Chapter 4

Propagation in
Bayesian networks

This chapter presents the algorithm used in HUGIN for probability updating in
Bayesian networks. The algorithm does not work directly on the Bayesian network,
but on a so-called junction tree which is a tree of clusters of variables. The clusters
are also called cliques because they are cliques in a triangulated graph, which
is a special graph constructed over the network. Each clique holds a table over
the configurations of its variables, and HUGIN propagation consists of a series of
operations on these tables. The subjects in this chapter are rather mathematical, and
the reader interested in the results rather than in the reasoning behind them can jump
directly to the summary in Section 4.7, which should give sufficient background for
the reading of Chapters 5 and 6.

In Section 4.1 we define the multiplication and division of tables to be used in
the algorithm. Section 4.2 gives methods for entering evidence and updating prob-
abilities provided the full joint probability table is available, and in Section 4.3 we
give the architecture of the algorithm when the cluster tree is available. Section 4.4
defines the concept junction tree, and we prove the correctness of the algorithm
Wwhen applied on a junction tree. Section 4.5 is devoted to the construction of a
Junction tree from the Bayesian network.

The HUGIN algorithm yields the exact updated probabilities, but if you are un-
lucky, the algorithm will require so much space or time that the task is intractable.
In Section 4.6 we present a technique, stochastic simulation, which can be used to
8et approximate probabilities when this happens.

41 An algebra of belief tables

ow@%oqo we treat probability updating, we will introduce more formally the multipli-
ation of belief tables, which we have used implicitly already.

69



70 PROPAGATION IN BAYESIAN NETWORKS

Table 4.1 Multiplication of two tables over {A, B}; both variables are ternary,

a a4 a a a a3 a az a3
W_ X1 X2 X3 @_ .Hm km kw w_ k_R_\ .«N.\«m kukm
b2y Y2 ¥ b y1 » » by yiyi iy w3y,
by z1 zn 3 by 33 z, 7z by n17] 27y 237}
t t t.t

4.1.1 Multiplication and division

Let t and t' be two tables over the same variables. Then the product t - ¢ (c*) m"
t(c*) - t'(¢*) for all configurations c*. 4

Table 4.1 gives an example.

If the two tables are over different sets of variables we can also perform a multj
plication.

Let typ be a table over {A, B}, and let t,c be a table over {A, C}. Then t,y
and t4c are multiplied by constructing a table tapc over {A, B,C}, and letting
tas - tac(a, b, ¢) = tap(a, b) - tac(a, c) for all configurations (a, b, c). :

See Table 4.2 for an example.

Table 4.2 Multiplication of t4p with t,¢.

a a a a az
by x1 x; N » by (ayn, x1y3)  (x2y2, x2y8)
by x3 x4 €2 Y3 Y by (x3y1,x3y3)  (x4y2, Xays)

tap tac tap - tac

zeros. If the denominator table has zero-entries, then the numerator table must ha
zero at the same places. In that case we put m =0.
4.1.2 Marginalization

Let ty be a table over V, and let W be a subset of V. A table tw over W can 8
constructed by marginalization. For each configuration w* let ty(w*) be the s
of all ty(v*), where v* is a configuration of V coinciding with w*. The notation

tw = MUQ.

VAW
We shall use the following proposition later.

Proposition 4.1 Let W and V be disjoint sets of variables, and let tw and ty D

tables over W and V. Then
MUA:—\ “ty) =ty - Mn<.
2 v

PROBABILITY UPDATING IN JOINT PROBABILITY TABLES 71

That is, tables containing only variables over which you do not marginalize can be
taken out of marginalization. See Table 4.3 for an example.

Table 4.3 An example that ), tg -ty =tz ), t,.

a) a as
X
W kw by yixi yixa yixs
2 N by yux1 ywxa yixs
73 } by  ysxi ysxa  ysxs
tp n\» nwn\»
by | yix1 + yix2 + yix3 »
by | y2x1 + yaxa + yax3 y2 | (x1+x2+ x3)
by | ysx1+ y3x2 + y3x3 y3
34 tata tg ) 4ta

4.2 Probability updating in joint probability tables

Let A be a variable with P(A) = (xi, ...x,). Assume we get the information e that
A can only be in states i and j. This statement says that all states except i and j
are impossible, and we have the belief P(A,e) = (0,...,0, x,0,...,x;,0,...,0).
Note that P(e), the prior probability of e, is x; + x j» the sum of the probabilities of
the possible states. To calculate P(A | ) we use the fundamental rule:

wg,mvl P(A,e)
Ple) Y, P(Ae

The way that e is entered can be interpreted as a multiplication of P(A) with the
table ¢ = (0, .. -,0,1,0,...,0,1,0, ..., 0) resulting in P(A, e).

Definition. Let A be a variable with # states. A finding on A is an n-dimensional
table of zeros and ones.

