
6.891: Lecture 16 (November 2nd, 2003)

Global Linear Models: Part III



Overview
� Recap: global linear models, and boosting

� Log-linear models for parameter estimation

� An application: LFG parsing

� Global and local features

– The perceptron revisited

– Log-linear models revisited



Three Components of Global Linear Models
� � is a function that maps a structure(x; y) to afeature vector

�(x; y) 2 R
d

� GEN is a function that maps an inputx to a set ofcandidates

GEN(x)

� W is a parameter vector (also a member ofR
d)

� Training data is used to set the value ofW



Putting it all Together
� X is set of sentences,Y is set of possible outputs (e.g. trees)

� Need to learn a functionF : X ! Y

� GEN,�,W define

F (x) = arg max

y2GEN(x)
�(x; y) �W

Choose the highest scoring candidate as the most plausible
structure

� Given examples(xi; yi), how to setW?
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The Training Data
� On each example there are several “bad parses”:

z 2 GEN(xi), such thatz 6= yi

� Some definitions:

– There areni bad parses on thei’th training example
(i.e.,ni = jGEN(xi)j � 1)

– zi;j is thej’th bad parse for thei’th sentence

� We can think of the training data(xi; yi), andGEN, providing
a set of good/bad parse pairs

(xi; yi; zi;j) for i = 1 : : : n, j = 1 : : : ni



Margins and Boosting
� We can think of the training data(xi; yi), andGEN, providing

a set of good/bad parse pairs

(xi; yi; zi;j) for i = 1 : : : n, j = 1 : : : ni

� TheMargin on examplezi;j under parametersW is

mi;j(W) = �(xi; yi) �W ��(xi; zi;j) �W

� Exponential loss

ExpLoss(W) =
X

i;j
e�mi;j(W)



Boosting: A New Parameter Estimation Method
� Exponential loss: ExpLoss(W) =
P

i;j e
�mi;j(W)

� Feature selection methods:

– Try to make good progress in minimizing ExpLoss,
but keep most parametersWk = 0

– This is a feature selection method: only a small number of features
are “selected”

– In a couple of lectures we’ll talk much more about overfitting, and
generalization
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Back to Maximum Likelihood Estimation
[Johnson et. al 1999]

� We can use the parameters to define a probability for each
parse:

P (y j x;W) =

e�(x;y)�WP
y02GEN(x) e
�(x;y0)�W

� Log-likelihood is then

L(W) =
X

i

logP (yi j xi;W)

� A first estimation method: take maximum likelihood
estimates, i.e.,

WML = argmaxWL(W)



Adding Gaussian Priors
[Johnson et. al 1999]

� A first estimation method: take maximum likelihood
estimates, i.e.,WML = argmaxWL(W)

� Unfortunately, very likely to “overfit”:
could use feature selection methods, as in boosting

� Another way of preventing overfitting: choose parameters as

WMAP = argmaxW
 

L(W)� C
X

k

W

2
k

!

for some constantC

� Intuition: adds a penalty for large parameter values



The Bayesian Justification for Gaussian Priors
� In Bayesianmethods, combine the log-likelihoodP (data j W) with a

prior over parameters,P (W)

P (W j data) =

P (data jW)P (W)R
W

P (data jW)P (W)dW

� TheMAP (Maximum A-Posteriori) estimates are

WMAP = argmaxWP (W j data)

= argmaxW
0

BB@logP (data jW)| {z }

Log-Likelihood

+ logP (W)| {z }

Prior

1
CCA

� Gaussian prior:P (W) / e
�C
P

k

W

2
k

) logP (W) = �C
P

kW

2
k + C2



The Relationship to Margins

L(W) =

X
i

logP (yi j xi;W)

= �
X

i

log
0

@1 +
X

j

e�mi;j(W)
1

A

wheremi;j(W) = �(xi; yi) �W��(xi; zi;j) �W

Compare this to exponential loss:

ExpLoss(W) =
X

i;j
e�mi;j(W)
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Summary

Choose parameters as:

WMAP = argmaxW
 

L(W)� C
X

k

W

2
k

!

