
6.891: Lecture 15 (October 29th, 2003)

Global Linear Models: Part II

Overview
� Recap: global linear models

� A new algorithm: boosting

� Applications:

– Parser reranking (from last lecture)

– Natural language generation

� Efficient implementations of boosting

Three Components of Global Linear Models
� � is a function that maps a structure(x; y) to afeature vector

�(x; y) 2 R
d

� GEN is a function that maps an inputx to a set ofcandidates

GEN(x)

� W is a parameter vector (also a member ofR
d)

� Training data is used to set the value ofW

Component 1:�

� � maps a candidate to afeature vector2 R
d

� � defines therepresentationof a candidate

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

+ �

h1; 0; 2; 0; 0; 15; 5i

Component 2:GEN

� GEN enumerates a set ofcandidatesfor a sentence

She announced a program to promote safety in trucks and vans

+ GEN
S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

safety PP

in NP

trucks and vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

NP

safety PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

Component 2:GEN

� GEN enumerates a set ofcandidatesfor an inputx

� Some examples of howGEN(x) can be defined:

– Parsing:GEN(x) is the set of parses forx under a grammar

– Any task: GEN(x) is the topN most probable parses under a
history-based model

– Tagging:GEN(x) is the set of all possible tag sequences with the
same length asx

– Translation:GEN(x) is the set of all possible English translations
for the French sentencex

Component 3:W

� W is aparameter vector2 R
d

� � andW together map a candidate to a real-valued score

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

+ �

h1; 0; 2; 0; 0; 15; 5i

+ � �W

h1; 0; 2; 0; 0; 15; 5i � h1:9;�0:3; 0:2; 1:3; 0; 1:0;�2:3i = 5:8

Putting it all Together
� X is set of sentences,Y is set of possible outputs (e.g. trees)

� Need to learn a functionF : X ! Y

� GEN,�,W define

F (x) = arg max

y2GEN(x)
�(x; y) �W

Choose the highest scoring candidate as the most plausible
structure

� Given examples(xi; yi), how to setW?

She announced a program to promote safety in trucks and vans

+ GEN

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

safety PP

in NP

trucks and vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

NP

safety PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks

and NP

vans

S

NP

She

VP

announced NP

NP

NP

a program

VP

to promote NP

safety

PP

in NP

trucks and vans

+ � + � + � + � + � + �

h1; 1; 3; 5i h2; 0; 0; 5i h1; 0; 1; 5i h0; 0; 3; 0i h0; 1; 0; 5i h0; 0; 1; 5i

+ � �W + � �W + � �W + � �W + � �W + � �W

13.6 12.2 12.1 3.3 9.4 11.1
+ argmax

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

Overview
� Recap: global linear models

� A new algorithm: boosting

� Applications:

– Parser reranking (from last lecture)

– Natural language generation

� An efficient boosting algorithm

Boosting
� Originated from a theoretical question in PAC learning

(equivalence of weak and strong learning)

� Original algorithms gave strong theoretical results, but weren’t
particularly practical

� AdaBoost [Freund and Schapire 1995]was a practical
boosting algorithm

� Numerous results have shown empirical success of AdaBoost

� AdaBoost was originally proposed for classification problems:
many variants have followed, we’ll focus on how to generalize
the methods to Global Linear Models

A Central Question: Parameter Estimation
� GEN,�,W define

F (x) = arg max

y2GEN(x)
�(x; y) �W

� Given examples(xi; yi), how to setW?

Loss Functions
� A loss function measures how well the parameters fit the

training data

� Up to now, the main loss function we’ve considered has been
likelihood

L(�) =
X

i

logP (yi; xi j �) or L(�) =
X

i

logP (yi j xi;�)

� Maximum likelihood estimation: choose

�ML = argmax�L(�)

) L(�) is a measure of how well the parameters� “fit” the
training data(x1; y1) : : : (xn; yn)

The Training Data
� On each example there are several “bad parses”:

z 2 GEN(xi), such thatz 6= yi

� Some definitions:

– There areni bad parses on thei’th training example
(i.e.,ni = jGEN(xi)j � 1)

