6.891: Lecture 16 (November 2nd, 2003)

Global Linear Models: Part Il



Overview

e Recap: global linear models, and boosting
e Log-linear models for parameter estimation
e An application: LFG parsing

e Global and local features

— The perceptron revisited
— Log-linear models revisited



Three Components of Global Linear Models

e ® is afunction that maps a structure y) to afeature vector
P(z,y) € R

e GEN Is a function that maps an inputto a set ocandidates
GEN(x)

e W is a parameter vector (also a membeRro®f

e Training data is used to set the value\df



Putting it all Together

e X' Is set of sentenced) is set of possible outputs (e.g. trees)
e Need to learn a functionn : X — )
e GEN, &, W define
r) =arg max P(z,y)- W
( ) ygEGEN(x) ( y)

Choose the highest scoring candidate as the most plausible
structure

e Given examplesz;, y;), how to setW?
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The Training Data

e On each example there are several “bad parses”:
z € GEN(x;), such that # y;

e Some definitions:

— There aren; bad parses on thé&h training example

— z;; Is thej'th bad parse for thé'th sentence

e \We can think of the training data;, y;), andGEN, providing
a set of good/bad parse pairs

(ZIJi,yi,Zi,j) forzzln,]: 1...n;



Margins and Boosting

e \We can think of the training data;, y;), andGEN, providing
a set of good/bad parse pairs

(ZCZ‘,yZ‘,ZZ'J) forzzln,]: 172,,&

e TheMargin on exampley; ; under parametersv Is

mi,j(W) — (I)(x’wy’t) - W — (I)(l‘z, Z’i,j) - W

e Exponential loss

ExpLosgW) = Y e mii(W)
]




Boosting: A New Parameter Estimation Method

—m; ; (W
g€ W)

e Exponential loss ExpLosgW) = >
e Feature selection methods:
— Try to make good progress in minimizing ExpLoss,

but keep most paramete¥s, = 0

— This is a feature selection method: only a small number of features
are “selected”

— In a couple of lectures we’ll talk much more about overfitting, and
generalization



Overview

e Recap: global linear models, and boosting
e Log-linear models for parameter estimation
e An application: LFG parsing

e Global and local features

— The perceptron revisited
— Log-linear models revisited



Back to Maximum Likelihood Estimation
[Johnson et. al 1999]

e \We can use the parameters to define a probability for each

parse:
eq)(may)w

P(y‘wi):

Zy’EGEN(m) e®l@y’) W
e Log-likelihood is then
L(W) = _log P(y; | z;, W)

e A first estimation method: take maximum likelihood
estimates, I.e.,

Wy = argmaxyy L(W)



Adding Gaussian Priors
[Johnson et. al 1999]

e A first estimation method: take maximum likelihood
estimates, i.e WV, = argmaxy, L(W)

e Unfortunately, very likely to “overfit”:
could use feature selection methods, as in boosting

e Another way of preventing overfitting: choose parameters as
W yap = argmaxyy (L(W) - C’ZW%)
k

for some constant’

e [ntuition: adds a penalty for large parameter values



The Bayesian Justification for Gaussian Priors

In Bayesianmethods, combine the log-likelihooB(data | W) with a
prior over parameters; (W)

P(data | W)P(W)

P(W | data) = | Pldata | W)P(W)dW

TheMAP (Maximum A-Posteriori) estimates are

Wyap = argmaxyw P(W | data)

= argmaxyy | log P(data | W) +log P(W)
Log-LiQreIihood PFiror

Gaussian priorP(W) e=C 2 Wi
= log P(W) = —C 3", Wj + (s



The Relationship to Margins

L(W) = ) logP(y; | xi, W)

Wheremi,j (W) = (I)(il?@, yz) - W — (I)(il?@, Zi,j) - W

Compare this to exponential loss:

ExpLosgW) = Y e mi(W)
t,J
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Summary

Choose parameters as:
W rap = argmaxyy (L(W) — C’ZW%)
k

where

L(W) = ZlogP(yz- | 25, W)

