
6.891: Lecture 17 (November 5th, 2003)

Theories of Generalization



Generalization
� So far in the couse, we’ve seen many ways to estimate

parameters:

– Maximum-likelihood estimation in language modeling, probabilistic
context-free grammars, etc.

– Smoothing of maximum-likelihood estimates:

P (dog j the; green) = �1PMLP (dog j the; green)+�2PMLP (dog j the)+�3PMLP (dog)

– Perceptron, boosting, log-linear models for global linear models
(feature selection, penalties for large parameter values)

� Today’s lecture: theory and intuition behind various estimates



Overview
� A statistical framework

� Properties of maximum-likelihood estimates

� A first result, through Chernoff/Hoeffding bounds

� Generalization bounds for finite hypothesis spaces

� Structural Risk Minimization

� Generalization bounds for boosting

� Generalization bounds based on margins



The Basic Framework
� We have an input domainX and output domainY.

e.g.,X is a set of possible sentences,Y is set of possible parse trees.

� The task is to learn a functionF : X ! Y

� We have a training set(xi; yi) where fori = 1 : : : m with xi 2

X , yi 2 Y



Loss functions
� Say we have a new test examplex, whose true label isy

� The functionF (x) has the output^y

� A loss function is a functionL : Y � Y ! R

� L(^y; y) is cost of proposing^y for an examplex wheny is the true label

� One example loss function:“0-1 loss”

L(^y; y) =
�

0 If y = ^y

1 otherwise

� Another example: percentage of correct dependency relations in a parse

From now on, we’ll assumeL(^y; y) is 0-1 loss



Empirical Loss
� We can now define theempirical lossof the functionF , as

^Er(F ) =

1
m

X
i

L(F (xi); yi)

� ^Er(F ) is the average loss on the training samples

� If L is the 0-1 loss, then^Er(F ) is the percentage of errors on
the training sample



A Statistical Assumption
� We assume that both training and test samples are generated

from some distributionD(x; y)

� D(x; y) is fixed, but also unknown

� Crucial point: both training and test samples are drawn
from the same distributionD(x; y). This allows us to learn
properties/functions from the training data which generalize
to new, test examples



Expected Loss
� We now define theexpected lossfor a functionF as

Er(F ) =
X

x;y
D(x; y)L(F (x); y)

� If L is 0-1 loss, thenEr(F ) is theprobability of an erroron a
newly drawn test example

� Er(F ) is the measure of how “good” a function is:our aim
is to find an F such thatEr(F ) is a low as possible



Summary
� We have input/output domainsX andY

� We assume there is some distributionD(x; y) generating
examples

� (x1; y1) : : : (xm; ym) is a training sample drawn fromD

this is the only evidence we have aboutD

� For any functionF : X ! Y, we define

Er(F ) =

X
x;y
D(x; y)L(F (x); y)

^Er(F ) =

1
n

X
i

L(F (xi); yi)

� Our aim is to find a functionF with a low value forEr(F )



The Bayes Optimal Hypothesis
� Thebayes optimalfunction is

FB(x) = argmaxyD(x; y)

� Intuition: for an inputx, simply return the most likely label

� It can be shown thatFB has the lowest possible value for

Er(F )

� We can never construct this function: it is a function ofD,
which is unknown. But it is a useful theoretical construct.
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Maximum-Likelihood Estimates
� In these approaches, we attempt to model the underlying distribution

D(x; y) orD(y j x).