– zi;j is thej’th bad parse for thei’th sentence

� We can think of the training data(xi; yi), andGEN, providing
a set of good/bad parse pairs

(xi; yi; zi;j) for i = 1 : : : n, j = 1 : : : ni

Margins
� We can think of the training data(xi; yi), andGEN, providing

a set of good/bad parse pairs

(xi; yi; zi;j) for i = 1 : : : n, j = 1 : : : ni

� TheMargin on examplezi;j under parametersW is

mi;j(W) = �(xi; yi) �W ��(xi; zi;j) �W

� Some intuition:

– The margin is the difference in score between a good parse and a bad
parse

– If the margin is positive (i.e.,mi;j(W) > 0) then the parametersW

have correctly discriminated(xi; yi) from (xi; zi;j)

– If the margin is negative (i.e.,mi;j(W) � 0) then an error has been
made

New Loss Functions
� Number ofranking errors

Error(W) =

X
i;j

[[mi;j(W) � 0]]

where[[�]] is 1 if � is true,0 otherwise

� Exponential loss

ExpLoss(W) =
X

i;j
e�mi;j(W)

where

mi;j(W) = �(xi; yi) �W ��(xi; zi;j) �W

A New Parameter Estimation Method
� Exponential loss: ExpLoss(W) =
P

i;j e
�mi;j(W)

� We could pick parametersW� as

W

� = argmin
W

ExpLoss(W)

� Some properties:

– Easy to do because ExpLoss is convex, differentiable

– Intuition: minimizing ExpLoss encourages parameters to give
positive margins on all examples

– More justifiction: ExpLoss is an upper bound on the number of
ranking errors

ExpLoss(W) � Error(W)

(follows becausee�x � [[x � 0]] for all x
– Minimizing Error is at least NP-hard if Error(W) = 0 is not possible

A New Parameter Estimation Method
� Exponential loss: ExpLoss(W) =
P

i;j e
�mi;j(W)

� We could pick parametersW� as

W

� = argmin
W

ExpLoss(W)

� A drawback:

– Easy to “overfit” with this method
especially if there are a large number of features

� An alternative:

– Try to make good progress in minimizing ExpLoss,
but keep most parametersWk = 0

– This is a feature selection method: only a small number of features
are “selected”

– In a couple of lectures we’ll talk much more about overfitting, and
generalization

A Feature Selection Method
� Exponential loss: ExpLoss(W) =
P

i;j e
�mi;j(W)

� A definition:

Upd(W; k; Æ) = fW1;W2; : : :Wk + Æ; : : :Wdg

i.e., all parameter values stay the same, except fork’th parameter value

� An algorithm:

Input: training examples(xi; yi), functionGEN, representation�

Initialization: for all k, setWk = 0

Algorithm: for t = 1 : : : T ,

� Choose(k�; Æ�) = argmink;Æ ExpLoss(Upd(W; k; Æ))

� SetW = Upd(W; k�; Æ�)

Output: parametersW

Input: training examples(xi; yi), functionGEN, representation�

Initialization: for all k, setWk = 0

Algorithm: for t = 1 : : : T ,

� Choose(k�; Æ�) = argmink;Æ ExpLoss(Upd(W; k; Æ))

� SetW = Upd(W; k�; Æ�)

Output: parametersW

The basic idea:

� At beginning, all parameter values are0

� At each step, choose a single parameterWk� , and a weightÆ�, update the
parameter by this weight

� Choosek�; Æ� to make most impact in minimizing ExpLoss

� This is a greedy feature selection method:
“greedy coordinate-wise gradient descent”

Overview
� Recap: global linear models

� A new algorithm: boosting

� Applications:

– Parser reranking (from last lecture)

– Natural language generation

� Efficient implementations of boosting

Reranking Approaches to Parsing
� Use a baseline parser to produce topN parses for each

sentence in training and test data

GEN(x) is the topN parses forx under the baseline model

� One method: use Model 2 to generate a number of parses
(in our experiments, around 25 parses on average for 40,000
training sentences, giving� 1 million training parses)

� Supervision: for each xi take yi to be the parse that is
“closest” to the treebank parse inGEN(xi)

