6.891: Lecture 17 (November 5th, 2003)

Theories of Generalization



Generalization

e SO far In the couse, we've seen many ways to estimate
parameters:

— Maximum-likelihood estimation in language modeling, probabilistic
context-free grammars, etc.

— Smoothing of maximum-likelihood estimates:
P(dog | the, green) = A\ Py P(dog | the, green)+Xo Py P(dog | the)+A3 Py P(dog)

— Perceptron, boosting, log-linear models for global linear models
(feature selection, penalties for large parameter values)

e Today’s lecture: theory and intuition behind various estimates



Overview

e A statistical framework

e Properties of maximum-likelihood estimates

e A first result, through Chernoff/Hoeffding bounds

e Generalization bounds for finite hypothesis spaces
e Structural Risk Minimization

e Generalization bounds for boosting

e Generalization bounds based on margins



The Basic Framework

¢ \We have an input domai’ and output domaig) .
e.g.,X is a set of possible sentencgsis set of possible parse trees.

e The taskis tolearn afunction : X —

e \We have a training sét:;, y;) where fori = 1...m with z; €
X,y €V



| oss functions

e Say we have a new test examplewhose true label ig

The functionF'(x) has the outpug
e A loss functionis afunctionL : Y x )Y — R
e [(7,y) is cost of proposing for an exampler wheny is the true label

e One example loss functiofi0-1 loss”

{0 If y =g

L(g,y) = 1 otherwise

e Another example: percentage of correct dependency relations in a parse

From now on, we'll assumé(y, y) is 0-1 loss



Empirical Loss

e \We can now define thempirical lossof the function/, as

ZL i)

e Er(/")is the average loss on the training samples

e If Listhe 0-1 loss, the®r(/') is the percentage of errors on
the training sample



A Statistical Assumption

e We assume that both training and test samples are generated
from some distributiorD(z, y)

e D(x,y) is fixed, but also unknown

e Crucial point: both training and test samples are drawn
from the same distributio®(x,y). This allows us to learn
properties/functions from the training data which generalize
to new, test examples



Expected Loss

e We now define thexpected loskr a function/’ as

Er(F)=>_ D(z,y)L(/'(z),y)

o If Lis 0-1loss, thertir( /) is theprobability of an erroron a
newly drawn test example

e Fr(/") is the measure of how “good” a function isur aim
IS to find an /" such that Er(/") is a low as possible



Summary

¢ We have input/output domaims and)

e We assume there is some distributidnz,y) generating
examples

 (z1,y1)...(xm,yn) IS atraining sample drawn from
this is the only evidence we have aboub

e For any function/' : X — ), we define
Er(l) = ZD(w,y)L( (%), y)

Er(l) = —ZL ), i)

e Our aim is to find a functiori” with a low value forEr( /')



The Bayes Optimal Hypothesis

e Thebayes optimafunction is

B(z) = argmax, D(z,y)

¢ Intuition: for an inputr, simply return the most likely label

e It can be shown that'y has the lowest possible value for
Er(F)

e We can never construct this function: it is a function/of
which is unknown. But it is a useful theoretical construct.



Overview

e A statistical framework

e Properties of maximum-likelihood estimates
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Maximum-Likelihood Estimates

e In these approaches, we attempt to model the underlying distribution
D(x,y)or D(y | x).

e \We haveparameter®, and amodelP(z,y | ©) or P(y | =,©). e.g.,

— In probabilistic context-free grammars, the parameters are rule
probabilities, and?(x,y | ©) is a product of rule probabilities

— In global log-linear models, we take

eq)(xay)°@

P(y | L, @) — o®(2,y")-0

Zy’GGEN(:c)
e Given training samplege;, y; ), we maximize the log-likelihood

L(®) = ZlogP(xi,yi |©) or L(O)= ZlogP(yZ- | x;,0)



Justification for Maximume-Likelihood Estimates

e Assumption: There is some parameter setti®g such thatD(z,y) =
P(z,y | ©*)orD(y | z) = P(y | z,0%)

e Define the maximume-likelihood estimates:

O = argmaxg L(O)

e A usual property of maximum-likelihood estimates: as the training
sample size goes too, then P(x,y | ©1) converges taD(x,y) (or,
P(y | ,0©1) converges td(y | x))



Justification for Maximume-Likelihood Estimates

It follows that:

e Given that

— Assumption 1: There is some parameter settij such that
D(z,y) = P(z,y | ©*)orD(y | ) = P(y | z,0%)