€
= El
DY

@ 2 / W
; J/ €GEN(z;) €2 @)

= — Zlog (1 + Z emi’i(w)>
v J

Can use (conjugate) gradient ascent



Summary: A Comparison to Boosting

e Both methods combine a loss function (measure of how well the
parameters match the training data), with some method of preventing
“over-fitting”

e Loss functions:
ExpLosgW) = ) e (W)

0]

L(W) == log <1 + 3 e <w>)

e Protection against overfitting:

— “Feature selection” for boosting
— Penalty for large parameter values in log-linear models



e (At least) two other algorithms are possible: minimizihgW) with a
feature selection method, or minimizing a combination of ExpLoss and a
penalty for large parameter values



An Application: LFG Parsing

e [Johnson et. al 1999Introduced these methods for LFG
parsing

e LFG (Lexical functional grammar) is a detailed syntactic
formalism

e Many of the structures in LFG are directed graphs which are
not trees

e Makes coming up with a generative model difficult
(see alsdAbney, 1997])



An Application: LFG Parsing

e [Johnson et. al 1999]used an existing, hand-crafted LFG
parser and grammar from Xerox

e Domains were: 1) Xerox printer documentation; 2)
“Verbmoblil” corpus

e Parser used to generate all possible parses for each sentence,
annotators marked which one was correct in each case

e On Verbmobil: baseline (random) score is 9.7% parses correct,
log-linear model gets 58.7% correct

e On printer documentation: baselin is 15.2% correct, log-linear
model scores 58.8%



Overview

Recap: global linear models, and boosting
Log-linear models for parameter estimation
An application: LFG parsing

Global and local features

— The perceptron revisited
— Log-linear models revisited



Global and Local Features

e SO far: algorithms have depended on sizé-di N

e Strategies for keeping the size @GfEIN manageable:

— Reranking methods: use a baseline model to generate its
top NV analyses

— LFG parsing: hope that the grammar produces a relatively
small number of possible analyses



Global and Local Features

e Global linear models are “global” in a couple of ways:

— Feature vectors are defined over entire structures

— Parameter estimation methods explicitly related to errors
on entire structures

e Next topic:global training methods wittocal features

— Our “global” features will be defined throudbcal features
— Parameter estimates will be global
— GEN will be large!

— Dynamic programming used for search and parameter estimation:
this is possible for some combinations oz EIN and &



Tagging Problems

TAGGING: Strings toTagged Sequences

abeeafhp aCb/DeCeCabDf/Ch/D]/C

Example 1: Part-of-speech tagging

ProfitdN soaredv atP BoeingN Co/N ,/, easilyADV toppingV
forecastd\ on/P Wall/N StreetN ,/, agP theirfPOSS CEQN Alan/N
Mulally/N announcefl/ first ADJ quartefN resultsN ./.

Example 2: Named Entity Recognition

ProfitsNA soared\NA at/NA BoeingSC Co/CC ,/NA easilyNA
toppingNA forecast8NA orn/NA Wall/SL StreetCL ,/NA asNA theirNA
CEQONA Alan/SP Mulally/CP announcedNA firsNA quartefNA
resultsNA ./NA



Tagging

Going back to tagging:
e INputsz are sentences;.,,,) = {w; ... Wy}
o GEN(wp.,) = T" i.e. all tag sequences of length
e Note: GEN has an exponential number of members

e How do we defineb?



Representation: Histories

o A history is a 4-tuple(t_i,t_o, Wi, %)
e 1_,,t_o are the previous two tags.

* wyi., are then words in the input sentence.

¢ ; IS the index of the word being tagged

HispaniolaNNP quicklyyRB becamé/B an'DT important]J
basé?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

® t_l,t_g — DT, JJ
® Wiy = (Hispaniola, quickly,became, ..., Hemisphere,.)

o1 =0



Local Feature-Vector Representations
e Take a history/tag paiih, t).

e ¢,(h,t)fors=1...darelocal featuresrepresenting tagging
decisiont in contexth.

