothesis spaces
- Structural Risk Minimization
- Generalization bounds for boosting
- Generalization bounds based on margins

Maximum-Likelihood Estimates

- In these approaches, we attempt to model the underlying distribution D(x, y) or $D(y \mid x)$.
- We have parameters Θ , and a model $P(x, y \mid \Theta)$ or $P(y \mid x, \Theta)$. e.g.,
 - In probabilistic context-free grammars, the parameters are rule probabilities, and $P(x, y \mid \Theta)$ is a product of rule probabilities
 - In global log-linear models, we take

$$P(y \mid x, \Theta) = \frac{e^{\Phi(x, y) \cdot \Theta}}{\sum_{y' \in \mathbf{GEN}(x)} e^{\Phi(x, y') \cdot \Theta}}$$

• Given training samples (x_i, y_i) , we maximize the log-likelihood

$$L(\Theta) = \sum_{i} \log P(x_i, y_i \mid \Theta) \text{ or } L(\Theta) = \sum_{i} \log P(y_i \mid x_i, \Theta)$$

Justification for Maximum-Likelihood Estimates

- Assumption: There is some parameter setting Θ^* such that $D(x,y) = P(x, y \mid \Theta^*)$ or $D(y \mid x) = P(y \mid x, \Theta^*)$
- Define the maximum-likelihood estimates:

$$\Theta_{ML} = \operatorname{argmax}_{\Theta} L(\Theta)$$

• A usual property of maximum-likelihood estimates: as the training sample size goes to ∞ , then $P(x, y \mid \Theta_{ML})$ converges to D(x, y) (or, $P(y \mid x, \Theta_{ML})$ converges to $D(y \mid x)$)

Justification for Maximum-Likelihood Estimates

It follows that:

- Given that
 - Assumption 1: There is some parameter setting Θ^* such that $D(x,y) = P(x,y \mid \Theta^*)$ or $D(y \mid x) = P(y \mid x, \Theta^*)$
 - Assumption 2: we have enough training data for the maximum likelihood estimates to converge
- Then $P(x, y \mid \Theta_{ML})$ converges to D(x, y), and

 $\operatorname{argmax}_{y} P(x, y \mid \Theta_{ML})$

converges to the Bayes-optimal function

$$F_B = \operatorname{argmax}_y D(x, y)$$

(and similar properties follow for conditional models $P(y \mid x, \Theta)$)

Overview

- A statistical framework
- Properties of maximum-likelihood estimates
- A first result, through Chernoff/Hoeffding bounds
- Generalization bounds for finite hypothesis spaces
- Structural Risk Minimization
- Generalization bounds for boosting
- Generalization bounds based on margins

Estimating the Expected Loss

• We'd like to know what

$$Er(\mathbf{F}) = \sum_{x,y} D(x,y) L(\mathbf{F}(x),y)$$

is for some function F

• A natural estimate of $Er(\mathbf{F})$ is

$$\hat{Er}(\mathbf{F}) = \frac{1}{n} \sum_{i} L(\mathbf{F}(x_i), y_i)$$

Question: how good an estimate is $\hat{Er}(F)$?

Chernoff/Hoeffding Bounds

- Say we have a coin with (unknown) probability of heads = p
- We derive an estimate of p by the following procedure:
 - Toss the coin m times
 - If we see heads h times, our estimate is

$$\hat{p} = \frac{h}{m}$$

• How good is this estimate? Answer: for all ϵ, p, m

$$P[|p - \hat{p}| > \epsilon] \le 2e^{-2m\epsilon^2}$$

where the probability P is taken over the generation of the training sample of m coin tosses

• Additional bounds:

$$P[p - \hat{p} > \epsilon] \le e^{-2m\epsilon^2}$$
$$P[\hat{p} - p > \epsilon] \le e^{-2m\epsilon^2}$$

• An example: say we take m = 1000, and $\epsilon = 0.05$. Then

$$e^{-2m\epsilon^2} = e^{-5} \approx \frac{1}{148}$$

• Then if we repeatedly take samples of size 1000, for (roughly) 147/148 samples we will have $(p - \hat{p}) \leq 0.05$, for 147/148 samples we will have $(\hat{p} - p) \leq 0.05$, for 146/148 samples we will have $|\hat{p} - p| \leq 0.05$