P(A|e) =

maamsznmzw, a finding is a statement that certain states of A are impossible.
Now, let U be a universe of variables, and assume that we have easy access to

P(U), the joint probability table. Then, P(B) for any variable B in U is easy to
calculate:

P(B) = M PU).
U\{(B}
Suppose we wish to enter the above finding. Then P(U, e) is the table resulting
from p(y ) by giving all entries with A in state i or j the value zero and leaving
the other entries unchanged. Again, P(e) is the sum of all entries in P(U, ¢) and
PU,e) P, e
P(e) YuPWUe

PU|e) =



72 PROPAGATION IN BAYESIAN NETWOR

Note that P(U, ¢) is the product of P(U) and the finding e. If ¢ consists of sev
findings {fi,..., f,} each finding can be entered separately, and P(U, €) is thed
product of P(U) and the findings f . We can express the considerations above in

the following theorem. -

Theorem 4.1 Let U be a universe of variables and let ¢ = {fi,..., fu). Then

P |e)
P(e)

EAQ.mvaAQv.NL.....Hsa;&wAQ.mvH

where

P(e)=) "P(,e).
U

Theorem 4.1 says that if we have access to P(U), then we can enter evidence and |
perform probability updating. However, even for small sets of variables, the table
P(U) is intractably large, and we have to find a smaller representation.

4.3 Cluster trees

can enter evidence and perform probability updating in Bayesian networks withou
being forced to calculate P(U). It has turned out to be rather difficult.
Instead we can work with another representation called cluster trees.

Definition. A cluster tree over U is a tree of clusters of variables from U. Thé i

nodes are subsets of U, and the union of all nodes is U. (A tree is an undirected -
graph without cycles.)

H_.@::_amao_mco_ﬁas:: separators which consist of the intersection of Ea !
adjacent nodes,

Each node and separator holds a real numbered table over the configurations
its variable set.

In Figure 4.1 we give a cluster tree for the network Moy,

OnGRO
@@ @]

Figure 4.1 The Bayesian network M, and a corresponding
cluster tree. Separators are in square boxes.

Now, let BN be a Bayesian network over U. A Cluster tree corresponding to
is constructed in the following way:

CLUSTER TREES 7.

i

form a family of nodes such that for each variable A with parent set pa(A
there is at least one node V such that pa(A) U {A} C v,

organize the nodes as a tree with separators (so far there is no restriction or
how you organize the tree);

give all nodes and separators a table of ones.

|

for each variable A choose exactly one node V containing pa(A) U {A} and
multiply P(A | pa(A)) on Vs table.

Then the product of all node tables in the cluster tree is the product of all conditional
probability tables in BN, and therefore we have the following theorem.,

Theorem 4.2 Let BN be a Bayesian network over U. Then any cluster tree corre-
sponding to BN is a representation of P(U), and P(U) is the product of all cluster
tables divided by the product of all separator tables.

Remark. In Theorem 4.2 we divide the product of all cluster tables by the product
of all separator tables. This does not do any harm, because the separator tables
consist of ones, but the reader may wonder why. The reason is that, when we
now start to move the information around in the cluster tree, then the product of
all cluster tables divided by all separator tables is invariant, and thereby the tree
remains a representation of PU).

It is easy to insert findings into a cluster tree. Let ¢ be a finding on A. Multiply
e on the table of any node containing A. Then, by the chain rule and Theorem 4.1
the product of all node tables is P(U)-e= P(U,e).

To calculate P(B, e) for an arbitrary variable B is not as easy, and the coming
sections are devoted to this problem.

4.3.1 Absorption in cluster trees

We introduce an operation in cluster trees. It has the effect of re-arranging the
information stored in the tables.

Definition, Let v and W be neighbours in a cluster tree, let S be their separator,
and let ty, ¢y, and tg be their tables. The operation absorption is the result of the
mo__oism procedure:

= calculate t* = MUE stvs

= give S the table ts;

= give W the table t*, = :fm.m.

We then say that W has absorbed from V or that W calibrates to V.



74 PROPAGATION IN BAYESIAN NETWOR;

-— &WA.,

@O

. " t*
Figure 4.2 W absorps from V. t} = Dwnstvs ty =tw - o

Remarks.

(1) The idea behind absorption is that the information which V and W can

in common is the information on S, and this is what W receives from V. ,..

W,V and § hold the same information on S, that is if

M»s =tg NMUr:

W\S V\S

then absorption does not change anything. We then say that the link is
sistent. 1If all links in the cluster tree are consistent we say that the tree

consistent. If a tree is consistent, then absorption does not have any effect
all.

Assume that the link is consistent, but now some evidence changes t

ty. Then after W has absorbed from V, the three tables all hold Vs
information on S:

MUQMMUQJW = %Masnm:uﬁ =)t

W\S W\S S W\S ts V\S

(2) W can only absorb from V through § if ty has zeros in the entries corres
ing to the zero-entries in ts. We say that a link in a cluster tree is suppo
if it allows absorption in both directions, and a cluster tree is supportive if
its links are supportive. Note that the cluster trees constructed in Section 4
are supportive since the separator tables have no zero-entries. ,

Lemma 4.1 Supportiveness is preserved under absorption.

Proof. Let W absorb from V through the separator S. Then

ﬁ*
Y=ty 2,
w w t
where
=) ty.
V\S

Then any zero-entry in ¢} is also a zero-entry in t},. This clearly also holds for & Vi

Theorem 4.3 Let T be a supportive cluster tree. Then the product of all cl
tables divided by the product of all separator tables is invariant under absorptio

CLUSTER TREES IS

Figure 4.3 Certainty updating through message vmmm.msm :.. a
cluster tree. The numbers on the links indicate the order in which
the messages are passed and in which direction.

Proof. When W absorbs from V' through the separator S, only the tables of W and
§ are changed. Therefore it is enough to prove that the fraction of Ws and Ss table
is unchanged. We have .

thy, tw g ty

ot ts’

Theorem 4.3 ensures that if we start with a Bayesian network over Q , construct
a corresponding cluster tree T, and then perform a series of absorptions, then T
remains a representation of P(U), and P(U) can be calculated as the product of all
cluster tables divided by the product of all separator tables.