Example: POS Tagging
e Word/tag features

(1 if current wordw; is base andt = VB

Pro0(h,t) = <\ 0 otherwise

bon(hnt) = <’ 1 if current wordw, ends ining andt = VBG
PR 0 otherwise
e Contextual Features

(1 if (t_a,t_1,t) = (DT, 3J, VB
bros(h,t) = {O otherwise




A tagged sentence witlm words hasn history/tag pairs

HispanioldaNNP quickly/RB becamé&/B an'DT importantJJbaséNN

History Tag
t_g t_l w[l,n] 1 t
* * (Hispaniola, quickly,...,) 1 | NNP
* NNP (Hispaniola,quickly,...,) 2 | RB
NNP RB  (Hispaniola,quickly,...,) 3| VB
RB VB (Hispaniola, quickly,...,) 4| DT
VP DT (Hispaniola, quickly,...,) 5| JJ
DT JJ (Hispaniola, quickly,...,) 6 | NN




A tagged sentence witlm words hasn history/tag pairs

HispanioldaNNP quickly/RB becamé&/B an'DT importantJJbaséNN

History Tag
t_2 t_l w[l,n] 1 t
* * (Hispaniola, quickly,...,) 1 | NNP
* NNP (Hispaniola,quickly,...,) 2 | RB
NNP RB  (Hispaniola,quickly,...,) 3| VB
RB VB (Hispaniola, quickly,...,) 4| DT
VP DT (Hispaniola, quickly,...,) 5| JJ
DT JJ (Hispaniola, quickly,...,) 6 | NN

Define global features through local features:

n

D (tr1n), Wimy) = Y d(his t;)

1=1

wheret; is the:'th tag, h; Is the:’'th history



Global and Local Features

e Typically, local features are indicator functions, e.g.,

¢101(h7 t)

1 if current wordw; ends ining andt = VBG
0 otherwise

e and global features are then counts,

P01 (wpim, thm)) = Number of times a word ending img is
tagged a¥/BGin (w1, trin))



Putting it all Together

o GEN(wp.,) is the set of all tagged sequences of length

e GEN, &, W define

Wiy) = ar max W .o n
(wiiin)) B (Wiin), Epion))

= arg _max W-Z(b(hi,ti)

[1 n] EGEH\T(fw[l n])

= arg _max ZW ¢(h;,t;)

t1:n] EGEN(w1.y)

e Some notes:

— Score for a tagged sequence is a sum of local scores

— Dynamic programming can be used to find theargmax!
(because history only considers the previous two tags)



A Variant of the Perceptron Algorithm

Inputs: Training set(x;,y;) fori =1...n
Initialization: W =0
Define: () = argmaxyccen@G) ®(z,y) - W
Algorithm: Fort=1...T,:=1...n

zi = F(x;)

If (zi #yi)) W =W+ ®(z;,y;) — P(z;, 2)

Output: ParameterdVv



Training a Tagger Using the Perceptron Algorithm

Inputs: Training set(w,.,, ,, t,.,) fori = 1.
Initialization: W =0

Algorithm: Fort=1...T,:=1...n

Son) =, iy, W Bl )

Z[1.n;] CaN be computed with the dynamic programming (Viterbi) algorithm
If 2[1:n4] + t’flzni] then
W=W + (I)(wfl:ni]? trfln@]) o (I)(wfl:ni]? Z[lnz])

Output: Parameter vectow.



An Example

Say the correct tags foéith sentence are
theDT man'NN bit/VBD theDT dog NN

Under current parameters, output Is
theDT man'NN bit/NN theDT dog/NN

Assume also that features track: (1) all bigrams; (2) word/tag pairs
Parameters incremented:

(NN, VBD), (VBD, DT), (VBD — bit)

Parameters decremented:

(NN, NN), (NN, DT), (NN — bit)



Experiments

e Wall Street Journal part-of-speech tagging data

Perceptron = 2.899%Max-ent = 3.28%
(11.9% relative error reduction)

e [Ramshaw and Marcus, 199NP chunking data

Perceptron = 93.63%ax-ent = 93.29%
(5.1% relative error reduction)



How Does this Differ from Log-Linear Taggers?

e Log-linear taggers (in an earlier lecture) used very similar
local representations

e How does the perceptron model differ?

e Why might these differences be important?



