6.891: Lecture 14 (October 27th, 2003)

Global Linear Models



Overview

e A brief review of history-based methods
e A new framework: Global linear models

e Parsing problems in this framework:
Reranking problems

e Parameter estimation method 1.
A variant of the perceptron algorithm



Problems

e SO far:

— Language modeling

— Parsing

— Part-of-speech tagging
— Other tagging tasks

— Machine translation

e Later in the course:

— Information extraction

— Language and vision

— Dialogue systems

— Word-sense disambiguation
— Optimality theory



Techniques

e So far:

— Smoothed estimation

— Probabillistic context-free grammars
— Log-linear models

— Hidden markov models

— History-based models

— The EM algorithm

e Later in the course:

— Global linear models
— Partially supervised methods



Supervised Learning in Natural Language

e General task: induce a functidnfrom members of a set to
members of asey . e.q.,

Problem r e X y ey

Parsing sentence parse tree
Machine translation French sentence English sentenceé
POS tagging sentence sequence of tags

e Supervised learning:
we have draining set(x;,y;) fori =1...n



The Models so far

e Most of the models we've seen so far anestory-based
models

— We break structures down intcdarivation or sequence of decisions
— Each decision has an associated conditional probability
— Probability of a structure is a product of decision probabilities

— Parameter values are estimated using variants of maximum-
likelihood estimation

— FunctionF' : X — Y is defined as

F(r) = argmax, P(y,z | ©) or F(x)=argmax,P(y|x,0)



Example 1. PCFGs

We break structures down into a derivation, or sequence of decisions
We have a top-down derivation, where each decision is to expand some
non-terminaky with a ruleae —

Each decision has an associated conditional probability
a — [ has probabilityP(a — S | «)

Probability of a structure is a product of decision probabilities

n

P(T,S) =[] Plei = Bi | i)

1=1
wherea; — 3; fori = 1...n are then rules in the tree

Parameter values are estimated using variants of maximume-likelihood

estimation
Count(a — )

Count(a)

Pla— B a)=



e FunctionF' : X — Y is defined as
F(z) = argmax, P(y, | ©)

Can be computed using dynamic programming



Example 2: Log-linear Taggers

We break structures down into a derivation, or sequence of decisions
For a sentence of length we haven tagging decisions, in left-to-right
order

Each decision has an associated conditional probability

P(t; | ti—1,ti—o,wy ... wy)

wheret; is the:’th tagging decisionyw; is the:’'th word

Probability of a structure is a product of decision probabilities

n

P(ty...ty | wi...wyn) = [ [ P(ti | tica tico,wr .. wp)
1=1

Parameter values are estimated using variants of maximume-likelihood
estimation

P(t; | ti—1,t;—2, w1 ... wy) IS estimated using a log-linear model



e FunctionF' : X — Y is defined as
F(z) = argmax, P(y | =, ©)

Can be computed using dynamic programming



Example 3. Machine Translation

We break structures down into a derivation, or sequence of decisions

A French sentencis generated from an English senterec® a number
of steps: pick fertilities for each;, translate each English word, reorder
the French translation

Each decision has an associated conditional probability
e.g..F(2 | not), T(le| the), R(4]3,6,7)

Probability of a structure is a product of decision probabilities
P(f,a | e) is a product of fertility, translation and alignment probabilities

Parameter values are estimated using variants of maximum-likelihood
estimation

Some decisions atddden, so we use EM

FunctionF' : X — )Y is defined as
F(f) = argmax, ,P(e)P(f,a | e)

Approximated using greedy search methods



A New Set of Techniques: Global Linear Models

Overview of today’s lecture:

e Global linear models as a framework

e Parsing problems in this framework:

— Reranking problems

e Parameter estimation method 1. A variant of the perceptron
algorithm



A New Set of Techniques: Global Linear Models

Future lectures:

e Other parameter estimation techniques:

— A boosting algorithm
— Log-linear models (“conditional random fields”)
— Support-vector methods

e Other applications:

— LFG Parsing

— Natural language generation
— Machine translation

— Speech recognition(?)