� We haveparameters�, and amodelP (x; y j �) orP (y j x;�). e.g.,

– In probabilistic context-free grammars, the parameters are rule
probabilities, andP (x; y j �) is a product of rule probabilities

– In global log-linear models, we take

P (y j x;�) =

e�(x;y)��P
y02GEN(x) e
�(x;y0)��

� Given training samples(xi; yi), we maximize the log-likelihood

L(�) =
X

i

logP (xi; yi j �) or L(�) =
X

i

logP (yi j xi;�)



Justification for Maximum-Likelihood Estimates
� Assumption: There is some parameter setting�� such thatD(x; y) =

P (x; y j ��) orD(y j x) = P (y j x;��)

� Define the maximum-likelihood estimates:

�ML = argmax�L(�)

� A usual property of maximum-likelihood estimates: as the training
sample size goes to1, thenP (x; y j �ML) converges toD(x; y) (or,

P (y j x;�ML) converges toD(y j x))



Justification for Maximum-Likelihood Estimates

It follows that:
� Given that

– Assumption 1: There is some parameter setting�� such that

D(x; y) = P (x; y j ��) orD(y j x) = P (y j x;��)

– Assumption 2: we have enough training data for the maximum
likelihood estimates to converge

� ThenP (x; y j �ML) converges toD(x; y), and

argmaxyP (x; y j �ML)

converges to the Bayes-optimal function

FB = argmaxyD(x; y)
(and similar properties follow for conditional modelsP (y j x;�))
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Estimating the Expected Loss
� We’d like to know what

Er(F ) =
X

x;y
D(x; y)L(F (x); y)

is for some functionF

� A natural estimate ofEr(F ) is
^Er(F ) =
1

n
X

i

L(F (xi); yi)

Question: how good an estimate is^Er(F )?



Chernoff/Hoeffding Bounds
� Say we have a coin with (unknown) probability of heads= p

� We derive an estimate ofp by the following procedure:

– Toss the coinm times

– If we see headsh times, our estimate is

^p =

h
m

� How good is this estimate?Answer: for all �; p;m

P [jp� ^pj > �] � 2e�2m�2

where the probabilityP is taken over the generation of the
training sample ofm coin tosses



� Additional bounds:

P [p� ^p > �] � e�2m�2

P [^p� p > �] � e�2m�2

� An example: say we takem = 1000, and� = 0:05. Then

e�2m�2 = e�5 �

1
148

� Then if we repeatedly take samples of size1000, for (roughly)
147/148 samples we will have(p � ^p) � 0:05, for 147/148
samples we will have(^p� p) � 0:05, for 146/148 samples we
will have j^p� pj � 0:05



� Put another way: our estimation procedure has probability
2e�5 � 2=148 of returning a value of^p that is not within0:05

of p.

� We derive an estimate ofp by the following procedure:

– Toss the coinm times

– If we see headsh times, our estimate is

^p =
h

n



Estimating the Expected Loss
� We’d like to know value ofEr(F ) =
P

x;y D(x; y)L(F (x); y) for some
functionF

� A natural estimate ofEr(F ) is ^Er(F ) = 1
m

P
i L(F (xi); yi)

� From Chernoff/Hoeffding bounds:
P [ ^Er(F )� Er(F ) > �] � e�2m�

2



Converting this Result to a Confidence Interval
� Introduce a variable0 < Æ < 1, which is

Æ = e�2m�2

next, solve for�, giving

� =
s

log 1
Æ

2m

Theorem: For a single hypothesisF , for any distributionD(x; y),
for anyÆ > 0, with probability at least1� Æ over the choice of the
training sample,

Er(F ) � ^Er(F ) +
s

log 1
Æ

2m



An Example
� Say we measure^Er(F ) = 0:25 from a sample of size1000.

We takeÆ = 0:01. Then with probability at least1�Æ = 99%,
Er(F ) � 0:25 +

s
log 1
Æ

2m

= 0:25 + 0:048 = 0:298



We have to be careful!
� It’s tempting to choose (train) a functionF using the training

sample, then use the previous bound to estimate its error

� But in this case the functionF depends on the training sample,
and the bound isn’t valid

� The bound is only valid ifEr(F ) and ^Er(F ) are calculated
from a sample that is independent ofF
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Hypothesis Spaces
� A hypothesis spaceH is a set of functions mappingX toY