4.3.2 Message passing in cluster trees

The next question is how many absorptions can we perform, and can they help us
in transforming the tables in a cluster tree into a form where it is easy to calculate
P(A) for single variables? .

We can think of absorptions as messages passed between the nodes in the tree.
That is, a node V sends a message to its neighbour W when W absorbs from V.

Message passing scheme. A node V can send exactly one message to a :o.wm_.&oﬁ
W, and it may only be sent when V has received a message from each of its other
neighbours,

Consider, for example, the cluster tree in Figure 4.3. The leaves of the tree (the
nodes A, B, C, D) can send to their single neighbour (1). Then E can send to G,
and H can send to F (2). Next, G can send to F, and F can send to G (3), F can
send to H, B and C, and G can send to E (4). Finally E can send to A and H to
D (5). Now each node has sent to all of its neighbours.

As can be seen, the message passing algorithm is not sequential, and a good way
of thinking of it is that each variable is busy waiting, eager to send messages. Each

time ¢ receives a message it updates its own table and sends a message to the eligible
feighbours (if any).

.H—.oo-.oi 44 Let T be a supportive cluster tree, and suppose that messages are

o P355ed according to the message passing scheme. Then:



76 PROPAGATION IN BAYESIAN NETWORK!

JH@E@H

@9 (4E)

Figure 4.4 A cluster tree over binary variables. All variables
except A are in state y. In the node (A, B,C) A is in state ¥,
and in the node (A, E) A is in state n. Though the cluster tree
is consistent, the table for t, marginalized from t4pc is different
from the marginal taken from tAE.

(i) message passing can continue until a message has been passed in both djj
tions of each link;

?.cxsga5«%&%«}5@««:%&%&?gs&xao:.ea o\gg:insm:u.
consistent. .

Proof. (i) Exercise 4.3.
(i) If T consists of only one node then the theorem is obviously true.

Assume that T has more than one node, and let (V, W) be an arbitrary link
separator S. Let the first message to be passed over (V, W) be from W to V,
let ty, ts and ty be the tables before the message is passed.

When the message has been passed we have t§ = an tw. Next, when
message from V and W has to be passed, the tables for S and W have not
changed (W has not received further messages). Let the table for V be t**.
message passing we have

Rk
=)t and ﬂu:ﬂhﬂ.
\S S

Now

*k £ 2
S s S
IR S M A 32
VAS VAS S S V\§ S W\S
Therefore the link is consistent.

4.4 Junction trees

Let T be a cluster tree over U, let A be a variable in U, and suppose that A i$
element of the nodes V and W. If T is consistent we would expect Mﬁ_tn
2w\ 4y tw. Certainly this is so if V and W are neighbours, but otherwise the
no guarantee. See Figure 4.4 for an example.

We say that a consistent cluster tree is globally consistent if for any nodes V
W with intersection I we have

JUNCTION TREES 7

Figure 4.5 V is a leaf of T linked to W and with separator S.

As Figure 4.4 indicates, the reason why consistence does not imply global con-
sistence is that a variable A can be placed in two locations in the tree such that
information on A cannot be passed between the two locations. To ensure global
consistence we must add a requirement to cluster trees.

Definition. A cluster tree is a junction tree if, for each pair of nodes V, W, all nodes
on the path between V and W contain the intersection V N W.

Theorem 4.5 A consistent junction tree is globally consistent.
Proof. Exercise 4.7. O

The following theorems will show that if we construct a junction tree corresponding
to a Bayesian network, then we have good algorithms for insertion of evidence as
well as probability updating. When we construct a cluster tree corresponding to a
Bayesian network we have several degrees of freedom, and we shall use them for
constructing a junction tree. However, it is not easy. For example, with the clusters
in Figure 4.4 it is impossible to construct a tree with the junction tree property. We
will leave this problem here, and return to it in Section 4.5.

Theorem 4.6 Let T be a consistent junction tree over U, and let ty be the product
of all node tables divided by the product of all separator tables. Let V be a node
With table ty,. Then

tv=) t.

U\v

Proof. Induction on the number of nodes.

Clearly the theorem holds when T consists of a single node.

Now, assume the theorem to hold for any junction tree with n nodes, and let T be
a Consistent junction tree with n + 1 nodes. Let V be a leaf of T linked to W and
With separator § (see Fig. 4.5). Let T’ be the junction tree resulting from removing
V (and $), and fet T’ have the universe U’. Then

swoﬂn ty is the product of all node tables in T" divided by the separator tables in
T Let p be the set of variables V \ S, and let H be W \ §. From the junction tree
Property we have that D N U’ = @.



78 PROPAGATION IN BAYESIAN NETWOR JUNCTION TREES L4

Since T is consistent we have ,
St=t=Tu
D H

Now

Dty McU:\:HIM

D
Yoty Figure 4.6 The message passing in DistributeEvidence(V).
= ﬂ ’ .
U s
ts
= ty =
U ts
= ty.

Figure 4.7 The message passing in CollectEvidence(V).
for all V; in T".