A New Set of Techniques: Global Linear Models

Overview of today’s lecture:

e Global linear models as a framework

e Parsing problems in this framework:

— Reranking problems

e A variant of the perceptron algorithm



Global Linear Models as a Framework

e \We'll move away from history-based models
No idea of a “derivation”, or attaching probabilities to “decisions”

e Instead, we’ll have feature vectors over entire structures
“Global features”

e First piece of motivation:
Freedom in defining features



An Example: Parsing

e In lecture 4, we described lexicalized models for parsing
e Showed how a rule can be generated in a number of steps

S(told,V[6])

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6]) STOP



Model 2

e Step 1: generate category of head child

P,(VP | S, told, V[6))

S(told, V[6])

U
S(told, V[6])

VP(toI|d,V[6])



Model 2

e Step 2: choose leRubcategorization frame

S(told, V[6])

VP(toI|d,V[6])

4

S(told, V[6])

VP(toI|d,V[6])

{NP-C}

P(VP | S, told, V[6]) x P.({NP-C} | S, VP, told, V[6)



e Step 3: generate left modifiers in a Markov chain

S(told, V[6])

22  VP(told,V[6])
{NP-C}

4

S(told, V[6])

NP-C(Hillary,NNP) VP(told,V[6])
{}

Py(VP | S, told, V[6]) x P,.({NP-C} | S, VP, told, V[6) x
P,(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C})



S(told,V[6])

77 NP-C(Hillary,NNP) VP(told,V[6])
{}
U
S(told, V[6])

NP (yesterday,NN) NP-C(Hillary,NNP) VP(told,VI[6])
8

P, (VP | S, told, V[6]) x P,.({NP-C} | S, VP, told, V[6)
P;(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C}) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT{ })



S(told,V[6])

?7? NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
i
U
S(told,V[6])
STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6])
i
P, (VP | S, told, V[6]) x P.({NP-C} | S, VP, told, V[6)
P;(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFT{NP-C}) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFT{}) x
P;(STOP| S,VP,told,V[6],LEFT{ })



The Probabilities for One Rule

S(told,V[6])

STOP NP(yesterday,NN) NP-C(Hillary,NNP) VP(told,V[6]) STOP

P,(VP | S, told, V[6]) x

P.({NP-C} | S, VP, told, V[6) x

P..({}|S, VP, told, V[6) x

P;(NP-C(Hillary,NNP)| S,VP,told,V[6],LEFTA = 1,{NP-C}) x
P;(NP(yesterday,NN) S,VP,told,V[6],LEFTA = 0,{}) X
P;(STOP| S,VP,told,V[6],LEFTA = 0,{}) X

P;(STOP| S,VP,told,V[6],RIGHTA = 1,{})

Three parameter types:
Head parameterSubcategorization parameteDependency parameters



Smoothed Estimation

P(NP(__,NN) VP | S(questioned,V})=

count(S(questioned, VOYNP(__,NN) VP

AL X count(S(questioned, Vi)
Count(S(__,Vt)—>N P(__,NN) VP)
+A2 X Count(S(__,Vt))

e Where0 < A\, Ay < 1,and\; + Xy =1



Smoothed Estimation

P(lawyer| S,VP,NP,NN,questioned,Vt

Ao x count(lawyer| S,VP,NP,NN,questioned,\Vt
1 Count(S,VP,NP,NN,queStiOned,)\/t

o X C’ount(lawyer\ S,VP,NP,NN,VI
2 C’ount(S,VP,NP,NN,VI

C’ount(lawyer\ NN)

+A3 X Count(NN)

o Wherel < A\, Ao, A3 < 1,andA; + X+ A3 =1



An Example: Parsing

e In lecture 4, we described lexicalized models for parsing
e Showed how a rule can be generated in a number of steps

e The end result:

— We have head, dependency, and subcategorization parameters

— Smoothed estimation means “probability” of a tree depends on counts
of many different types of events

e What if we want to add new features?
Can be very awkward to incorporate some features in
history-based models



A Need for Flexible Features

Example 1 Parallelism in coordinatiopJohnson et. al 1999]

Constituents with similar structure tend to be coordinated
= how do we allow the parser to learn this preference?

Bars in New York and pubs in London
vs. Bars in New York and pubs



Example 2 Semantic features

We might have an ontology giving properties of various
nouns/verbs

= how do we allow the parser to use this information?

pour thecappucino
VS. pour thebook

Ontology states thatappucino has the+liquid  feature,
book does not.