— Assumption 2: we have enough training data for the maximum
likelihood estimates to converge

e ThenP(z,y | ©, 1) converges td(x,y), and
argmax, P(z,y | ©Onr)

converges to the Bayes-optimal function
B = argmax, D(z,y)

(and similar properties follow for conditional modeligy | x, ©))
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Estimating the Expected Loss

e \We'd like to know what

=Y D(z,y)L(/'(z),y)
Z,Y
IS for some function

e A natural estimate ofor( ) IS

ZL ) i)

Question: how good an estimate igr(



Chernoff/Hoeffding Bounds

e Say we have a coin with (unknown) probability of hea€lg

e \We derive an estimate gfby the following procedure:

— Toss the coinn times
— |If we see heads times, our estimate Is

h

=
m

e How good is this estimate®nswer: for all ¢, p, m

2

Pllp—p| > €] < 2e77™

where the probabilityP is taken over the generation of the
training sample ofn coin tosses



e Additional bounds:

Plp —p > €]

Plp—p>e <e ™

e An example: say we take = 1000, ande = 0.05. Then

1
—2me? __ -5
¢ — ¢ Y148

e Then if we repeatedly take samples of si#e0, for (roughly)
147/148 samples we will have — p) < 0.05, for 147/148
samples we will havep — p) < 0.05, for 146/148 samples we
will have |p — p| < 0.05



e Put another way: our estimation procedure has probability
2¢~° ~ 2/148 of returning a value of that is not within0.05
of p.

e \We derive an estimate gfby the following procedure:

— Toss the coinn times
— |If we see heads times, our estimate Is

h

="
n




Estimating the Expected Loss

e We'd like to know value ofEr (/) = > D(z,y)L(/ (z),y) for some
function

e Anatural estimate ofJr (/) is Er(I') = 2 5. L(F'(x;), i)

e From Chernoff/Hoeffding bounds:

A~ 2

P[Er(I) — Er(I') > ¢ < e 2™



Converting this Result to a Confidence Interval

e Introduce a variablé < § < 1, which is

5 _ 6—2me2

next, solve fok, giving

Theorem: For a single hypothesis, for any distributionD(z, ),
for anyo > 0, with probability at least — ¢ over the choice of the
training sample,

Er(F) < Er(F) +



An Example

e Say we measur&r(/') = 0.25 from a sample of siz&000.
We taked = 0.01. Then with probability at least— 6 = 99%,

1
Er(l) <0.25+ 0 =0.25+ 0.048 = 0.298




We have to be careful!

e |t's tempting to choose (train) a function using the training
sample, then use the previous bound to estimate its error

e But in this case the functio”i’ depends on the training sample,
and the bound isn’t valid

e The bound is only valid ifEr(/') and Er(/) are calculated
from a sample that is independent/of
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Hypothesis Spaces

e A hypothesis spacé is a set of functions mapping/ to )/

e Learning from a training set choosing a member 6{ based
on the training set

o We'll first consider finite hypothesis spaces



e Example of an infinite hypothesis space:
givenGEN, ®, W, define

w() = argmax,ccen () (@) - W

e For every member ofV < R?, we have a different function

e An infinite hypothesis space is

H={Iw : WeRY}

e Note that if we store each elementdf to b bits of precision,
then this becomes a finite hypothesis class of gize= 24



Choosing Between the Members ol

e An obvious choice: choose

ERM — aI'g mel,ﬂ ET( )

l.e., choose the member &f which has lowest training error

e This method Iis called “Empirical Risk Minimization”
([Vapnik, 1995}

e Next question: how good i@r( grM) @S an estimate of
E’I“( ERM)?



Choosing Between the Members ol

e Chernoff/Hoeffding bounds for a single hypothesis:

2

PIEr(l") — Er(l) > ¢] < e72me

e A new bound for finite hypothesis spaces:

P[mea%c (Er( ) — Er( )) > €] < |Hle *™"
Intuition: if we have || functions, there is || times the

probability that at least one of them will have a value for Er( /)
that deviates by at least from Er(/)



A Proof
e Theunion bound says that for any event$;, A,, ... A,,

P(AjorAsor---orA,) <> P(A)
1=1

e Say we have: functions in, numbered-'{, /5, ... [,

o Note that|max; 3, (Er(/) — Er(1'))| > eif and only if

e Ofr

ET( 1)—E’I“( 1) >
E > € Or

r(l2) — Er(l'2)

Er( n)— Er(ly,) > €

e By the union bound, the probability of at least one of these events
happening is at most