Furthermore,

Theorem 4.8 Let BN be a Bayesian network representing P(U), and let T be a
Junction tree corresponding to BN. Lete = (fi, ..., fu) be Jindings on the variables

U\V UN\S ts {A1,..., An). Foreach i find a node containing A; and multiply its table with N...
ty MU ¢ Then, after a full round of message passing we have for each node V and separator
= —— Q\
ts & S that
6 ty = P(V,e) ts = P(S, e) Ple)=) ty.
= 2. tw v
t Proof. Use Theorem 4.1 and proceed as in the proof of Theorem 4.7. a
= & ts
= ty. 441 HUGIN propagation

>m.m_==o that we have a consistent junction tree, and now a single node V receives
evidence. Then half of the messages can be avoided: V sends messages to all of
its mommrcoca who recursively send messages to all neighbours except the one from
which the message came (see Fig. 4.6). We call this algorithm DistributeEvidence.

Now, Suppose that we are only interested in the certainty of one node, V. Then
half of the certainty updating messages can be avoided: V asks all its neighbours
to send it 5 message, and if they are not allowed to do so, they recursively pass the
Tequest to all neighbours except the one from which the request came (see Fig. 4.7).
We call this algorithm CollectEvidence.

The two algorithms DistributeEvidence and CollectEvidence can be used for a
more organized message passing scheme. No matter the amount of evidence entered,
N_no any variable V. Call CollectEvidence from V and after that call DistributeEvidence

Om V. The result is that all messages have been passed, and they were passed
When permitted (see Fig. 4.8 and Exercise 4.5).

The considerations above are summarized in the following theorem.

Theorem 4.7 Let BN be a Bayesian network representing P(U), and let T &
Jjunction tree corresponding to BN. After a full round of message passing in T}
have for each node V and each separator S that

ty = MU P(U) = P(V) and ts = P(S).
U\V 7

Proof. By Theorem 4.2, P(U) is the product of the initial node tables divided}
the separator tables. Theorems 4.3 and 4.4 give that after a full round of mes
passing T is consistent, and P(U) is the product of all node tables divided by}
separator tables. Theorems 4.5 and 4.6 yield the conclusion. .



CONSTRUCTION OF JUNCT, 10N TREES 81

Figure 4.8 Updating through 0&%&@&%%2 V) followed by
baiwﬁmm.s.&mzmaﬁ V).

. PEe)~
© « DG,

Singly connected Multiply connected

Figure 4.10 Examples of singly connected and multiply con-
nected DAGs,

Q- ® © @

HUGIN propagation uses corresponding junction trees, and the operations Colléct 2
Evidence and DistributeEvidence. A node Rt in the Junction tree is chosen as a rogt;
and whenever a Propagation takes place, O&%QM&%:QAND is called followed by
call of bi:.w:kh&&a:nmgs. When the calls are finished, the tables are normaliy, H@
so that they sum to one,
HUGIN Propagation has a nice side effect, namely that it gjves access to varig
probabilities of sets of entered findings. F] [F] ]
Let us use Theorem 4.8 to have a closer look at what s actually communicated _
in the propagation algorithm, The general situation is described in Figure 4.9, @ ea @
A call of Qetmn&.&&wanmﬁﬁv will cause a call of Qc:moﬂms.&mxnls. and } ,.
Theorem 4.8 this will result in t, = P(V, ev). This gives that P(ey) can be
culated without further propagations. C:monczmﬁ_w, the situation is not Symmet

Figure 4.11 A singly connected DAG and its Jjunction graph.
By femoving any of the Jinks with separator F You get a junction

In the DistributeEvidence phase the message passed from W to § is P(S,e). tree,
4.5 Construction of Jjunction trees

. . L the same variable. Therefore any of the links can be removed to break the cycle,
In this section we shall give a method for constructing junction trees for DAGs and by femoving links unti] you have a tree, you get a junction tree (see Fig. 4.11)

links is a tree (see Fig, 4.10).

For singly connecte d DAG:s it is easy to const, in Ea.mmso cluster. This means that we take the DAG, add a link between any pair
A with pa(a) # @ you form the cluster pq Mm <m~._mEnm with a common child, and drop the directions of the original links. The
with a non-empty intersection you add a link wi i i esulting 8raph .mm called the morql &raph. From the mora] graph you can read the




hadad FROFAGATION IN BAYESIAN NETWOR

r—®
O—3
B ® B ®

© ® © ®

(b) Moral graph

(c) Junction graph (d) Junction tree

Figure 412 Construction of a junction tree for a singly con-
nected DAG.

4.5.2 Coping with cycles

Consider the junction graph in Figure 4.13. The intersection of the two cluste
variables is (AB), and a junction tree is easily found.

Consider the DAG in Figure 4.14(a) with the moral graph in Figure 4.14{
Sticking to the approach that the clusters are the cliques in the moral graph, we
that if we join A, B and C, then we get a junction tree.

The DAG in Figure 4.15 is more problematic. The cycle in the junction
cannot be broken.

The propagation problem is that coupled information (on (DE)) is aooo__E&v ,
meets again under propagation. This can also be seen from the cycle D — E — 44
A — B — D in the moral graph. A way to solve the problem is to add so
Jfill-ins to the moral graph: add a link between C and D and one between B
The result is shown in Figure 4.16 together with the resulting junction tree.

The general rule for filling-in the moral graph is that any cycle with more
three variables shall have a chord. In this case the graph is called triangulated

In Figures 4.17 and 4.18 there is another example of the process from DA{

junction tree. Note that without the fill-in (B — D) the cycle A-B—F—-D
does not have a chord.

(&) 9 @

CONSTRUCTION OF JUNCTION TREES

(a) (8) (&) (8) (aB9
() ), () (D (4D
(a) DAG (b) Moral graph

(c) Junction tree

Figure 4.13 Construction of a junction tree for a sim
connected DAG.

o \@/ o

ple multiply

(a) DAG

BC
N

(b) Moral graph (c) Junction tree

Figure 4.14 Another simple DAG with a cycle.