Practical Issues in Creating�

� Step 2: hash the strings to integers

A

B

D

d

E

e

C

F

f

G

g

) HASRULE:A->B;C 54
HASRULE:B->D;E 118
HASRULE:C->F;G 14
HASRULE:D->d 10078
HASRULE:E->e 9000
HASRULE:F->f 1078
HASRULE:G->g 101

� In our experiments, tree is then represented as log probability
under the baseline model, plus a sparse feature array:

�1(x; y) = log probability of(x; y) under the baseline model

�i(x; y) = 1 for i = f54; 118; 14; 10078; 9000; 1078; 101g

�i(x; y) = 0 for all otheri

The Score for Each Parse
� In our experiments, tree is then represented as log probability

under the baseline model, plus a sparse feature array:
�1(x; y) = log probability of(x; y) under the baseline model

�i(x; y) = 1 for i = f54; 118; 14; 10078; 9000; 1078; 101g

�i(x; y) = 0 for all otheri

� Score for the tree(x; y):

�(x; y) �W

=

X
i

�i(x; y)Wi

= W1�1(x; y) +W54 +W118 +W14 +W10078 +W9000 +W1078 +W101

Last lecture we saw a number of features used in reranking experiments:
Result was� 500; 000 unique features,� 500 per parse

VP

VBD NP NP SBARPP

VP

VBD NP NP SBARPP

VP

VBD NP NP SBARPP

S

VP

NP(boy)VBD(gave)PP(in) NP(treat) SBAR(because)

VP

VBD NP NP SBARPP

S

VP

VBD NP NP SBARPP

NP

S

VP

VBD NP NP SBARPP

NP

S

VP

VBD! NP NP SBARPP

VP

VBD NP NP SBARPP
adj=1

adj=0

adj=0adj=1

S

presidentthe

NP(president) PP(of)

of NP(U.S.)

U.S.the

NP(president)

Experiments (from [Collins and Koo, in submission])
� At first step, setWk = 0 for all paremeters, then

W1 = argmin
Æ

ExpLoss(Upd(W; 1; Æ))

i.e., optimize ExpLoss with respect toW1, the weight for the
log probability under the baseline model

� Next steps: run feature selection for100; 000 rounds

� Peak performance on development data is at around 90,000 rounds;
at this point� 10; 000 parameters have non-zero values

Results

MODEL � 100 Words (2416 sentences)
LR LP CBs 0 CBs 2 CBs

CH97 86.7% 86.6% 1.20 59.5% 83.2%
RA98 86.3% 87.5% 1.21 60.2% —
CO99 88.1% 88.3% 1.06 64.0% 85.1%
CH00 89.6% 89.5% 0.88 67.6% 87.7%
ExpLoss 89.6% 89.9% 0.86 68.7% 88.3%

Results on Section 23 of the WSJ Treebank.LR/LP = labelled recall/precision.CBs is
the average number of crossing brackets per sentence.0 CBs,2 CBs are the percentage
of sentences with 0 or� 2 crossing brackets respectively. All the results in this table are
for models trained and tested on the same data, using the same evaluation metric. CH97 =
Charniak 1997, RA98 = Ratnaparkhi 1998, CH00 = Charniak 2000,CO99 = Collins 1999
Model 2 (the baseline model).

Around a 13% relative reduction in error

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000

e=0.0025

Graph showing the learning curve on development data for the
optimal value for�, i.e., � = 0:0025. The y-axis is the level of
accuracy (100 is the baseline score), and thex-axis is the number
of rounds of boosting.

Natural Language Generation
[Walker, Rambow and Rogati]

Input = text plan

implicit-confirm(orig-city:NEWARK)
implicit-confirm(dest-city:DALLAS)
implicit-confirm(month:9)
implicit-confirm(day-number:1)
request(depart-time)

Output = text

What time would you like to travel on September the 1st to Dallas from
Newark?
Leaving on September 1st. What time would you like to travel from
Newark to Dallas?
Leaving in September. Leaving on the 1st. What time would you,
traveling from Newark to Dallas, like to leave?

An Example Dialogue

System1: Welcome. What airport would you like to fly out of?

User2: I need to go to Dallas.

System3: Flying to Dallas. What departure airport was that?