where

L(W) =

X
i

logP (yi j xi;W)

=

X
i

log

e�(xi;yi)�WP
y02GEN(xi) e
�(xi;y0)�W
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j
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A
Can use (conjugate) gradient ascent



Summary: A Comparison to Boosting
� Both methods combine a loss function (measure of how well the

parameters match the training data), with some method of preventing
“over-fitting”

� Loss functions:
ExpLoss(W) =

X
i;j

e�mi;j(W)

L(W) = �
X

i

log
0

@1 +
X

j

e�mi;j(W)
1

A

� Protection against overfitting:

– “Feature selection” for boosting

– Penalty for large parameter values in log-linear models



� (At least) two other algorithms are possible: minimizingL(W) with a
feature selection method, or minimizing a combination of ExpLoss and a
penalty for large parameter values



An Application: LFG Parsing
� [Johnson et. al 1999]introduced these methods for LFG

parsing

� LFG (Lexical functional grammar) is a detailed syntactic
formalism

� Many of the structures in LFG are directed graphs which are
not trees

� Makes coming up with a generative model difficult
(see also[Abney, 1997])



An Application: LFG Parsing
� [Johnson et. al 1999]: used an existing, hand-crafted LFG

parser and grammar from Xerox

� Domains were: 1) Xerox printer documentation; 2)
“Verbmobil” corpus

� Parser used to generate all possible parses for each sentence,
annotators marked which one was correct in each case

� On Verbmobil: baseline (random) score is 9.7% parses correct,
log-linear model gets 58.7% correct

� On printer documentation: baselin is 15.2% correct, log-linear
model scores 58.8%
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Global and Local Features
� So far: algorithms have depended on size ofGEN

� Strategies for keeping the size ofGEN manageable:

– Reranking methods: use a baseline model to generate its
topN analyses

– LFG parsing: hope that the grammar produces a relatively
small number of possible analyses



Global and Local Features
� Global linear models are “global” in a couple of ways:

– Feature vectors are defined over entire structures

– Parameter estimation methods explicitly related to errors
on entire structures

� Next topic:global training methods withlocal features

– Our “global” features will be defined throughlocal features

– Parameter estimates will be global

– GEN will be large!

– Dynamic programming used for search and parameter estimation:
this is possible for some combinations ofGEN and�



Tagging Problems

TAGGING: Strings toTagged Sequences

a b e e a f h j) a/C b/D e/C e/C a/D f/C h/D j/C

Example 1: Part-of-speech tagging
Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSSCEO/N Alan/N
Mulally/N announced/V first/ADJ quarter/N results/N ./.

Example 2: Named Entity Recognition
Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA
CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA
results/NA ./NA



Tagging

Going back to tagging:

� Inputsx are sentencesw[1:n] = fw1 : : : wng

� GEN(w[1:n]) = T n i.e. all tag sequences of lengthn

� Note:GEN has an exponential number of members

� How do we define�?



Representation: Histories
� A history is a 4-tupleht�1; t�2; w[1:n]; ii

� t�1; t�2 are the previous two tags.

� w[1:n] are then words in the input sentence.

� i is the index of the word being tagged

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

� t�1; t�2 = DT, JJ

� w[1:n] = hHispaniola; quickly; became; : : : ; Hemisphere; :i

� i = 6



Local Feature-Vector Representations
� Take a history/tag pair(h; t).

� �s(h; t) for s = 1 : : : d arelocal featuresrepresenting tagging
decisiont in contexth.

Example: POS Tagging

� Word/tag features

�100(h; t) =

(
1 if current wordwi is base andt = VB

0 otherwise

�101(h; t) =

(
1 if current wordwi ends ining andt = VBG

0 otherwise

� Contextual Features

�103(h; t) =

(
1 if ht�2; t�1; ti = hDT, JJ, VBi

0 otherwise



A tagged sentence withn words hasn history/tag pairs

Hispaniola/NNPquickly/RB became/VB an/DT important/JJbase/NN

History Tag
t
�2 t
�1 w[1:n] i t

* * hHispaniola; quickly; : : : ; i 1 NNP
* NNP hHispaniola; quickly; : : : ; i 2 RB
NNP RB hHispaniola; quickly; : : : ; i 3 VB
RB VB hHispaniola; quickly; : : : ; i 4 DT
VP DT hHispaniola; quickly; : : : ; i 5 JJ
DT JJ hHispaniola; quickly; : : : ; i 6 NN