Figure 4.15 A DAG with a large cycle.



Figure 4.16 The filled-in moral graph from Figure A..G. the
Junction graph, and the juction tree resulting from removing the

links with separator D and C.

(a)
® © ©

® ® @©
@ @ @

Figure 4.17 A DAG, the moral and triangulated graphs. The
fill-ins are indicated by dotted lines.

4.5.3 From DAG to junction tree

In this section we present, without proofs, algorithms for triangulation of graphs
for construction of junction trees from triangulated graphs. Proofs of Theorems
and 4.10 are given in Appendix A.

Definition. An undirected graph is triangulated if any cycle of length > 3
chord.

Definition. A node A is eliminated by adding links such that all of its neighbd
are pairwise linked and then removing A together with its links.

Note that if a node A can be eliminated without adding links, then A cannof
part of a chordless cycle of length > 3.

Theorem 4.9 A graph is triangulated if and only if all of its nodes can be elimina
one by one without adding any link.

Theorem 4.9 yields a method for triangulation as well as a test for whether a g
is triangulated. The method consists of eliminating the nodes in some order (ad

® CONIRULLIUIN UF JUNCILION IREES 85

Figure 4.18 The junction graph for the triangulated graph in
Figure 4.17 and a junction tree.

links, if necessary) and when this is done the resulting graph is triangulated. An
example is given in Figure 4.20,

Note that there are several triangulations of the graph. Intuitively, triangulations
with as few fill-ins as possible are preferred. However, optimality is connected
to the resulting junction tree and the computational complexity of the propagation
algorithm. We shall return to the question of optimality later.

Definition. A junction graph for an undirected graph G is an undirected, labelled
graph. The nodes are the cliques in G. Every pair of nodes with a non-empty
intersection has a link labelled by the intersection,

There is an easy way of identifying the cliques in a triangulated graph G. Let
Ay, ..., A, be an elimination sequence for G, and let C; be the set of variables
containing A4; and all its neighbours at the time of elimination (neighbours with
higher numbers). Then every clique of G is a C; for some i.

The reader may check that the cliques of the graphs in Figure 4.20(a) are C), C,,
C3, C4, and that the cliques of the graph in Figure 4.20(b) are Cy,C5,C;.

The junction tree we are aiming at will be a subgraph of the Junction graph. Since
Message Passing will be restricted to links in the junction tree we are not allowed to
emove a link from the Junction graph if thereby some kind of information cannot
be passed. If, for example, the clusters U and V have the variable A in common,
%Mwﬂrwﬁ a link with label A. If this link is removed, there shall be another path in
So _M”E::Sm graph through which information on A can be passed from U to V.

» €L us recal] the following definition.

WMnanF A spanning tree of a junction graph is a junction tree if it has the

Perty that for each pair of nodes, U, V, all nodes on 50@»5@220@:Qm:&<

contaj
2:85 UNV. (A subtree of a graph is a spanning tree if all nodes of the graph
€ nodes jn jt,)




ov PROPAGATION IN BAYESIAN NETWo, STOCHASTIC SIMULATION 87

) (a) (b)
i i Figure 4.20 Two examples of triangulation through elimination.
ot riangulated Triangulated The numbers on the nodes indicate the elimination order, and the
dotted lines are fill-ins.
[34]
329
Not triangulated Triangulated (b)

Figure 4.21 Junction graphs for the two triangulated graphs in

Figure 4.19 Triangulated and not triangulated graphs. Figure 4.20.

Theorem 4.10 An undirected graph is triangulated if and only if its junction gre

et therefore, is a triangulation yielding small cliques, or to be more precise, yielding
has a junction tree.

small probability tables. The problem of determining an optimal triangulation is
N P-complete. However, there is a heuristic algorithm which has proven to give
fairly good results. It is a version of the greedy approach: eliminate repeatedly a
node not requiring fill-ins and if this is not possible, eliminate a node yielding the
smallest table. In Figure 4.23 an example is given.

Definition. The weight of a link in a junction graph is the number of variables
the label. The weight of a junction tree is the sum of the weights of the labels. :

Theorem 4.11 (Without proof) A subtree of the junction graph of a triang
graph is a junction tree ifand only if it is a spanning tree of maximal weight.

,:.moas 4.11 provides an easy way of constructing junction trees namely Krusl 4.6 Stochastic simulation
%”n Propagation method requires tables for the cliques in the triangulated graph.
e

se cliques may be very large, and it happens that the space requirements cannot
be met by the hardware available. In this case an approximate method would be

tree is rather fast, satisfactory.

The only problematic step in the process from DAG to junction tree is the .F this section we shall give a flavour of an approximate method called stochastic
angulation. Since any elimination sequence will produce a triangulation 2y} Simulation, The idea behind the simulation is that the causal model is used H.o
mw.oE a nnoﬂ_as_ but for the propagation algorithm it is, In HUGIN prop M“._”W”Mrw mo«m of :Euworﬂ When wﬂmmom ?M: w:mnﬁ %M <Mﬂww_ow to a variable A is
cliques in the junction graph shall have joint probability tables attached to . arandom generator is used to decide the state . .

The size of the table is the product of the number of States of the variables. To illustrage the technique, consider the Bayesian network in Figure 4.24 with the

the size increases exponentially with the size of the clique. A good triangul k conditiona| probabilities specified in Table 4.4.