ZP(ET( ) — Er(l) > €) = |H|e ™

2



Theorem: For any finite hypothesis clagg, distributionD(zx,y),
ando > 0, with probability at least — o over the choice of training
sample, for all" € H,

log |H| + log 5
2m

Er(F) < Er( )+\/



Theorem: For any finite hypothesis clagg, distribution D(z,y), andd > 0,
with probability at leasl — 6 over the choice of training sample, for all € A,

A log |H| + log &
Er(F) < Er( )+\/og |+ log 5

2m

An example: say we have a hypothesis classf size 1000. We have 10,000
training examples. For each function#) we measure the error on the training
examplesEr (/). Say we choosé = 0.01. In this scenario we have

\/log H| + log% — 0.00239

2m

and forl — § = 99% of all experiments with a sample of sizé, 000, we will
have

Er(F) < Er(F) +0.00239

for all members ofH



Corollary: For any finite hypothesis clags, distributionD(x, y),
ando > 0, with probability at least — ¢ over the choice of training

sample,

A log |H| + log +
Er(Fgrvm) < Er( ERM)+\/ 5| 2‘m 55

where

ERM — alI'g mel,}l;l ET( )
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Another Look at the Bound

Corollary: For any finite hypothesis clagg, distribution D(x,y), andé > 0,
with probability at leasl — o over the choice of training sample,

log |H| + log <

2m

Er(Ferv) < Er(Feruv) + \/

where/ gry = arg min ey Er(F)

e Crucial point: ag?| becomes larger, the number of training
examples required far' gz, to be reliable increases.



Comparison to the Bayes Optimal Hypothesis

e Say /™ is the best function in the hypothesis space

arg min Fr(/)

e How close are we to the Bayes optimal hypothesis?
E’I“( ERM) — E’I”( B)
= (Lr(F pru) — Er(17)) + (Er(17) — Er(/'g))

N\ 7 N\

Variance term Bias term

e Tension:

— If H is too large, variance term is likely to be large

— If H is too small, bias term is likely to be large
(less chance of a “good” function being in our hypothesis space)



A Compromise: Structural Risk Minimization

e First step: pick aseriesof hypothesis classes of increasing
size,H1, Ho, Hs ... Hs, Where|H | < [Ha| < -+ < [H,.

(This step must be done independently from the training sample)

Theorem: Assume a set of finite hypothesis clas$as . . .. H.,,
and some distributio® (x, y). Foralli = 1... s, for all hypotheses

€ H;, with probability at least — ¢ over the choice of training
set of sizen drawn fromD,

log |H;| + log 3 + log s
2m

Er(1") < Er( )+\/



A Compromise: Structural Risk Minimization
e Pick the hypothesis that minimizes the bound, i.e.,

. log |H;| + log & +1
SRMargmin<E7“( )+\/og\ —|—og5—|—ogs>

2m

e The bound has two components

. log |H;| + log + + log s
Er(l) + \/ - 0

Fitto training data Penalty fo?complexity

e Some points:

— The “complexity” of a function is related to the size of the hypothesis
space of which it is a member

— The complexity of/ is also related to the reliability ofr(/') as an
estimate ofEr (/)
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Back to Global Linear Models

e Example of an infinite hypothesis space:
givenGEN, ®, W, define

w() = argmax,ccen () (@) - W

e For every member ofV < R?, we have a different function

e An infinite hypothesis space is

H={I'w : WcR%}



Back to Global Linear Models

e For now, we’ll “cheat” by considering{ to be finite

e We do this by assuming that we store each elemefVdb b
bits of precision, then this becomes a finite hypothesis class of
size|H| = 2%

¢ We can then apply our previous theorem:

Theorem: For a global linear model with finite hypothesis cld$gd parameters dt bits
of precision), distributionD(z,y), andd > 0, with probability at least — § over the
choice of training sample, for all' € H,

log |H| +1logl . dblog 2 + log 1
og |H| Og5:Er()+\/ g g s
2m 2m

Er(l") < Er( )+\/



e The theorem implies thatx b x log 2 must be small compared
to 2m wherem Is the sample size.

e In many of our experiments (e.g., parse reranking) we have
many features, séis huge=- the bound implies that choosing

ERM IS bad

e Instead, we balanced fit to the training data against some
penalty for “complexity”:
— In boosting, minimize an upper bound on the training error while
using a small number of features

— In log-linear models, maximize likelihood while keeping parameter
values small



A Bound for Feature-Selection Methods

e Before, our hypothesis class was
H={l'w : WecR%}

which has2’ members if we store parameters lidits of
precision

e Now, consider a restricted hypothesis space:

Hi, = {I'w : W € R? only k parameters have non-zero valbes

e What is the size of{, under precisiom for the parameters?



