
6.891 Machine learning and neural networks

FALL 2000 – Final exam SOLUTIONS

December 13, 2000

(2 points) Your name and MIT ID #:

John Doe, 00000000

(4 points) The grade you would give to yourself + brief justification. If you
feel that there’s no question that your grade should be A then just write “A”.

A

Problem 1

1. (T/F – 2 points) Any representation of the inputs that contains (in
some form) all the information about the labels would do equally well
for classification purposes

F

The relevant information should be explicit for it to be useful. The
statement implies that, for example, a representation where the relevant
information is encrypted would serve equally well.

2. (T/F – 2 points) For support vector machines the kernel function is
a good place to incorporate prior information about the classification
problem

T

The input examples appear only in the kernel function. The kernel
function is therefore the only place to incorporate prior information
that pertains to the examples.
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3. (T/F – 2 points) Support vector machines, like logistic regression
models, give a probability distribution over the possible labels given an
input example

F

Support vector machines provide only a hard label. The classification
margin cannot be directly interpreted as a probability.

4. (T/F – 2 points) A wrapper feature selection method can be expected
to always outperform a simpler filtering approach

F

The key here is the word “always”. While wrapper methods tend to give
better results as they take into account the form of the classifier, this is
by no means guaranteed.

5. (T/F – 2 points) In clustering, selecting how small groups should be
merged into larger ones is secondary to finding the metric that compares
individual examples.

T

The key to clustering is the choice of the metric between the examples.
There are several ways of merging smaller clusters into larger ones but
they all rely on this initial metric.

6. (T/F – 2 points) Most clustering algorithms try to minimize or max-
imize a well-defined objective function

F

Most clustering algorithms do not even have an objective function.
What is, for example, the objective function in a simple greedy hierar-
chical clustering? Mixture models, however, do maximize a well-defined
objective (likelihood of the examples).

Problem 2
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Figure 1: Observed data. The distribution of examples along the x-axis is sampled uni-
formly in the interval [−2, 2].
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1. (6 points) Consider a mixture of experts architecture where each expert is a linear
regression model (with Gaussian noise) relating a real valued input x to a real valued
output y. The choice of the experts is governed by a softmax gating network. How
many experts would you need to adequately model the observed data in figure 1?
Write in figure 1 the regions that correspond to a good allocation of experts in this
architecture. Briefly explain why the softmax gating network can serve to select the
regions you have specified.

Number of experts = 4

The softmax gating network is given by

P (i|x, η) =
evix+vi0∑4
j=1 e

vjx+vj0
(1)

So, given x, the expert with the highest probability is the one that has the largest
value of vix + vi0 (a line). By setting the parameters of these lines such that they
appear as in figure 1, then within each region we always select the appropriate expert
with the highest probability. By scaling these parameter values we move from soft
selection of experts to deterministically picking the appropriate one in each region.

Note that the solid lines in the figure have nothing to do with how the experts make
their predictions.

2. (6 points) Briefly explain why we would prefer such a mixture of experts architecture
over estimating a simple mixture of Gaussians model over both x and y, i.e., treating
(x, y) as a two-dimensional observation? Note that we can always make predictions
from such a mixture model by computing the posterior probability of y given only
x. You can assume here that the mixture of Gaussians model would be estimated by
maximizing the likelihood of all the observations {(x1, y1), . . . , (xn, yn)}.

There are at least two reasons for preferring a mixture of experts model in this
context: First, since we have indicated that the x-values are distributed uniformly,
any Gaussian model over x is a bad choice (a Gaussian tends to concentrate the
probability mass close to the mean value and the density decays rapidly as we
move away from the mean). We could, of course, increase the number of mixture
components to better model the density over x. This leads to higher complexity,
problems with overfitting, etc.
The second reason is that we are not interested in the density over x at all. We
merely wish to predict y given x. Fitting a model by maximizing the likelihood of
both x and y is simply the wrong criterion. It does not match what we wish to
solve.

3. (T/F – 2 points) A mixture of experts model is resistant to overfitting
in the sense that if we have too many experts most of them will never
be selected by the gating network

F
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Like any mixture model, a mixture of experts model is susceptible to
overfitting.

4. (T/F – 2 points) When estimating a mixture model with several
components it can make a difference whether we use a flat mixture
model or the corresponding hierarchical mixture model

T

The question here is whether it makes any difference in estimation if
we use a flat 5-component mixture model or a hierarchical version of
this. If data possesses any hierarchical structure, then the hierarchical
mixture model is more likely to find this structure. The hierarchical
organization “ties” mixture components together during estimation.

Problem 3
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Figure 2: A hidden Markov model. The figure shows the hidden state transitions and the
associated probabilities along with the initial state distribution.