88

PROPAGATION IN BAYESIAN NETWO,

Figure 423 A heuristic elimination sequence is E, D (and
A, B, ().

® ©
O—®

Figure 424 An example network. All variables have the states
y and n.

hﬂbﬁt}w TIC SIMULATION %9

Table 4.4 The conditional probabilities for the example
network. P(A) = (0.4, 0.6).

A A B
B vy n C y n D y n
y 03 08 y 07 04 y 05 01
n 07 02 n 03 06 n 05 09

P(B | A) P(CA) P(D | B)
C

D y n

y (0.9, 0.1) (0.999, 0.001)

n_ (0.999, 0.001) (0.999, 0.001)

P(E|C,D)

Table 4.5 A set of 100 configurations of (4, B, C, D, E) sampled from the
network in Figure 4.24 and Table 4.4

CDE
AB yyy yyn yny ynn nyy nyn nny nnn
yy 4 0 5 0 1 0 2 0
yn 2 0 16 0 1 0 8 0
ny 9 1 10 0 14 0 16 0
nn 0 0 4 0 0 0 7 0

The idea now is to draw a random configuration of the variables (A,B,C,D, E),
and to do this a sufficient number of times.

A random configuration is selected by successively sampling the states of the vari-
ables. First the state of A is sampled. A random generator (with even distribution)
is asked to give a real number between zero and one. If the number is less than
0.4 the state Is y, if not the state is n. Assume that the result is y. From the
conditional probability table P(B | A) we have that P(B | y) = (0.3,0.7). The
Tandom generator js asked again, and if the number is less than 0.3, the state of B
18 y. This procedure is repeated to get the state of C,D,and E, and a configuration
18 determineg.

The next configuration is sampled through the same procedure, and the procedure
IS repeateq until m configurations are sampled. In Table 4.5 an example set of
ooamw:wwzosw is given.

The Eogc::w distributions for the variables are calculated by counting in the
sample set (see Exercise 4.12). For 39 of the samples in Table 4.5 the first state is

y, .W__:a this gjves an estimated probability P(A) = (0.39, 0.61).
.x..?a -Mo:.oa above, called forward sampling, does not require a triangulation of the
. (V § , al

it is nd it is not necessary to store the sampled configurations (like Table 4.5);
has €nough to Store the counts for each variable. Whenever a sampled configuration
been anﬁn:i:wa. the counts of all variables are updated, and the sample can



B

90 PROPAGATION IN BAYESIAN NETWOL

be discarded. This method saves a great deal of space, and each configuratj
determined in a time linear to the number of variables. The cost is accuracy .
time.

So far only the initial probabilities are calculated. When evidence arrives, j
be handled by simply discarding the configurations which do not conform d
That is, a new series of stochastic simulations are started, and whenever a stgfd
an observed variable is drawn, you stop simulating if the state drawn is nof}
observed one.

Unfortunately, this method has a serious drawback. Assume in the example
that the observations for the network are B = n and E = n. The probabilj
(B = n, E = n) is 0.00282. This means that in order to get 100 config
you should for this tiny example, expect to perform more than 35000 stoc
simulations.

Methods have been constructed for dealing with this problem. A promising
is called Gibbs sampling.

In Gibbs sampling you start with some configuration consistent with the evidd
(for example determined by forward sampling), and then you randomly changild
state of the variables in causal order. In one sweep through the variableg’§
determine a new configuration, and then you use this configuration for a new sw
etc.

In the example let B = n and E = n be the evidence, and let the g
configuration be ynyyn. Now, calculate the probability of A given the other
of that configuration. That is, PLA| B=n,C = ¥»,D =y, E = n). Fro
network we see that it is sufficient to calculate P(A | B =n,C = y). Itis
done by Bayes’ rule: it is (0.8, 0.2). We draw a number from the random ge,
and let us assume that the number is 0.456 resulting in A = y. The next free va
is C. We calculate

wAﬁ._}HverFUHw.MHS = P(C|A=y,D=y E=
= (0.996, 0.04).

We draw from the random generator, and assume we keep C = y.

In general the calculation goes as follows. Let A be a variable in a B
network BN, let By, ..., B, be the remaining variables, and let b* = (b1, i
be a configuration of (B1, ..., By). Then P(A, b*) is the product of all condil
tables of BN with B; instantiated to b;. Therefore P(A, b*) is proportional ¥
product of the tables involving A, and P(A | b*) is the result of normaliz
product. Note that the calculation of P(A | b*) is a local task.

Back to the example. The next variable is D. We follow the same proced
assume that the result is D = Y- Then the configuration from the first s
unaltered, i.e. ynyyn.

The next sweep follows the same procedure. Assume the result for A is
state is changed to n. Then we shall calculate P(C | A = nD=y E=
so forth.

In this way a large sample of configurations consistent with the observati
produced. The question is whether the sample is representative for the prob#

th\R\»xv\ OF SECTIONS 4.2-4.5 91
.ribution. It is not always so. It may be that the initial no:mmcnmzo:.mm rather
m__mn,_ bable, and therefore the first samples, likewise, are out of the mainstream.
_Bv_.omo_d w.o: usually discard the first 5-10% of the samples. It is called burn-in,
?QMEQ problem is that you may be stuck in certain “areas” of the configurations.
10\.““3 there is a set of very likely configurations, but in n&ow to ._.nmor.ﬂroa from
one you are in, a variable should change to a state which is highly improbable
EM«: the remaining configuration (see Exercise 4.13).
d A third serious problem is that it may be very hard to find a starting configuration.