A Bound for Feature-Selection Methods

. (d)  d
C"’_</€>_(d—k)!k!

ways of choosing: features out off features in total

e There are

e For each choice of: features, there arg*® ways of setting
their parameters givenbits of precision

e |t follows that
‘Hk‘ = Cg X ka
and
log |Hy| = log CZ 4 kblog 2



A Bound for Feature-Selection Methods

e Also, note that
C < d
= log C¢ < klogd

e Glving:
log | Hx| log Cf + kblog 2
< klogd+ kblog 2

k(logd + blog 2)

Theorem: For a global linear model with finite hypothesis clags (d parameters at
b bits of precision, withk non-zero parameters), distributid(x, y), andé > 0, with
probability at least — § over the choice of training sample, for all € H,

log [Hr| + log 3 _ Br( )+\/k(logd+blog2)—l—10g%

2m 2m

Er(1) < Er( )+\/



Theorem: For a global linear model with finite hypothesis class
(d parameters ai bits of precision, witht non-zero parameters),
distribution D(z, y), andd > 0, with probability at least — § over
the choice of training sample, for all € H,,

. k(logd + blog 2) + log &
m

R < _
Fit to training data

Compleﬁty penalty

e Complexity penalty idinear in k, butlogarithmicin d: = we
can have a very large number of featurésé@n be large) as
long as only a small number are selectgas(small)

e One justification foBoostingis that it minimizes this kind of
bound
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Back to Margins

e \We can think of the training data;, y;), andGEIN, providing
a set of good/bad parse pairs

(Clﬁi,yi,Zi,j) forzzln,]: 1...n,

e TheMargin on examplez; ; under parametersV is

mi,j(W) = (I)(il?@,yz) - W — (I)(il?@, Zi,j) - W



e A couple more definitions:

ml(W) — minmi,j(W)

J

A 1
Er(W,7) = —> [[mi(W) <]
e S0,m;(W) is the minimum margin on th&th example

o EAr(W,y) IS the percentage of examples whose minimum
margin is less than



Theorem: Assume the hypothesis clagsis as defined above, and that there is
some distributionD(z, y) generating examples. For alky € H, for all v > 0,
with probability at leastt — 6 over the choice of training set of size drawn
from D,

. 1 [ R2||[W||°
Br(Fw) < Br(W,7) +0 (R A

1
1 log N) + log ~
- " (logm + log )+0g5>

where R is a constant such thatr € X,Vy € GEN(z),Vz € GEN(z),
|®(x,y) — ®(x, 2)|| < R. The variableN is the smallest positive integer such

thatvz € X,|GEN(z)| — 1 < N,



Notes on the bound

. 1 [ R?||W||” 1
Er(I'w) < Er(W,y) +0 (J (R ||2 | (logm+logN)—|—log>>

-~ m vy 0
Fit to the data

7

Comple>2irty Penalty

e The complexity penalty does not (directly) depend on the number of
parameters in the model

e The bound has two conflicting terms: keep the margixtW) high on as
many examples as possible, but ke@||* low.

e The dependence dng N is bad perhaps the bound can be improved?



Notes on the bound

A 1 2| I'W 1|2
Er(Fw) < Er(W,v) +0 (J (R ||2 | (logm—I—logN)—f—long))

Fit to the data - _
Complexity Penalty

e Note the relationship to global log-linear models with a gaussian prior:
Wrap = argmaxyy <L(W) — C||W||2>
where

L(W) = ZlogP(yi | 2, W)

= — Z log (1 + Z e M (W))
v J



Summary

One assumption: the same distributibxix, i) is generating training and
test examples

Er(/) is the error rate w.r.t. this distribution: we would like to find an
which minimizes thisEr(/') is the error rate on the training sample

Started considering how good an estimate(/') is of Er(/"). This
depends on theomplexity of

“Structural risk minimization” means we search for a function which has a
low value for E'r(/), but is also not too “complex”

Several measures of complexity have been considered:

— Size of hypothesis class the function comes from
— Number of non-zero parameter values
— Size of the margins on training examples &V ||



Some Final Points

e Advantage of these bounds is that they make very few
assumptions (for example, no assumptions abyut v))

e Disadvantage is that they can be very pessimistic, or “loose”
e A greatdeal of current research on how to get “tighter” bounds

e The bounds were originally developed fatassification
problems: several important issues remain for NLP, e.qg.,

— Results for loss functions other than- 1 loss
— Dependence olvg |GEN(x)| in margin bounds
— How to optimize the bounds in practice