User4: from Newark on September the 1st.

System5: What time would you like to travel on September the 1st
to Dallas from Newark?

The Text Planning Stage
Input = dialogue state

System1: Welcome. What airport would you like to fly out of?

User2: I need to go to Dallas.

System3: Flying to Dallas. What departure airport was that?

User4: from Newark on September the 1st.

System5: ???

Output = text plan

implicit-confirm(orig-city:NEWARK)
implicit-confirm(dest-city:DALLAS)
implicit-confirm(month:9)
implicit-confirm(day-number:1)
request(depart-time)

The Sentence Planning Stage

Input = text plan

implicit-confirm(orig-city:NEWARK)
implicit-confirm(dest-city:DALLAS)
implicit-confirm(month:9)
implicit-confirm(day-number:1)
request(depart-time)

Output = text

What time would you like to travel on September the 1st to Dallas from
Newark?

A Boosting Method for Sentence Planning
DefiningGEN:

� Starting point is a sentence plan with no “aggregation”:

Leaving on the 1st.
Leaving in September.
Going to Dallas.
Leaving from Newark.
What time would you like to leave?

� Several “merging” operations are possible:
Merge, Merge-General, Soft-Merge, Soft-Merge-General,
Conjunction, Relative-Clause, Adjective, Period

� Different sequences of merges lead to different sentence plans

� GEN is defined by randomly generating� 20 sentence plans
using the merging operations

A Boosting Method for Sentence Planning

Gathering training data:
� Took 100 text plans, generated up to20 sentence plans for each

� For each generated sentence, gave a rating on scale of1� 5

� 97% of examples had at least one sentence rated 4 or higher

A Boosting Method for Sentence Planning

Defining�:
� Each member ofGEN(x) can be represented as a tree

� Various features of these trees are chosen

soft-merge-general

soft-merge

imp-confirm(day) imp-confirm(month)

soft-merge-general

request(time) soft-merge-general

imp-confirm(dest-city) imp-confirm(orig-city)

Results

Method Score
Upper bound 4.82
Boosting 4.56
Random 2.76

Overview
� Recap: global linear models

� A new algorithm: boosting

� Applications:

– Parser reranking (from last lecture)

– Natural language generation

� Efficient implementations of boosting

A Feature Selection Method
� Exponential loss: ExpLoss(W) =
P

i;j e
�mi;j(W)

� A definition:

Upd(W; k; Æ) = fW1;W2; : : :Wk + Æ; : : :Wdg

i.e., all parameter values stay the same, except fork’th parameter value

� An algorithm:

Input: training examples(xi; yi), functionGEN, representation�

Initialization: for all k, setWk = 0
Algorithm: for t = 1 : : : T ,

� Choose(k�; Æ�) = argmink;Æ ExpLoss(Upd(W; k; Æ))

� SetW = Upd(W; k�; Æ�)

Output: parametersW

A Feature Selection Method
� How do we compute

(k�; Æ�) = argmin
k;Æ

ExpLoss(Upd(W; k; Æ)) ?

� We’ll assume that the features arebinary, or indicator
functions. i.e., each component�k(x; y) is 1 or 0

� For any(xi; yi; zi;j) triple, there are three possibilities:

– �k(xi; yi) = 1, and�k(xi; zi;j) = 0, so feature occurs on thegood
parse but not on thebad parse

– �k(xi; yi) = 0, and�k(xi; zi;j) = 1, so feature occurs on thebad
parse but not on thegoodparse

– �k(xi; yi) � �k(xi; zi;j) = 0, so feature occurs onboth parses or
on neither parse

Some Definitions
� For each featurek, partition the training set into three sets:

A+
k = f(i; j) : �k(xi; yi)��(xi; zi;j)k = 1g

A�
k = f(i; j) : �k(xi; yi)��(xi; zi;j)k = �1g

A0
k = f(i; j) : �k(xi; yi)��(xi; zi;j)k = 0g

� Define three corresponding values:
S+
k =

X
(i;j)2A+
k

e�mi;j(W)

S�k =

X
(i;j)2A�
k

e�mi;j(W)

S0
k =

X
(i;j)2A0
k

e�mi;j(W)

Some Results

Everything depends on theS+
k , S�k values:

� For any featurek,
argmin

Æ
ExpLoss(Upd(W; k; Æ)) =

1
2
log
S+
k

S�k

� And if Æ� = 1
2
log
S+
k

S�
k

, then

ExpLoss(Upd(W; k; Æ�)) = ExpLoss(W)�
�q

S+
k �
q

S�k
�2

� How do we compute

(k�; Æ�) = argmin
k;Æ

ExpLoss(Upd(W; k; Æ)) ?