A tagged sentence withn words hasn history/tag pairs

Hispaniola/NNPquickly/RB became/VB an/DT important/JJbase/NN

History Tag
t
�2 t
�1 w[1:n] i t

* * hHispaniola; quickly; : : : ; i 1 NNP
* NNP hHispaniola; quickly; : : : ; i 2 RB
NNP RB hHispaniola; quickly; : : : ; i 3 VB
RB VB hHispaniola; quickly; : : : ; i 4 DT
VP DT hHispaniola; quickly; : : : ; i 5 JJ
DT JJ hHispaniola; quickly; : : : ; i 6 NN

Define global features through local features:

�(t[1:n]; w[1:n]) =

nX
i=1
�(hi; ti)

whereti is thei’th tag,hi is thei’th history



Global and Local Features
� Typically, local features are indicator functions, e.g.,

�101(h; t) =

(
1 if current wordwi ends ining andt = VBG

0 otherwise

� and global features are then counts,

�101(w[1:n]; t[1:n]) = Number of times a word ending ining is
tagged asVBGin (w[1:n]; t[1:n])



Putting it all Together
� GEN(w[1:n]) is the set of all tagged sequences of lengthn

� GEN,�,W define
F (w[1:n]) = arg max

t[1:n]2GEN(w[1:n])
W ��(w[1:n]; t[1:n])

= arg max

t[1:n]2GEN(w[1:n])
W �

nX
i=1
�(hi; ti)

= arg max

t[1:n]2GEN(w[1:n])
nX

i=1
W � �(hi; ti)

� Some notes:

– Score for a tagged sequence is a sum of local scores

– Dynamic programming can be used to find theargmax!
(because history only considers the previous two tags)



A Variant of the Perceptron Algorithm

Inputs: Training set(xi; yi) for i = 1 : : : n

Initialization: W = 0

Define: F (x) = argmaxy2GEN(x)�(x; y) �W

Algorithm: For t = 1 : : : T , i = 1 : : : n

zi = F (xi)

If (zi 6= yi) W =W +�(xi; yi)��(xi; zi)

Output: ParametersW



Training a Tagger Using the Perceptron Algorithm

Inputs: Training set(wi
[1:ni]
; ti[1:ni]
) for i = 1 : : : n.

Initialization: W = 0

Algorithm: For t = 1 : : : T; i = 1 : : : n

z[1:ni] = arg max

u[1:ni]
2T ni
W ��(wi
[1:ni]
; u[1:ni])

z[1:ni] can be computed with the dynamic programming (Viterbi) algorithm

If z[1:ni] 6= ti[1:ni]

then

W =W + �(wi
[1:ni]
; ti[1:ni]
)��(wi
[1:ni]
; z[1:ni])

Output: Parameter vectorW.



An Example

Say the correct tags fori’th sentence are

the/DT man/NN bit/VBD the/DT dog/NN

Under current parameters, output is

the/DT man/NN bit/NN the/DT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs

Parameters incremented:

hNN, VBDi; hVBD, DTi; hVBD ! biti

Parameters decremented:

hNN, NNi; hNN, DTi; hNN ! biti



Experiments
� Wall Street Journal part-of-speech tagging data

Perceptron = 2.89%, Max-ent = 3.28%
(11.9% relative error reduction)

� [Ramshaw and Marcus, 1995]NP chunking data

Perceptron = 93.63%, Max-ent = 93.29%
(5.1% relative error reduction)



How Does this Differ from Log-Linear Taggers?
� Log-linear taggers (in an earlier lecture) used very similar

local representations

� How does the perceptron model differ?

� Why might these differences be important?



Log-Linear Tagging Models
� Take a history/tag pair(h; t).