Three Components of Global Linear Models

e ® is afunction that maps a structure y) to afeature vector
P(z,y) € R

e GEN Is a function that maps an inputto a set ocandidates
GEN(x)

e W is a parameter vector (also a membeRro®f

e Training data is used to set the value\df



Component 1: ¢

e ® maps a candidate tofaature vector € R

e & defines theepresentationof a candidate

nnnnnnnnn

ooooooo

ssssss

tttttt

] P

(1,0,2,0,0,15, 5)



Features

e A “feature” is a function on a structure, e.g.,

h(z,y) = Number of times A IS seen inz,y)
N
B C
(1, 1) A (2,Y2) A

Py /\

B C B C
PN N PN N
D E F G E F A
I R . I
d e f g e h B C

I
b c
h@1,y1) = 1 "z, y2) = 2



Another Example

e A “feature” is a function on a structure, e.g.,

Wz, y) = 1 if (z,y) has an instance of non-parallel coordinatic
)=\ 0 otherwise

(xlv yl) VP
visited NP
NP and NP
| |
bars in New York pubs in London

h(xlayl) =0



<$27y2) VP

visited NP PP
/\ in Lo|ndon
NP and NP
bars in I|\Iew York pu|bs

h(x27y2) =1



A Third Example

e A “feature” is a function on a structure, e.g.,

hi(z,y) = number of timedMary is subject oflikes
ho(x,y) = number of timedMary is object oflikes

(z,y)
/\
Ji'm I|kes/\
/\

SBAR

| |
Mary who likes Bill

hl(xvy) =1 h2(xvy) =1



A Final Example

e A “feature” is a function on a structure, e.g.,

h(x,y) = log probability of(x, y) under Model 2

(xlayl) A (x27y2) A

N /\

B C B C

P PN T N

D E F G D E F A

I [ N B

d e f ¢ d e h B C
I
b ¢



Component 1: ¢

e ® maps a candidate tofaature vector € R

e & defines theepresentationof a candidate

nnnnnnnnn

ooooooo

ssssss

tttttt

] P

(1,0,2,0,0,15, 5)



Feature Vectors

e A set of functionsh, ... h; define afeature vector

®(z) = (hi(x),ho(x) ... hq(x))

TlA T2 A
N /\
B C B C
e e e U
D E F G D E F A
I I I B
d e f ¢ d e h B C
|
b ¢

&(T)) = (1,0,0,3) B(Ty) = (2,0,1,1)



Feature Vectors

e Our goal is to come up with learning methods which allow us
to define any features over parse trees

e Avoids the intermediate steps of a history-based model:
defining aderivation which takes the features into account,
and then attaching probabilities decisions
Our claim is that this can be an unwieldy, indirect way of
getting desired features into a model

e Problem ofrepresentation now boils down to the choice of
the function®(x, y)



Component 2: GEN

e GEN enumerates a set ondidatesfor a sentence

She announced a program to promote safety in trucks and vans

| GEN



Component 2: GEN

e GEN enumerates a set oandidatesfor an inputx

e Some examples of howt EIN(z) can be defined:

— Parsing:GEN(z) is the set of parses far under a grammar

— Any task: GEN(x) is the top N most probable parses under a
history-based model

— Tagging: GEN (x) is the set of all possible tag sequences with the
same length as

— Translation: GEN(z) is the set of all possible English translations
for the French sentence



Component 3:' W

e W is aparameter vector € R?

e & andW together map a candidate to a real-valued score

nnnnnnnnn

ppppppp

tttttt

J @
(1,0,2,0,0,15,5)
Jo-W
(1,0,2,0,0,15,5) - (1.9,-0.3,0.2,1.3,0,1.0, —2.3) = 5.8



Putting it all Together

e X' Is set of sentenced) is set of possible outputs (e.g. trees)
e Need to learn a functionn : X — )
e GEN, &, W define
r) =arg max P(z,y)- W
( ) ygEGEN(x) ( y)

Choose the highest scoring candidate as the most plausible
structure

e Given examplesz;, y;), how to setW?