- Put another way: our estimation procedure has probability $2e^{-5} \approx 2/148$ of returning a value of \hat{p} that is not within 0.05 of p.
 - We derive an estimate of p by the following procedure:
 - Toss the coin m times
 - If we see heads h times, our estimate is

$$\hat{p} = \frac{h}{n}$$

Estimating the Expected Loss

- We'd like to know value of $Er(F) = \sum_{x,y} D(x,y)L(F(x),y)$ for some function F
- A natural estimate of $Er(\mathbf{F})$ is $\hat{Er}(\mathbf{F}) = \frac{1}{m} \sum_{i} L(\mathbf{F}(x_i), y_i)$
- From Chernoff/Hoeffding bounds:

$$P[\hat{Er}(\mathbf{F}) - Er(\mathbf{F}) > \epsilon] \le e^{-2m\epsilon^2}$$

Converting this Result to a Confidence Interval

• Introduce a variable $0 < \delta < 1$, which is

$$\delta = e^{-2m\epsilon^2}$$

next, solve for ϵ , giving

$$\epsilon = \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$$

Theorem: For a single hypothesis F, for any distribution D(x, y), for any $\delta > 0$, with probability at least $1 - \delta$ over the choice of the training sample,

$$Er(\mathbf{F}) \le \hat{Er}(\mathbf{F}) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}$$

An Example

Say we measure Êr(F) = 0.25 from a sample of size 1000.
 We take δ = 0.01. Then with probability at least 1 - δ = 99%,

$$Er(\mathbf{F}) \le 0.25 + \sqrt{\frac{\log \frac{1}{\delta}}{2m}} = 0.25 + 0.048 = 0.298$$

We have to be careful!

- It's tempting to choose (train) a function *F* using the training sample, then use the previous bound to estimate its error
- **But** in this case the function *F* depends on the training sample, and the bound isn't valid
- The bound is only valid if Er(F) and Er(F) are calculated from a sample that is independent of F

Overview

- A statistical framework
- Properties of maximum-likelihood estimates
- A first result, through Chernoff/Hoeffding bounds
- Generalization bounds for finite hypothesis spaces
- Structural Risk Minimization
- Generalization bounds for boosting
- Generalization bounds based on margins

Hypothesis Spaces

- A hypothesis space \mathcal{H} is a set of functions mapping \mathcal{X} to \mathcal{Y}
- Learning from a training set \equiv choosing a member of \mathcal{H} based on the training set
- We'll first consider finite hypothesis spaces

 Example of an infinite hypothesis space: given GEN, Φ, W, define

$$F_{\mathbf{W}}(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$$

- For every member of $\mathbf{W} \in \mathbb{R}^d$, we have a different function
- An infinite hypothesis space is

$$\mathcal{H} = \{F_{\mathbf{W}} \; : \; \mathbf{W} \in \mathbb{R}^d\}$$

• Note that if we store each element of W to b bits of precision, then this becomes a finite hypothesis class of size $|\mathcal{H}| = 2^{db}$

Choosing Between the Members of ${\cal H}$

• An obvious choice: choose

$$F_{ERM} = \arg\min_{F \in \mathcal{H}} \hat{Er}(F)$$

i.e., choose the member of ${\mathcal H}$ which has lowest training error

- This method is called "Empirical Risk Minimization" ([Vapnik, 1995])
- Next question: how good is $\hat{Er}(F_{ERM})$ as an estimate of $Er(F_{ERM})$?

Choosing Between the Members of ${\cal H}$

• Chernoff/Hoeffding bounds for a single hypothesis:

$$P[\hat{Er}(F) - Er(F) > \epsilon] \le e^{-2m\epsilon^2}$$

• A new bound for finite hypothesis spaces:

$$P[\max_{\mathbf{F}\in\mathcal{H}}\left(\hat{Er}(\mathbf{F}) - Er(\mathbf{F})\right) > \epsilon] \le |\mathcal{H}|e^{-2m\epsilon^2}$$

Intuition: if we have $|\mathcal{H}|$ functions, there is $|\mathcal{H}|$ times the probability that at least one of them will have a value for $\hat{Er}(F)$ that deviates by at least ϵ from Er(F)

