6.891 Machine learning and neural networks

Mid-term exam

October 26, 2000

(2 points) Your name and MIT ID:

Problem 1

1. (6 points) Consider a two-layer neural network with two inputs z; and z, one
output unit (unit 3) and two hidden units (units 1 and 2).
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We assume that the transfer functions in the network are threshold functions. For
example, unit 1 with two inputs z; and x5 produces an output

y = step(wio + wnT1 + winTs ) (1)

where step(z) = 1 if z > 0 and zero otherwise.
Show that such a network can solve the XOR problem in the left figure below.

In the left figure, mark the decision boundaries for the two hidden units corresponding
to the solution. Also mark on each side of the boundary what the resulting output is
for the corresponding unit. Map the outputs to the figure on the right and indicate
which of the four input examples the outputs correspond to. Finally, draw the decision
boundary corresponding to the output unit 3.
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2. (6 points) Suppose we are trying to train the following chain like neural network
with back-propagation. Assume that the transfer functions are logistic functions and
that all the weights are initially set to 1 and all the biases are set to -0.5. Giving
such a network an input x = 0.5 causes all the outputs of the units to become 0.5.

—O—O0—0—0—

Now, given a single input = 0.5 and corresponding target output y = 1, what can
you say about the order of magnitude of the gradient updates for weights in this
network? We are looking for a qualitative (not numerical) answer comparing the
magnitude of the updates across the different units.

3. (T/F — 2 points) Applying back-propagation to train a neural net-
work is guaranteed to find the globally optimal solution

4. (T/F — 2 points) Regardless of the choice of the transfer function,
setting all the weights close to zero in a neural network makes the
network function like a linear mapping from inputs to outputs




Problem 2

1. (4 points) We want to solve the following classification problem with boosting where
the component classifiers are decision stumps. In the figure below, a) mark the
decision boundary for the first decision stump and b) circle the points whose weight
will increase as a result. Indicate the positive/negative side of the decision boundary.

'0’s in the figure correspond to —1 labels and 'x’s denote +1 labels.
2

1.81 8

1.6f 1

141 g

1.2, B B -

1k o : * : o i

0.8r 1

0.6 .

0.4r 8

0.2 g

0 1 1 1 1 1
0.5 1 15 2 2.5 3 3.5

2. (4 points) Give us the new weights on the three training examples after the first
boosting iteration (you should not need a calculator for this)

3. (6 points) How many boosting iterations would we need in the previous example so
that the combined classifier separates the examples perfectly? Please answer either
a) 1 iteration b) 2 iterations, c) at least 3 iterations or d) boosting cannot separate
the examples. Briefly explain why.



4. (4 points) Explain briefly why we might ever want to use boosting as opposed to
some other way of combining simple classifiers into strong classifiers (such as adapting
the forward-fitting algorithm to classification problems)

5. (T/F — 2 points) The weighted error of each of the component clas-
sifiers (error relative to the current weights on the training examples)
always goes down as a function of the number of boosting iterations

6. (T/F — 2 points) The training error of the combined classifier de-
creases monotonically as a function of boosting iterations

7. (T/F — 2 points) After some k boosting iterations, the next com-
ponent classifier may achieve only weighted training error close to 0.5
(relative to the current weights on the examples) even if the combined
classifier perfectly separates the training examples

Problem 3

1. (6 points) Give us the simplest kernel function that permits support vector machines
to represent all the decision boundaries that a mixture of two Gaussian model can



(without any constraints). Also provide a brief justification. We assume that the two
components in the mixture model correspond to the binary classification labels.

2. (4 points) In the figure below, draw the maximum margin linear decision boundary
and indicate the resulting support vectors by circling them.
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3. (4 points) Suppose we are given a sequence of training examples xi, X, ... as well
as the corresponding binary +1 labels y1,4s,.... We predict the label for the n'

example by training our binary classifier, say h(x;w), with the first n — 1 examples
and labels and, subsequently, predicting the n'* label as the output of h(x;Ww, ;)
(W,,_1 here denote the parameters that we find on the basis of the first n — 1 training
examples). Such a sitution might arise, for example, in predicting changes in stock
prices, where x captures our knowledge of the current situation.

We wish to use support vector machines for this classification task. Give two reasons
for why our ability to predict the n'* label might not improve or might even get worse
as the number of training examples or n increases (up to say n = 1000). Your reasons
may pertain to assumptions or properties of support vector machines.



4. (4 points) Give one reason for and against maximum margin separation of the
training examples

5. (4 points) Briefly explain how we should set the constant C' (level of regularization)
in a regularized logistic regression:

T(w) = Y log Plufxe, w) — lwP ©)

=1




6. (4 points) Suppose we use the simple mutual information criterion I(y; z;) to select
components x; of the input vectors x. We assume that we have a large number of
training examples and the probabilities in I(y; z;) can be estimated accurately. Based
on the resulting values for I(y;z;) can we ever definitely include/exclude a feature?

Briefly explain why or why not.

7. (T/F — 2 points) The computational cost of estimating support vector
machines increases linearly with the number of training examples

8. (T/F — 2 points) A polynomial kernel function of degree one can
solve the XOR-problem discussed in problem 1

9. (T/F — 2 points) As far as generalization error is concerned, the
choice of the kernel function matters only in terms of what the resulting
VC-dimension is

Problem 4

1. (4 points) Give one reason for why we would want to use the EM- algorithm for
training mixture models rather than trying to maximize the log-likelihood of the
training data via gradient ascent.




2. (3 points) Why doesn’t the EM-algorithm converge after one iteration?

3. (3 points) In the figure below, what is not ezplicit in the representation of the
mixture of two Gaussians? In other words, what cannot I get even approximately
from the figure? These are the type of figures that you have seen in lectures in the

context of the EM algorithm.
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4. (4 points) Suppose the mixture model given in the previous figure serves as our
initial guess for the EM-algorithm. Could the EM- algorithm under any initial choice
of the remaining parameters, those that are not specified in the figure, move the
“solid” Gaussian over both clusters after one iteration? Briefly explain why or why
not.

5. (T/F — 2 points) When the EM-algorithm converges for a mixture
of Gaussians model, the mixing proportions pi,...,pr become equal

to the posterior component probabilities P(y = j|x;) for all training
examples

6. (T/F — 2 points) Since Parzen windows is a non-parametric density
estimation method the properties of the kernel bumps we assign over

each training example are irrelevant.