� Learning from a training set� choosing a member ofH based
on the training set

� We’ll first consider finite hypothesis spaces



� Example of an infinite hypothesis space:
givenGEN,�,W, define

FW(x) = argmaxy2GEN(x)�(x; y) �W

� For every member ofW 2 R
d, we have a different function

� An infinite hypothesis space is
H = fFW : W 2 R
dg

� Note that if we store each element ofW to b bits of precision,
then this becomes a finite hypothesis class of sizejHj = 2db



Choosing Between the Members ofH

� An obvious choice: choose

FERM = argmin
F2H

^Er(F )

i.e., choose the member ofH which has lowest training error

� This method is called “Empirical Risk Minimization”
([Vapnik, 1995])

� Next question: how good is^Er(FERM ) as an estimate of

Er(FERM )?



Choosing Between the Members ofH

� Chernoff/Hoeffding bounds for a single hypothesis:

P [ ^Er(F )� Er(F ) > �] � e�2m�2

� A new bound for finite hypothesis spaces:

P [max
F2H

�
^Er(F )� Er(F )
�

> �] � jHje�2m�2

Intuition: if we have jHj functions, there is jHj times the
probability that at least one of them will have a value for ^Er(F )

that deviates by at least� from Er(F )



A Proof
� Theunion bound says that for any eventsA1; A2; : : : An,

P (A1 orA2 or � � � orAn) �

nX
i=1
P (Ai)

� Say we haven functions inH, numberedF 1; F 2; : : : F n

� Note that

h
maxF2H
�

^Er(F )� Er(F )
�i

> � if and only if
^Er(F 1)� Er(F 1) > � or

^Er(F 2)� Er(F 2) > � or

: : :

^Er(Fn)� Er(Fn) > �

� By the union bound, the probability of at least one of these events
happening is at mostX

i

P ( ^Er(F i)� Er(F i) > �) = jHje�2m�
2



Theorem: For any finite hypothesis classH, distributionD(x; y),
andÆ > 0, with probability at least1� Æ over the choice of training
sample, for allF 2 H,

Er(F ) � ^Er(F ) +
s

log jHj+ log 1
Æ

2m



Theorem: For any finite hypothesis classH, distributionD(x; y), andÆ > 0,
with probability at least1� Æ over the choice of training sample, for allF 2 H,

Er(F ) � ^Er(F ) +
s

log jHj+ log 1
Æ

2m

An example: say we have a hypothesis classH of size 1000. We have 10,000
training examples. For each function inH, we measure the error on the training
examples,^Er(F ). Say we chooseÆ = 0:01. In this scenario we haves

log jHj+ log 1
Æ

2m

= 0:00239

and for1 � Æ = 99% of all experiments with a sample of size10; 000, we will
have

Er(F ) � ^Er(F ) + 0:00239
for all members ofH



Corollary: For any finite hypothesis classH, distributionD(x; y),
andÆ > 0, with probability at least1� Æ over the choice of training
sample,

Er(FERM ) � ^Er(FERM ) +
s

log jHj+ log 1
Æ

2m

where
FERM = argmin

F2H

^Er(F )
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Another Look at the Bound

Corollary: For any finite hypothesis classH, distributionD(x; y), andÆ > 0,
with probability at least1� Æ over the choice of training sample,

Er(FERM ) � ^Er(FERM ) +
s

log jHj+ log 1
Æ

2m

whereFERM = argminF2H ^Er(F )

� Crucial point: asjHj becomes larger, the number of training
examples required forFERM to be reliable increases.



Comparison to the Bayes Optimal Hypothesis
� SayF � is the best function in the hypothesis space

F � = argmin
F2H

Er(F )

� How close are we to the Bayes optimal hypothesis?