<u>A Proof</u>

• The union bound says that for any events A_1, A_2, \ldots, A_n ,

$$P(A_1 \text{ or } A_2 \text{ or } \cdots \text{ or } A_n) \leq \sum_{i=1}^n P(A_i)$$

- Say we have n functions in \mathcal{H} , numbered $F_1, F_2, \ldots F_n$
- Note that $\left[\max_{F \in \mathcal{H}} \left(\hat{Er}(F) Er(F) \right) \right] > \epsilon$ if and only if

 $\hat{Er}(\mathbf{F}_1) - Er(\mathbf{F}_1) > \epsilon \text{ or} \\ \hat{Er}(\mathbf{F}_2) - Er(\mathbf{F}_2) > \epsilon \text{ or}$

 $\hat{Er}(\mathbf{F}_n) - Er(\mathbf{F}_n) > \epsilon$

• By the union bound, the probability of at least one of these events happening is at most

$$\sum_{i} P(\hat{Er}(F_i) - Er(F_i) > \epsilon) = |\mathcal{H}|e^{-2m\epsilon^2}$$

Theorem: For any finite hypothesis class \mathcal{H} , distribution D(x, y), and $\delta > 0$, with probability at least $1 - \delta$ over the choice of training sample, for all $F \in \mathcal{H}$,

$$Er(\mathbf{F}) \leq \hat{Er}(\mathbf{F}) + \sqrt{\frac{\log|\mathcal{H}| + \log\frac{1}{\delta}}{2m}}$$

Theorem: For any finite hypothesis class \mathcal{H} , distribution D(x, y), and $\delta > 0$, with probability at least $1 - \delta$ over the choice of training sample, for all $F \in \mathcal{H}$,

$$Er(\mathbf{F}) \leq \hat{Er}(\mathbf{F}) + \sqrt{\frac{\log|\mathcal{H}| + \log\frac{1}{\delta}}{2m}}$$

An example: say we have a hypothesis class \mathcal{H} of size 1000. We have 10,000 training examples. For each function in \mathcal{H} , we measure the error on the training examples, $\hat{Er}(F)$. Say we choose $\delta = 0.01$. In this scenario we have

$$\sqrt{\frac{\log|\mathcal{H}| + \log\frac{1}{\delta}}{2m}} = 0.00239$$

and for $1 - \delta = 99\%$ of all experiments with a sample of size 10,000, we will have

$$Er(\mathbf{F}) \le \hat{Er}(\mathbf{F}) + 0.00239$$

for all members of ${\cal H}$

Corollary: For any finite hypothesis class \mathcal{H} , distribution D(x, y), and $\delta > 0$, with probability at least $1 - \delta$ over the choice of training sample,

$$Er(\mathbf{F}_{ERM}) \leq \hat{Er}(\mathbf{F}_{ERM}) + \sqrt{\frac{\log|\mathcal{H}| + \log\frac{1}{\delta}}{2m}}$$

where

$$F_{ERM} = \arg\min_{F \in \mathcal{H}} \hat{Er}(F)$$

Overview

- A statistical framework
- Properties of maximum-likelihood estimates
- A first result, through Chernoff/Hoeffding bounds
- Generalization bounds for finite hypothesis spaces
- Structural Risk Minimization
- Generalization bounds for boosting
- Generalization bounds based on margins

Another Look at the Bound

Corollary: For any finite hypothesis class \mathcal{H} , distribution D(x, y), and $\delta > 0$, with probability at least $1 - \delta$ over the choice of training sample,

$$Er(\mathbf{F}_{ERM}) \leq \hat{Er}(\mathbf{F}_{ERM}) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

where $\mathbf{F}_{ERM} = \arg\min_{\mathbf{F}\in\mathcal{H}} \hat{Er}(\mathbf{F})$

• Crucial point: as $|\mathcal{H}|$ becomes larger, the number of training examples required for F_{ERM} to be reliable increases.