In fact, it is NP-hard (see Exercise 4.14).
We shall not deal with these problems, but refer the interested reader to the liter-

ature.
4.7 Summary of Sections 4.2-4.5

Junction trees

The nodes of a junction tree are sets of variables, they are called cliques. Each
link is labelled with a separator which is the intersection of the adjacent cliques.
Each clique and separator holds a real numbered table over the configurations of its

variable set.

The junction tree property. For each pair V, W of cliques, all cliques on the path
between V and W contain the intersection V N W.

A junction tree is said to represent the Bayesian network BN over the variables
U if:

(i) for each variable A, there is a clique containing pa(A) U {A};

(ii) P(U) is the product of all clique tables divided by all separator tables.

Construction of Junction trees
Let BN be 4 Bayesian network over the variables U.

(@) Construct the moral graph: the undirected graph with a link between all
Variables in pa(A) U {A} for all A.

() Trianguiate the moral graph: add links until all cycles consisting of more than
three links have a chord.

(i) The nodes of the junction tree are the cliques of the triangulated graph.

(iv) Oo%ns the cliques of the triangulated graph with links such that a Junction
tree is constructed.

V) First give all cliques and separators a table consisting of only ones. Then,
for each variable A find a clique containing pa(A) U (A}, and multiply P(A |
Pa(A)) on its table.

The .
amc_:zm Junction tree represents BN.



3

92 PROPAGATION IN BAYESIAN NETWORN

tr -—

@@a’@m U

Figure 425 W absorps from V. £, = ¢, . S =Y, t

Findings

States.

A finding on a variable 4 is entered into a clique V containin

2 A by multiplyg§
Vs table by the table for the finding. 4

Absorption in junction trees

Definition. Let V and W be neighbours in a junction tree, let S be their sepa

and let ty, ty and ts be their tables. The operation absorption is the result of'§
following procedure:

~ caleulate £ = 37, <ty ;

— give S the table ¢*;
— give W the table W= Q\%.

We then say that W has absorbed from V. (See Fig. 4.25.)

HUGIN propagation

An arbitrary clique Rt in the Junction tree is chosen as a root. The ope
CollectEvidence is called in Ry followed by a call of DistributeEvidence in Rt.
Octmﬁmcim:nmﬁxs asks all neighbours to CollectEvidence and they prog
down the tree recursively. When all the called neighbours have finished, Rt
sorbs from them.
baiwﬁmms.&mxnﬁxnv makes all its neighbours absorb from Rt, and
recursively DistributeEvidence to its neighbours (except Rt). See Figure 4.26

Correctness of HUGIN propagation

Theorem 4.8 Let BN be a Bayesian network representing P(U), and let T %
Jjunction tree corresponding to BN. Let ¢ = {fi...., fu) be findings on the varii§
{A1,..., An). For each i find a node containing A; and multiply its table wit i

Then, after a full round of message passing we have for each node V and sep

S that
ty = P(V,e) ts = P(S,e) P(e) = M ”?\.
1Z

93
pIBLIOGRAPHICAL NOTES

Figure 4.26 Updating through CollectEvidence(V) followed by
DistributeEvidence(V).

PSe) ~
@\ o:m ‘e

Figure 4.27 Evidence ey has been entered at the amrgmma side
of S. ew has been entered at the lefthand side of S. C is used
as a root for the propagation.

Side effect of Hugin Propagation

Let Rt be the root for HUGIN propagation, and let W and V co ﬁammgoﬁm EMM
separator §. Assume that W is closer to Rt than V. Then S divides the enter
evidence in ey and ey (see Fig. 4.27). . .

A call of CollectEvidence(Rt) results in the table P(S, ey) being communicated
from V to S. By marginalization you can calculate P(ey).

4.8 Bibliographical notes

A version of probability updating in singly connected DAGs S.Scm_. message wmmcm-
ing was presented by Kim & Pearl (1983). HUGIN propagation was propose: M
Jensen et a). (1990). It is a modification of an m_moan.:_. proposed E\ hm:n:Nn.:

Spiegelhalter (1988). Similar methods were used for pedigree analysis c.v\ Cannings
et al. (1978). Shafer & Shenoy (1990) propose a different message-passing method
for junction trees. Other propagation methods for multiply o.o::ooaa DAGs exist,
MW. arch reversal proposed by Shachter (1986) or conditioning proposed by Pearl

986a).

The concepts of triangulated graphs and Jjunction trees have been discovered and
fediscovered with various names. In Bertele & Brioschi (1972) they are used for
dynamic Programming, and Beeri et al. (1983) use them for data _.uwmo Ew:mmﬂ:o:.ﬁ.
A good reference on triangulated graphs is Golumbic (1980). Tarjan & Sszmwm.w_m
(1984) gives various triangulation methods and very efficient methods for testing
Whether , graph is triangulated. Jensen & Jensen (1994) contains a proof of goo-
m 4.10 together with a imethod for constructing optimal junction trees from trian-
8ulateq graphs,

Forwarg Sampling was proposed by Henrion (1988). Gibbs sampling was originally




< PROPAGATION IN BAYESIAN NETWORM

(1995). Gilks et al. (1994) have developed a system, BUGS, for Gibbs sampling
Bayesian networks.