She announced a program to promote safety in trucks and vans

| GEN

<i>%\\ ////\\\\ ;(/\\\ ;(j:%>\ ////\\\\ /<5\>K

(e e |1 4 e U@

(1,1,3,5) (2,0,0,5) (1,0,1,5) (0,0, 3,0) (0,1,0,5) (0,0,1,5)

|- W [ W (& W [& W |[&- W [& W
13.6 12.2 12.1 3.3 94 11.1

|} arg max

nnnnnnn



Overview

e A brief review of history-based methods
e A new framework: Global linear models

e Parsing problems in this framework:
Reranking problems

e Parameter estimation method 1.
A variant of the perceptron algorithm



Reranking Approaches to Parsing

e Use abaseline parser to produce topgv parses for each
sentence in training and test data
GEN(z) is the topN parses forr under the baseline model

e One method: use Model 2 to generate a number of parses
(in our experiments, around 25 parses on average for 40,000
training sentences, giving 1 million training parses)

e Supervision: for eachx; take y; to be the parse that is
“closest” to the treebank parse GaEN (z;)



The Representation®

e Each component o could be essentiallany feature over
parse trees
e For example:

®,(x,y) = log probability of(x, y) under the baseline model

By(1, y) — 1 if (z,y) includes the rul&/P — PP VBD NP
25971 0 otherwise



o— 0O

Practical Issues in Creating®

e Step 1. map a tree to a number of “strings” representing
features

A =  HASRULE:A->B;C
o~ HASRULE:B->D;E
B C HASRULE:C->F;G

o~ HASRULE:D->d
E F G HASRULE:E->e
. HASRULE:F->f
e f ¢

HASRULE:G->g



Practical Issues in Creating®

e Step 2: hash the strings to integers

A —  HASRULE:A->B:C 54
HASRULE:B->D:E 118
BAC HASRULE:C->F:G 14
PN HASRULE:D->d 10078
D E F G HASRULE:E->e 9000
I . HASRULE:F->f 1078
d e T g HASRULE:G->g 101

e |n our experiments, tree is then represented as log probability
under the baseline model, plus a sparse feature array:

®, (x,y) = log probability of(x, y) under the baseline model
®,(z,y) = 1fori = {54,118,14,10078, 9000, 1078, 101}
®,(z,y) = 0 for all other:



The Score for Each Parse

e |n our experiments, tree is then represented as log probability
under the baseline model, plus a sparse feature array:

®,(x,y) = log probability of(x, y) under the baseline model

®,(z,y) = 1fori = {54,118,14,10078, 9000, 1078, 101}
®,(z,y) = 0 for all other;

e Score for the treéx, y):

(I)<x7 y) - W

= W@ (z,y) + Wss + Wiig + Wig + Wigors + Woooo + Wiors + Wios



From[Collins and Koo, in submission]
The following types of features were included in the model. We will use the rule

VP -> PP VBD NP NP SBARith headvVBDas an example. Note that the
output of our baseline parser produces syntactic trees with headword annotations.



Rules These include all context-free rules in the tree, for exarvite -> PP
VBD NP NP SBAR

VBD NP NP




Bigrams These are adjacent pairs of non-terminals to the left and right
of the head. As shown, the example rule would contribute the bigrams
(Right,VP,NP,NP), (Right,VP,NP,SBAR) ., (Right,VP,SBAR,STOP)
and(Left,VP,PP,STOP) to the left of the head.




Grandparent Rules Same afkules, but also including the non-terminal above
the rule.

VBD NP NP




Lexical Bigrams Same a$8igrams, but with the lexical heads of the two non-
terminals also included.

VP

(@ Pr(in

VBD( gave) NP(treat) XSBAR( because)




Grandparent Bigrams Same ad8igrams, but also including the non-terminal
above the bigrams.




Two-level RulesSame agkules, but also including the entire rule above the rule.

VBD NP NP SBAR




Two-level Bigrams Same a®Bigrams, but also including the entire rule above
the rule.




Trigrams All trigrams within the rule. The example rule would contribute
the trigrams (VP,STOP,PP,vBD!), (VP,PP,VBD! NP) ,  (VP,
VBD!,NP,NP), (VP,NP,NP,SBAR) and (VP,NP, SBAR,STOP) (!

IS used to mark the head of the rule)




Head-Modifiers All head-modifier pairs, with the grandparent non-terminal
also included. Anadj flag is also included, which ig if the modifier is
adjacent to the head) otherwise. As an example, say the non-terminal
dominating the example rule i$. The example rule would contribute
(Left,S,VP,VBD,PP,adj=1) : (Right,S,VP,VBD,NP,adj=1) :
(Right,S,VP, VBD,NP,adj=0) , and (Right,S,vP,VBD,SBAR,

adj=0)



PP VBD NP NP  SBAR

ad) =1/
adj =1 ad] =0
0

ad] =



PPs Lexical trigrams involving the heads of arguments of prepositional
phrases. The example shown at right would contribute the trigram
(NP,NP,PP,NP,president,of,U.S.) , In addition to the more general
trigram relation(NP,NP,PP,NP,of,U.S.)