Log-Linear Tagging Models

e Take a history/tag paiih, t).

e ¢.(h,t) fors=1...darefeatures
W, fors =1...d areparameters

e Conditional distribution:

qub(h,t)

P(tlh) = Z(h, W)

WhereZ(h, W) = Zt,GT €W¢(h’t/)

e Parameters estimated using maximum-likelihood
e.g., iterative scaling, gradient descent



Log-Linear Tagging Models

o Word sequence wy; ., (w1, wy . .. W,
e Tagsequence tp.,, = [t1,t2...1,]
Histories hz — <ti_1, ti_z, w[lzn], Z>

log P(t{1.0] | Wit:n))

ilogP(ti | hy) = zn:W - P(hiy b)) — znjlogZ(hi,W)
i=1

1=1 1=1

7 N\ 7

N~

Linear Score Local Normalization
Terms

e Compare this to the perceptron, whéi@ N, &, W define

Wi.,]) = Aar max W hi,t

7

Llnear score



Problems with Locally Normalized models

e “Label bias” problemLafferty, McCallum and Pereira 2001]
See alsgKlein and Manning 2002]

e Example of a conditional distribution that locally normalized
models can’t capture (under bigram tag representation):

abc 2_1_(1 with P(ABC |ab @ = 1
abe. Z_i_E\e with P(ADE |abe = 1

e Impossible to find parameters that satisfy
P(Ala)x P(B|b,A)x P(C|c¢,B)=1
P(A|la)x P(D|b,A) x P(E|e,D)=1
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Global Log-Linear Models

e We can use the parameters to define a probability for each
tagged sequence:

@Z@- qu(h’batl)
Pt | w :n7W _
( o ‘ - ) Z(w[ln]aw)
where
Z(w[lzn]a W) — Z ezz‘ W-¢(h,ti)

t[l:n] GGEN(w[l:n])

IS aglobal normalization term

e This is a global log-linear model with

(I)(w[ln]a t[ln]) — Z ¢(hza tz)



Now we have:

\ . 4

— Global Normalization
Linear Score

Term

When finding highest probability tag sequence, the global term
IS Irrelevant:

n

a’rgma’xt[l:n]EGEN(w[l:n]) Z (W ) ¢(h’57 tz) o log Z(w[lin]7 W))

1=1

= argmax; cGEN(uwy.,) > W o(hi ;)
i=1



Parameter Estimation

e For parameter estimation, we must calculate the gradient of

log P(t[ln] ‘ w[l:n]) — ZW¢(hz,tz)—10g Z Z W -¢( h’ t’

El n] EG]-El\I(’w[ln])

with respect tow

e Taking derivatives gives

dL n ’ o
W — Z¢(h27t2)_ Z P(t[ln] ‘ ’U}[lzn],W)¢(h“tz)

i=1 th ) EGEN(w[1:))

e Can be calculated using dynamic programming!
(very similar to forward-backward algorithm for EM training)



Summary of Perceptron vs. Global Log-Linear Model

e Both are global linear models, where

GEN(wp.,)) = the setof all possible tag sequencesuar,,
P (W), tim]) = Z(b(huti)

e |n both cases,

(w[lzn]) = argmaxt[lm]eGEN(w[lm])W'(I)(w[lzn]at[lzn])

= argmaxy,  cGEN(wj.,) Z W - ¢(hi, t;)

can be computed using dynamic programming



e Dynamic programming is also used in training:

— Perceptron requires highest-scoring tag sequence for each
training example

— Global log-linear model requires gradient, and therefore
“expected counts”



Results
From [Sha and Pereira, 2003]

e Task = shallow parsing (base noun-phrase recognition)

Model Accuracy
SVM combination 94.39%

Conditional random field 94.38%

(global log-linear model]
Generalized winnow 93.89%
Perceptron 94.09%
Local log-linear model | 93.70%