Comparison to the Bayes Optimal Hypothesis

- Say F^* is the best function in the hypothesis space $F^* = \arg\min_{F \in \mathcal{H}} Er(F)$
- How close are we to the Bayes optimal hypothesis?

$$Er(F_{ERM}) - Er(F_B)$$

$$= \underbrace{(Er(F_{ERM}) - Er(F^*))}_{Variance term} + \underbrace{(Er(F^*) - Er(F_B))}_{Bias term}$$

- Tension:
 - If \mathcal{H} is too large, variance term is likely to be large
 - If \mathcal{H} is too small, bias term is likely to be large (less chance of a "good" function being in our hypothesis space)

A Compromise: Structural Risk Minimization

First step: pick a *series* of hypothesis classes of increasing size, *H*₁, *H*₂, *H*₃... *H_s*, where |*H*₁| < |*H*₂| < ··· < |*H_s*|. (This step must be done independently from the training sample)

Theorem: Assume a set of finite hypothesis classes $\mathcal{H}_1, \mathcal{H}_2 \dots \mathcal{H}_s$, and some distribution D(x, y). For all $i = 1 \dots s$, for all hypotheses $F \in \mathcal{H}_i$, with probability at least $1 - \delta$ over the choice of training set of size m drawn from D,

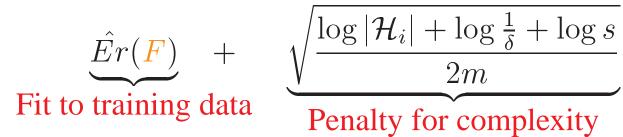
$$Er(\mathbf{F}) \leq \hat{Er}(\mathbf{F}) + \sqrt{\frac{\log |\mathcal{H}_i| + \log \frac{1}{\delta} + \log s}{2m}}$$

A Compromise: Structural Risk Minimization

• Pick the hypothesis that minimizes the bound, i.e.,

$$\boldsymbol{F}_{SRM} = \arg\min_{\boldsymbol{F}} \left(\hat{Er}(\boldsymbol{F}) + \sqrt{\frac{\log|\mathcal{H}_i| + \log\frac{1}{\delta} + \log s}{2m}} \right)$$

• The bound has two components



- Some points:
 - The "complexity" of a function is related to the size of the hypothesis space of which it is a member
 - The complexity of F is also related to the reliability of $\hat{Er}(F)$ as an estimate of Er(F)

Overview

- A statistical framework
- Properties of maximum-likelihood estimates
- A first result, through Chernoff/Hoeffding bounds
- Generalization bounds for finite hypothesis spaces
- Structural Risk Minimization
- Generalization bounds for boosting
- Generalization bounds based on margins

Back to Global Linear Models

 Example of an infinite hypothesis space: given GEN, Φ, W, define

$$F_{\mathbf{W}}(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$$

- For every member of $\mathbf{W} \in \mathbb{R}^d$, we have a different function
- An infinite hypothesis space is

$$\mathcal{H} = \{ F_{\mathbf{W}} : \mathbf{W} \in \mathbb{R}^d \}$$

Back to Global Linear Models

- For now, we'll "cheat" by considering \mathcal{H} to be finite
- We do this by assuming that we store each element of W to b bits of precision, then this becomes a finite hypothesis class of size |H| = 2^{db}
- We can then apply our previous theorem:

Theorem: For a global linear model with finite hypothesis class \mathcal{H} (*d* parameters at *b* bits of precision), distribution D(x, y), and $\delta > 0$, with probability at least $1 - \delta$ over the choice of training sample, for all $F \in \mathcal{H}$,

$$Er(\mathbf{F}) \le \hat{Er}(\mathbf{F}) + \sqrt{\frac{\log|\mathcal{H}| + \log\frac{1}{\delta}}{2m}} = \hat{Er}(\mathbf{F}) + \sqrt{\frac{db\log 2 + \log\frac{1}{\delta}}{2m}}$$

- The theorem implies that $d \times b \times \log 2$ must be small compared to 2m where m is the sample size.
- In many of our experiments (e.g., parse reranking) we have many features, so d is huge \Rightarrow the bound implies that choosing F_{ERM} is bad
- Instead, we balanced fit to the training data against some penalty for "complexity":
 - In boosting, minimize an upper bound on the training error while using a small number of features
 - In log-linear models, maximize likelihood while keeping parameter values small

A Bound for Feature-Selection Methods

• Before, our hypothesis class was

 $\mathcal{H} = \{F_{\mathbf{W}} : \mathbf{W} \in \mathbb{R}^d\}$

which has 2^{bd} members if we store parameters to b bits of precision

• Now, consider a restricted hypothesis space:

 $\mathcal{H}_k = \{ \mathbf{F}_{\mathbf{W}} : \mathbf{W} \in \mathbb{R}^d, \text{ only } k \text{ parameters have non-zero values} \}$

• What is the size of \mathcal{H}_k under precision b for the parameters?