Er(FERM )� Er(FB)

= (Er(FERM )� Er(F �))| {z }
Variance term

+(Er(F �)� Er(FB))| {z }

Bias term

� Tension:

– If H is too large, variance term is likely to be large

– If H is too small, bias term is likely to be large
(less chance of a “good” function being in our hypothesis space)



A Compromise: Structural Risk Minimization
� First step: pick aseriesof hypothesis classes of increasing

size,H1;H2;H3 : : :Hs, wherejH1j < jH2j < � � � < jHsj.
(This step must be done independently from the training sample)

Theorem: Assume a set of finite hypothesis classesH1;H2 : : :Hs,
and some distributionD(x; y). For alli = 1 : : : s, for all hypotheses

F 2 Hi, with probability at least1 � Æ over the choice of training
set of sizem drawn fromD,

Er(F ) � ^Er(F ) +
s

log jHij+ log 1
Æ
+ log s

2m



A Compromise: Structural Risk Minimization
� Pick the hypothesis that minimizes the bound, i.e.,

F SRM = argmin
F

0
@ ^Er(F ) +

s
log jHij+ log 1
Æ
+ log s

2m

1
A

� The bound has two components
^Er(F )| {z }

Fit to training data
+

s
log jHij+ log 1
Æ
+ log s

2m| {z }

Penalty for complexity

� Some points:

– The “complexity” of a function is related to the size of the hypothesis
space of which it is a member

– The complexity ofF is also related to the reliability of^Er(F ) as an
estimate ofEr(F )



Overview
� A statistical framework

� Properties of maximum-likelihood estimates

� A first result, through Chernoff/Hoeffding bounds

� Generalization bounds for finite hypothesis spaces

� Structural Risk Minimization

� Generalization bounds for boosting

� Generalization bounds based on margins



Back to Global Linear Models
� Example of an infinite hypothesis space:

givenGEN,�,W, define

FW(x) = argmaxy2GEN(x)�(x; y) �W

� For every member ofW 2 R
d, we have a different function

� An infinite hypothesis space is

H = fFW : W 2 R
dg



Back to Global Linear Models
� For now, we’ll “cheat” by consideringH to be finite

� We do this by assuming that we store each element ofW to b

bits of precision, then this becomes a finite hypothesis class of
sizejHj = 2db

� We can then apply our previous theorem:

Theorem: For a global linear model with finite hypothesis classH (d parameters atb bits
of precision), distributionD(x; y), andÆ > 0, with probability at least1 � Æ over the
choice of training sample, for allF 2 H,

Er(F ) � ^Er(F ) +
r

log jHj+ log 1
Æ

2m

= ^Er(F ) +
r

db log 2 + log 1
Æ

2m



� The theorem implies thatd�b� log 2 must be small compared
to 2m wherem is the sample size.

� In many of our experiments (e.g., parse reranking) we have
many features, sod is huge) the bound implies that choosing

FERM is bad

� Instead, we balanced fit to the training data against some
penalty for “complexity”:

– In boosting, minimize an upper bound on the training error while
using a small number of features

– In log-linear models, maximize likelihood while keeping parameter
values small



A Bound for Feature-Selection Methods
� Before, our hypothesis class was

H = fFW : W 2 R
dg

which has2bd members if we store parameters tob bits of
precision

� Now, consider a restricted hypothesis space:

Hk = fFW : W 2 R
d;only k parameters have non-zero valuesg

� What is the size ofHk under precisionb for the parameters?



A Bound for Feature-Selection Methods
� There are

Cd
k =

 
d

k
!

=

d!

(d� k)!k!

ways of choosingk features out ofd features in total

� For each choice ofk features, there are2kb ways of setting
their parameters givenb bits of precision

� It follows that
jHkj = Cd
k � 2kb

and

log jHkj = logCd
k + kb log 2



A Bound for Feature-Selection Methods
� Also, note that

Cd
k < dk

) logCd
k < k log d

� Giving:
log jHkj = logCd
k + kb log 2

< k log d+ kb log 2

= k(log d+ b log 2)

Theorem: For a global linear model with finite hypothesis classHk (d parameters at

b bits of precision, withk non-zero parameters), distributionD(x; y), andÆ > 0, with
probability at least1� Æ over the choice of training sample, for allF 2 H,