� �s(h; t) for s = 1 : : : d arefeatures

Ws for s = 1 : : : d areparameters

� Conditional distribution:

P (tjh) =

eW��(h;t)

Z(h;W)

whereZ(h;W) =
P

t02T e
W��(h;t0)

� Parameters estimated using maximum-likelihood
e.g., iterative scaling, gradient descent



Log-Linear Tagging Models

� Word sequence w[1:n] = [w1; w2 : : : wn]

� Tag sequence t[1:n] = [t1; t2 : : : tn]

� Histories hi = hti�1; ti�2; w[1:n]; ii

logP (t[1:n] j w[1:n])

=

nX
i=1

logP (ti j hi) =

nX
i=1
W � �(hi; ti)| {z }

Linear Score

�

nX
i=1

logZ(hi;W)

| {z }

Local Normalization
Terms

� Compare this to the perceptron, whereGEN,�,W define

F (w[1:n]) = arg max

t[1:n]2GEN(w[1:n])
nX

i=1
W � �(hi; ti)| {z }

Linear score



Problems with Locally Normalized models
� “Label bias” problem[Lafferty, McCallum and Pereira 2001]

See also[Klein and Manning 2002]

� Example of a conditional distribution that locally normalized
models can’t capture (under bigram tag representation):

a b c) A — B — C
j j j

a b c
with P (A B C j a b c) = 1

a b e) A — D — E

j j j
a b e

with P (A D E j a b e) = 1

� Impossible to find parameters that satisfy

P (A j a)� P (B j b; A)� P (C j c; B) = 1

P (A j a)� P (D j b; A)� P (E j e;D) = 1
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Global Log-Linear Models
� We can use the parameters to define a probability for each

tagged sequence:

P (t[1:n] j w[1:n];W) =
e
P

i
W��(hi;ti)

Z(w[1:n];W)

where

Z(w[1:n];W) =

X
t[1:n]2GEN(w[1:n])
e
P

i
W��(hi;ti)

is aglobal normalization term

� This is a global log-linear model with

�(w[1:n]; t[1:n]) =
X

i

�(hi; ti)



Now we have:

logP (t[1:n] j w[1:n])

=

nX
i=1
W � �(hi; ti)| {z }

Linear Score

� logZ(w[1:n];W)| {z }

Global Normalization
Term

When finding highest probability tag sequence, the global term
is irrelevant:

argmaxt[1:n]2GEN(w[1:n])

nX
i=1

�
W � �(hi; ti)� logZ(w[1:n];W)
�

= argmaxt[1:n]2GEN(w[1:n])

nX
i=1
W � �(hi; ti)



Parameter Estimation
� For parameter estimation, we must calculate the gradient of

logP (t[1:n] j w[1:n]) =

nX
i=1
W��(hi; ti)�log

X
t0

[1:n]
2GEN(w[1:n])
e
P

i
W��(h0
i
;t0
i
)

with respect toW

� Taking derivatives gives

dL
dW

=

nX
i=1
�(hi; ti)�

X
t0

[1:n]
2GEN(w[1:n])
P (t0[1:n] j w[1:n];W)�(h0i; t
0

i)

� Can be calculated using dynamic programming!
(very similar to forward-backward algorithm for EM training)



Summary of Perceptron vs. Global Log-Linear Model
� Both are global linear models, where

GEN(w[1:n]) = the set of all possible tag sequences forw[1:n]

�(w[1:n]; t[1:n]) =

X
i

�(hi; ti)

� In both cases,

F (w[1:n]) = argmaxt[1:n]2GEN(w[1:n])
W ��(w[1:n]; t[1:n])

= argmaxt[1:n]2GEN(w[1:n])
X

i

W � �(hi; ti)

can be computed using dynamic programming



� Dynamic programming is also used in training:

– Perceptron requires highest-scoring tag sequence for each
training example

– Global log-linear model requires gradient, and therefore
“expected counts”



Results
From [Sha and Pereira, 2003]

� Task = shallow parsing (base noun-phrase recognition)

Model Accuracy
SVM combination 94.39%
Conditional random field 94.38%
(global log-linear model)
Generalized winnow 93.89%
Perceptron 94.09%
Local log-linear model 93.70%