A Bound for Feature-Selection Methods

• There are

$$C_k^d = \begin{pmatrix} d \\ k \end{pmatrix} = \frac{d!}{(d-k)!k!}$$

ways of choosing k features out of d features in total

- For each choice of k features, there are 2^{kb} ways of setting their parameters given b bits of precision
- It follows that

$$|\mathcal{H}_k| = C_k^d \times 2^{kb}$$

and

$$\log |\mathcal{H}_k| = \log C_k^d + kb \log 2$$

A Bound for Feature-Selection Methods

• Also, note that

$$C_k^d < d^k$$
$$\Rightarrow \log C_k^d < k \log d$$

• Giving:

$$\log |\mathcal{H}_k| = \log C_k^d + kb \log 2$$

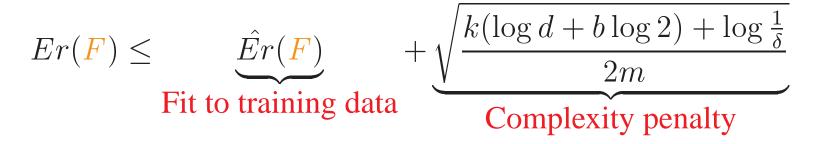
$$< k \log d + kb \log 2$$

$$= k(\log d + b \log 2)$$

Theorem: For a global linear model with finite hypothesis class \mathcal{H}_k (*d* parameters at *b* bits of precision, with *k* non-zero parameters), distribution D(x, y), and $\delta > 0$, with probability at least $1 - \delta$ over the choice of training sample, for all $F \in \mathcal{H}$,

$$Er(\mathbf{F}) \le \hat{Er}(\mathbf{F}) + \sqrt{\frac{\log|\mathcal{H}_k| + \log\frac{1}{\delta}}{2m}} = \hat{Er}(\mathbf{F}) + \sqrt{\frac{k(\log d + b\log 2) + \log\frac{1}{\delta}}{2m}}$$

Theorem: For a global linear model with finite hypothesis class \mathcal{H}_k (*d* parameters at *b* bits of precision, with *k* non-zero parameters), distribution D(x, y), and $\delta > 0$, with probability at least $1 - \delta$ over the choice of training sample, for all $F \in \mathcal{H}_k$,



- Complexity penalty is *linear* in k, but *logarithmic* in d: ⇒ we can have a very large number of features (d can be large) as long as only a small number are selected (k is small)
- One justification for **Boosting** is that it minimizes this kind of bound

Overview

- A statistical framework
- Properties of maximum-likelihood estimates
- A first result, through Chernoff/Hoeffding bounds
- Generalization bounds for finite hypothesis spaces
- Structural Risk Minimization
- Generalization bounds for boosting
- Generalization bounds based on margins

Back to Margins

• We can think of the training data (x_i, y_i) , and **GEN**, providing a set of good/bad parse pairs

$$(x_i, y_i, z_{i,j})$$
 for $i = 1 ... n, j = 1 ... n_i$

• The Margin on example $z_{i,j}$ under parameters W is

$$\mathbf{m}_{\mathbf{i},\mathbf{j}}(\mathbf{W}) = \mathbf{\Phi}(x_i, y_i) \cdot \mathbf{W} - \mathbf{\Phi}(x_i, z_{i,j}) \cdot \mathbf{W}$$

• A couple more definitions:

$$\mathbf{m}_{\mathbf{i}}(\mathbf{W}) = \min_{j} \mathbf{m}_{\mathbf{i},\mathbf{j}}(\mathbf{W})$$
$$\hat{Er}(\mathbf{W},\gamma) = \frac{1}{m} \sum_{i} \left[\left[\mathbf{m}_{\mathbf{i}}(\mathbf{W}) < \gamma \right] \right]$$