Distance Head-ModifiersFeatures involving the distance between head words.
For example, assumést is the number of words between the head words of
theVBDandSBARIin the(VP,VBD,SBAR) head-modifier relation in the above
rule. This relation would then generate featyB,VBD,SBAR, = dist) , and
(VP,VBD,SBAR, < z) forall dist < x <9 and(VP,VBD,SBAR, > x) for

all 1 < x < dist.

Further Lexicalization In order to generate more features, a second pass was
made where all non-terminals were augmented with their lexical heads when
these headwords were closed-class words. All features apart Heau-
Modifiers, PPsandDistance Head-Modifierswere then generated with these
augmented non-terminals.



Overview

e A brief review of history-based methods
e A new framework: Global linear models

e Parsing problems in this framework:
Reranking problems

e Parameter estimation method 1.
A variant of the perceptron algorithm



A Variant of the Perceptron Algorithm

Inputs: Training set(x;,y;) fori =1...n
Initialization: W =0
Define: () = argmaxyccen@G) ®(z,y) - W
Algorithm: Fort=1...T,:=1...n

zi = F(x;)

If (zi #yi)) W =W+ ®(z;,y;) — P(z;, 2)

Output: ParameterdVv



A = log probability -1.56

P HASRULE:A->B:C 54
B C HASRULE:B->D:E 118
HASRULE:C->F:G 14
s - HASRULE:D->d 10078
D E F G HASRULE:E->e 9000
I T HASRULE:E->f 1078
d e f g HASRULE:G->g 101
G = log probability -1.13
P HASRULE:G->B:C 89
B C HASRULE:B->D:E 118
HASRULE:C->F:G 14
TN =N HASRULE:D->d 10078
D E F G HASRULE:E->e 9000
I T HASRULE:F->f 1078
d e f g HASRULE:G->g 101

Say first tree is correct, but second tree has highter ®(x, y) under current
parameters: TheW = W + ®(z;,y;) — ®(x;, 2;) implies

W, 4+ = —1.56—(~1.13) = —0.43
Wiy += 1
Wgy += -1



Theory Underlying the Algorithm

e Definition: GEN(z;) = GEN(z;) — {y;}

e Definition: The training set iseparable with marginJ,
if there is a vectolU € R? with ||U|| = 1 such that

Vi,Vz € GEN(z;) U-®(z;,y;,) — U-P(x;,2) >0



GEOMETRIC INTUITION BEHIND SEPARATION

® = Correct candidate

® = Incorrect candidates




GEOMETRIC INTUITION BEHIND SEPARATION

® = Correct candidate

® = Incorrect candidates




ALL EXAMPLES ARE SEPARATED

@ = Correct candidate (2)

J = Incorrect candidates (2)




THEORY UNDERLYING THE ALGORITHM

Theorem: For any training sequende;, y;) which is separable
with margind, then for the perceptron algorithm

2

Number of mistakes< %

whereR is a constant such thet, vz € GEN(z;)
| ®(zi,yi) — (24, 2)|| < R

Proof: Direct modification of the proof for the classification case.



Proof:

Let W* be the weights before thgth mistake. W! = 0
If the £'th mistake is made atth example,
andz; = argmax,cgen(z;) ®) - W*, then

WHHL = WF 4 &(y) — ®(2)
=U- W'l = U W'+U ®(y;) —U-B(%)
> U-WF4§
> kb
= |[[WFH| > k6§
Also,
[WEEH2 = [[WH2 + (| @(5) — @(20)]17 +2WF - ((3i) — D(2))
< [[WEIPP + R?
:>||Wk+1||2 < kR2
= k*6* < |[WH]? < kR?
=k < R*/§*



Summary

e A new framework:global linear models
GEN,® W

e There are several ways to train the parametgrs

— Perceptron
— Boosting
— Log-linear models (maximum-likelihood)

e Applications:

— Reranking models
— LFG parsing

— Generation

— Machine translation
— Tagging problems
— Speech recognition