Exercises

Exercise 4.1 For Table 4.6, calculate tyty and mm

Table 4.6 Table for Exercise 4.1,

a) a; a3 C1 C2 C3

bh 1 23 b 6 12 24

b, 3 2 b, 18 6 12
ty ty.

Exercise 4.2 For the universe U over the ternary variables (A, B, C) with the
probability Table 4.7 we get the findings f£;: “4 s in state a;”, and S “C is
state ¢; or c3”,

Table 4.7 Table for Exercise 4.2.

a; @ as
b (243) (1.4,8) (5,0,7)
by (5104) (233) ¢ 1,5,4)
by (1,56) (3.3.3) (0,6,2)
P(A, B, C) multiplied by ten,

Caleulate P(B | 1, £,), P(C | fi, f2), P(A), P(f,) and P(fi, o).

Exercise 4.3 Prove that the anarchistic message passing algorithm formuls
Section 4.3.2 never Tuns into a deadlock: as long as there are unused me:
channels at least one variable can send a Mmessage. (Hint. Induction on the n
of nodes and the fact that any sending sequence must start with a leaf sending

Exercise 4.4 [ ot B be independent of C given A, and let P(A, B) and P(A,
consistent, What is P(A, B, C)?

Exercise 4.6 Construct the moral graph and a junction tree for the singly col
DAG below.

Exercise 4.7 Show that a consistent Jjunction tree is globally consistent.

95

EXERCISES

Figure for Exercise 4.6.

Exercise 4.8 (Construction of a junction tree from an n:EE»:n: m.onco:n@.v
G is a triangulated graph over U, and A4, ..., A, is an elimination moaco.zon of
U. C; is the set of variables containing A; and all its neighbours at the time of
. i

elimination.

(i) Show that each clique of G is a C; for some i.
(ii) Show that for all i < n there is a J >isuch that C; \ {4;} € C;.

(ii)) Assume that C; and C; are cliques (i < j) mco.= that C; \ {A;} C C;. Show
that there exists a Jjunction tree for G with the link (Ci, C)).

(iv) Use (ii) and (iii) to construct a Jjunction tree for the graph in Figure 4.20(a).

Exercise 4.9 (i) Construct a junction tree for the DAG given below, by using the
elimination order F,J,D,B,A,I.K,E.

Figure for Exercise 4.9

(ii) The humbers inside the nodes indicate the number of states. Use the procedure
from tpe end of Section 4.5 to construct a junction tree.

Exercise 4.10 (i) For the DAG given below, compute P(A, B, C), when P(A) =
Ao.m. 0.7) (see Figure and Table 4.8 for Exercise 4.10(i)). .
({i) The DAG is extended as shown in the Figure and Table 4.9 for Exercise 4.10(ii).
Calcuate P(B, C, D).



96 PROPAGATION IN BAYESIAN NETWOR

Table 4.8 Table for Exercise 4.10(). 4
A=y A=np
B=y 02 03
B=n 0.8 0.5
P(B | A)

A=y A=n i

C=y 0.9 04

C=n 0.1 0.6
P(C | A)

Figure for Exercise 4.10(i).

(iv) We are told that A = y and D = n. What is P(B)?
(v) Initially, what was P(A=y,D =n)?

Exercise 4.11 (Conditioning.) Propagation methods for singly connected DAGs
existed for a long time. A propagation method for multiply connected DAGs consi
of reducing a DAG to a set of singly connected DAGs.

(i) Consider the DAG (a) below with P(A), P(B | A), P(C | A) and P(D | B, &
given. Assume that A = a. Show that the DAG is reduced to the DAG (b)
P(B|a), P(C|a), and P(D | B, C) given.

(ii) Show that P(D,a) = P(D [b,c)P(B | a)P(C | a). R

(iii) Assume that for all states of A we have a reduced DAG as in (). L&
evidence e be entered and propagated in all the reduced DAGs, yielding P(B, e | a})
P(C,e|a), P(D,e| a) for all a. Calculate P(B,e) and P(A,e).

The procedure above is called conditioning on A.

(iv) Reduce the DAG by conditioning on B. Show that the tables are P(A | b)
P(C| A)and P(D|C,b). .

(v) Show that conditioning on D does not result in a singly connected DAG.

Conditioning over several variables can be performed stepwise.

(vi) Determine a minimal set of conditioning variables for the DAG given bel
to reduce it to singly connected DAGs. :

(vii) The numbers attached to the variables indicate the number of states. D
mine a conditioning resulting in a minimal number of singly connected DAGs.

Table 4.9 Table for Exercise 4.10(ii).
B=y B=n

C=y O 1 0.7, 0.3)
C=n_(04,06) (05,0.5)
PD|B,C)

97
EXERCISES

()

Figure for Exercise 4.10(i).

(a) (b) (©
Figure for Exercise 4.11(i)—(v).

Exercise 4.12 Calculate the marginals from the sample in Table 4.5, and compare
the result with the exact marginals.

Exercise 4.13 The binary variables A and B are parents of the _u.m:mQ <m:mv.~o C.
P(A) = P(B) = (0.5, 0.5), and the conditional probability table is an exclusive or
table: C =y if and only if exactly one of A and B is in :.6 state y.

Show that Gibbs sampling on this structure will give either P(C = y) =1 or
P(C=n)=1.

Exercise 4.14 Given a Bayesian network over U with evidence e entered, show that
it is NP-hard to find a configuration U* such that P(U*, e) > 0.
(Hint. Look at Exercise 3.16.)

Figure for Exercise 4.11(vi)—(vii).