Answer: choose

k� = argmaxk
����
q

S+
k �
q

S�k
����

and
Æ� =
1

2
log
S+
k�

S�k�

Smoothing
� There’s a problem with the update:

Æ� =
1

2
log
S+
k�

S�k�

sometimesS+
k� or S�k� can be zero

� A solution (suggested by[Schapire and Singer, 1998]):
Æ� =
1

2
log
S+
k� + �Z

S�k� + �Z

where� is a smoothing parameter, andZ =
P

i;j e
�mi;j(W)

� Works well in practice, though formal motivation is perhaps
lacking

Input: training examples(xi; yi), functionGEN, representation�,
smoothing parameter�

Initialization: for all k, setWk = 0

Algorithm: for t = 1 : : : T ,

� CalculateZ. For allk, calculateS+
k , S�k

� Choose
k� = argmax
����
q

S+
k �
q

S�k
����

and

Æ� =
1

2
log
S+
k� + �Z

S�k� + �Z

� SetW = Upd(W; k�; Æ�)

Output: parametersW

A More Efficient Algorithm
� A naive method: calculatingS�k ,S+
k ,Z values at each iteration

requires a pass over the entire training set

� An observation: insparsefeature spaces, the feature chosen

k� may only occur on a few examples) only a few margins
in training data are altered at each iteration

� An improved method: only visits a subset of the training data
at each iteration. Can lead to dramatic speed-ups in sparse
feature spaces.

Proof of the Updates
� First, for fixedk, let’s calculate

argmin
Æ

ExpLoss(Upd(W; k; Æ)) = argmin
Æ

X
i;j
e�mi;j(Upd(W;k;Æ))

� Three cases:

mi;j(Upd(W; k; Æ)) = mi;j(W) + Æ for (i; j) 2 A+
k

mi;j(Upd(W; k; Æ)) = mi;j(W)� Æ for (i; j) 2 A�k

mi;j(Upd(W; k; Æ)) = mi;j(W)� Æ for (i; j) 2 A0
k

� This implies:

ExpLoss(Upd(W; k; Æ)) =

X
(i;j)2A+
k

e
�mi;j(W)�Æ +

X
(i;j)2A�
k

e
�mi;j(W)+Æ +

X
(i;j)2A0
k

e
�mi;j(W)

= S
+

k e
�Æ + S
�

k e
Æ + S
0

k

SayF (Æ) = S+
k e
�Æ + S�k e
Æ + S0

k

If we differentiateF (Æ) with respect toÆ, and set the derivative to0, we get

Æ
� =
1

2
log
S+
k

S�k

If we substituteÆ� back intoF (Æ), we get

F (Æ�) = 2
q

S+
k S
�

k + S
0

k

= 2
q

S+
k S
�

k + Z � S
+

k � S
�

k

= Z �
�q

S+
k �
q

S�k
�2

whereZ =
P

i;j
e�mi;j(W) = ExpLoss(W)

Effect of the � (smoothing) parameter

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000

e=0.0025

e=0.0001

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000

e=0.0075

e=0.0025

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000

e=0.0025

e=0.001

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A graph ofWork(n) (y-axis) vs.n (x-axis).
Here,Work(n) is the computation required forn rounds of feature selection, where a
single unit of computation corresponds to a pass over the entire training set.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A graph ofSavings(n) (y-axis) vs.n (x-axis).

Savings(n) tracks the relative efficiency of the two algorithms as a function of the
number of features,n. For example, ifSavings(100) = 1; 200 this signifies that for
the first100 rounds of feature selection the improved algorithm is1; 200 times as efficient
as the naive algorithm.