Er(F ) � ^Er(F ) +
r

log jHkj+ log 1
Æ

2m

= ^Er(F ) +
r

k(log d+ b log 2) + log 1
Æ

2m



Theorem: For a global linear model with finite hypothesis classHk

(d parameters atb bits of precision, withk non-zero parameters),
distributionD(x; y), andÆ > 0, with probability at least1� Æ over
the choice of training sample, for allF 2 Hk,

Er(F ) � ^Er(F )| {z }
Fit to training data

+
s

k(log d+ b log 2) + log 1
Æ

2m| {z }

Complexity penalty

� Complexity penalty islinear in k, but logarithmic in d: ) we
can have a very large number of features (d can be large) as
long as only a small number are selected (k is small)

� One justification forBoosting is that it minimizes this kind of
bound
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Back to Margins
� We can think of the training data(xi; yi), andGEN, providing

a set of good/bad parse pairs

(xi; yi; zi;j) for i = 1 : : : n, j = 1 : : : ni

� TheMargin on examplezi;j under parametersW is

mi;j(W) = �(xi; yi) �W ��(xi; zi;j) �W



� A couple more definitions:

mi(W) = min
j

mi;j(W)

^Er(W; ) =

1
m

X
i

[[mi(W) < ]]

� So,mi(W) is the minimum margin on thei’th example

� ^Er(W; ) is the percentage of examples whose minimum
margin is less than



Theorem: Assume the hypothesis classH is as defined above, and that there is
some distributionD(x; y) generating examples. For allFW 2 H, for all  > 0,
with probability at least1 � Æ over the choice of training set of sizem drawn
fromD,

Er(FW) � ^Er(W; ) +O
0

@
vuut 1

m

 
R2jjWjj2

2

(logm+ logN) + log
1

Æ
!1A

whereR is a constant such that8x 2 X ; 8y 2 GEN(x); 8z 2 GEN(x);

jj�(x; y)��(x; z)jj � R. The variableN is the smallest positive integer such
that8x 2 X ; jGEN(x)j � 1 � N .



Notes on the bound
Er(FW) � ^Er(W; )| {z }

Fit to the data

+O
0

@
vuut 1

m

 
R2jjWjj2

2

(logm+ logN) + log
1

Æ
!1A

| {z }

Complexity Penalty

� The complexity penalty does not (directly) depend on the number of
parameters in the model

� The bound has two conflicting terms: keep the marginmi(W) high on as
many examples as possible, but keepjjWjj

2 low.

� The dependence onlogN is bad: perhaps the bound can be improved?



Notes on the bound
Er(FW) � ^Er(W; )| {z }

Fit to the data

+O
0

@
vuut 1

m

 
R2jjWjj2

2

(logm+ logN) + log
1

Æ
!1A

| {z }

Complexity Penalty

� Note the relationship to global log-linear models with a gaussian prior:
WMAP = argmaxW
�

L(W)� CjjWjj2
�

where

L(W) =

X
i

logP (yi j xi;W)

= �
X

i

log
0

@1 +
X

j

e�mi;j(W)
1

A



Summary
� One assumption: the same distributionD(x; y) is generating training and

test examples

� Er(F ) is the error rate w.r.t. this distribution: we would like to find anF

which minimizes this. ^Er(F ) is the error rate on the training sample

� Started considering how good an estimate^Er(F ) is of Er(F ). This
depends on thecomplexity of F .

� “Structural risk minimization” means we search for a function which has a
low value for ^Er(F ), but is also not too “complex”

� Several measures of complexity have been considered:

– Size of hypothesis class the function comes from

– Number of non-zero parameter values

– Size of the margins on training examples vs.jjWjj
2



Some Final Points
� Advantage of these bounds is that they make very few

assumptions (for example, no assumptions aboutD(x; y))

� Disadvantage is that they can be very pessimistic, or “loose”

� A great deal of current research on how to get “tighter” bounds

� The bounds were originally developed forclassification
problems: several important issues remain for NLP, e.g.,

– Results for loss functions other than0� 1 loss

– Dependence onlog jGEN(x)j in margin bounds

– How to optimize the bounds in practice