- So, $m_i(W)$ is the minimum margin on the *i*'th example
- $\hat{Er}(\mathbf{W}, \gamma)$ is the percentage of examples whose minimum margin is less than γ

Theorem: Assume the hypothesis class \mathcal{H} is as defined above, and that there is some distribution D(x, y) generating examples. For all $\mathbf{F}_{\mathbf{W}} \in \mathcal{H}$, for all $\gamma > 0$, with probability at least $1 - \delta$ over the choice of training set of size m drawn from D,

$$Er(\mathbf{F}_{\mathbf{W}}) \le \hat{Er}(\mathbf{W}, \gamma) + O\left(\sqrt{\frac{1}{m}\left(\frac{R^2||\mathbf{W}||^2}{\gamma^2}\left(\log m + \log N\right) + \log\frac{1}{\delta}\right)}\right)$$

where R is a constant such that $\forall x \in \mathcal{X}, \forall y \in \mathbf{GEN}(x), \forall z \in \mathbf{GEN}(x), || \Phi(x, y) - \Phi(x, z)|| \leq R$. The variable N is the smallest positive integer such that $\forall x \in \mathcal{X}, |\mathbf{GEN}(x)| - 1 \leq N$.

Notes on the bound

$$Er(\mathbf{F}_{\mathbf{W}}) \leq \underbrace{\hat{Er}(\mathbf{W}, \gamma)}_{\text{Fit to the data}} + O\left(\sqrt{\frac{1}{m}\left(\frac{R^2||\mathbf{W}||^2}{\gamma^2}\left(\log m + \log N\right) + \log\frac{1}{\delta}\right)}\right)$$

Complexity Penalty

- The complexity penalty does not (directly) depend on the number of parameters in the model
- The bound has two conflicting terms: keep the margin $\mathbf{m_i}(\mathbf{W})$ high on as many examples as possible, but keep $||\mathbf{W}||^2$ low.
- The dependence on $\log N$ is *bad*: perhaps the bound can be improved?

Notes on the bound

$$Er(\mathbf{F}_{\mathbf{W}}) \leq \underbrace{\hat{Er}(\mathbf{W}, \gamma)}_{\text{Fit to the data}} + O\left(\sqrt{\frac{1}{m}\left(\frac{R^2||\mathbf{W}||^2}{\gamma^2}\left(\log m + \log N\right) + \log\frac{1}{\delta}\right)}\right)}_{\text{Complexity Penalty}}$$

• Note the relationship to global log-linear models with a gaussian prior:

$$\mathbf{W}_{MAP} = \operatorname{argmax}_{\mathbf{W}} \left(L(\mathbf{W}) - C ||\mathbf{W}||^2 \right)$$

where

$$L(\mathbf{W}) = \sum_{i} \log P(y_i \mid x_i, \mathbf{W})$$
$$= -\sum_{i} \log \left(1 + \sum_{j} e^{-\mathbf{m}_{i,j}(\mathbf{W})} \right)$$

Summary

- One assumption: the same distribution D(x, y) is generating training and test examples
- Er(F) is the error rate w.r.t. this distribution: we would like to find an F which minimizes this. $\hat{Er}(F)$ is the error rate on the training sample
- Started considering how good an estimate $\hat{Er}(F)$ is of Er(F). This depends on the **complexity** of *F*.
- "Structural risk minimization" means we search for a function which has a low value for $\hat{Er}(F)$, but is also not too "complex"
- Several measures of complexity have been considered:
 - Size of hypothesis class the function comes from
 - Number of non-zero parameter values
 - Size of the margins on training examples vs. $||\mathbf{W}||^2$

Some Final Points

- Advantage of these bounds is that they make very few assumptions (for example, no assumptions about D(x, y))
- Disadvantage is that they can be very pessimistic, or "loose"
- A great deal of current research on how to get "tighter" bounds
- The bounds were originally developed for *classification* problems: several important issues remain for NLP, e.g.,
 - Results for loss functions other than $0 1 \log \theta$
 - Dependence on $\log |\mathbf{GEN}(x)|$ in margin bounds
 - How to optimize the bounds in practice