Consider a hidden Markov model illustrated in figure 2. We assume that the state depen-
dent outputs (coin flips) are governed by the following distributions

P (x = heads|s = 1) = 0.51 P (x = heads|s = 2) = 0.49
P (x = tails|s = 1) = 0.49 P (x = tails|s = 2) = 0.51

In other words, our coin is slightly biased towards heads in state 1 whereas in state 2 tails
is a bit more probable outcome.

1. (6 points) Now, suppose we observe three coin flips all resulting in heads. The
sequence of observations is therefore {heads, heads, heads}. What is the most likely
state sequence corresponding to these three observations? Briefly explain your rea-
soning. (you shouldn’t need a calculator for this)
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The most likely hidden state sequence is 2,2,2. This is because the output probabil-
ities are nearly identical and we are very likely to start from 2 and stay there. We
loose a factor of 9 in probability if we ever switch to state 1.

2. (6 points) What happens to the most likely state sequence if we observe a long
sequence of all heads (e.g., 1000)? Briefly explain your reasoning. (you shouldn’t
need a calculator for this)

The hidden state sequence becomes 21111...

When we increase the number of observations (all heads), we increase the pressure
for the system to switch to 1 since state 1 has a slight advantage per observation.
Eventually the switch will take place (note that there’s no benefit from ever switching
back to state 2). When does this happen? The cost of the 2–¿1 transition is the same
regardless of when it takes place. The more we postpone the transition, however,
the more heads we would have to generate from state 2. However, it is somewhat
better to go via 2 initially and switch right after (0.99*0.49*0.1 · · ·) rather than
start from 1 to begin with (0.01*0.51*0.9 · · ·).

3. (T/F – 2 points) The only limitation of first order homogeneous
Markov chains is that they can capture only one time step dependencies
among the observations

F

A first order Markov model can only capture one time step dependen-
cies. A homogeneous first order Markov chain assumes, in addition,
that this dependence does not change over time.

4. (T/F – 2 points) By increasing the number of hidden states in an
HMM, we can model well (in the maximum likelihood sense) practically
any finite sequence of observations

T

To model any finite length sequence, we can increase the number of
hidden states in an HMM to be the number of observations in the se-
quence and therefore (with appropriate parameter choices) generate the
observed sequence with probability one. Given a fixed number of finite
sequences (say n), we would still be able to assign probability 1/n for
generating each sequence. This is not useful, of course, but highlights
the fact that the complexity of HMMs is not limited.

5



5. (T/F – 2 points) HMMs can model observation sequences arising
from multiple underlying processes and the description of such models
in terms of state transition diagrams is concise

F

The key here is the second part of the sentence. As discussed in the lec-
ture, it is quite awkward to write transition diagrams describing multiple
processes.

Problem 4

Your task here is to identify the relevant variables and the graph structure that captures
the following (imaginary) setting. There may be multiple “correct” answers.

“A panel of three judges determines the outcome of presidential elections. Each judge can
vote for one of the two possible candidates and the outcome is obtained by a majority rule.
Two of the judges are impartial in the sense that they will listen to arguments from two
spokespersons each working for one of the candidates while the remaining judge consistently
pays attention to only one of the spokespersons. Each spokesperson will ask a judge to vote
for a specific candidate. The spokespersons never talk nor listen to each other directly.”

1. (6 points) Identify the relevant variables based on the above description. For each
variable state the possible values that it can take. If you use abbreviations to identify
the variables make sure they are not ambiguous.

The variables are:

Election outcome E1 {1, 2} (candidate 1 or 2)
Spokesperson 1 S1 {1, 2} (argument has the effect of supporting 1 or 2)
Spokesperson 2 S2 {1, 2} (argument has the effect of supporting 1 or 2)
Judge 1 (impartial) J1 {1, 2} (votes for 1 or 2)
Judge 2 (impartial) J2 {1, 2} (votes for 1 or 2)
Judge 3 (partial) J3 {1, 2} (votes for 1 or 2; listens to S2 only, say)

2. (6 points) Draw a Bayesian network that captures the interactions between the
variables. Avoid any assumptions that you cannot make on the basis of the above
description. Please indicate which variables correspond to which nodes.
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The description does not tell us whether the judges discuss the case amongst them-
selves. We therefore cannot make any independence assumptions between the judges
conditionally on the spokespersons. We therefore draw all possible arrows between
the judges so long as the resulting graph is acyclic. The directions of the arrows that
connect the judges are irrelevant; they are all equivalent. You could also draw an
undirected edge between each pair of judges but not bi-directional edges.

3. (4 points) The graph might change if the above description had started with “A
panel of three independent judges...”. If the graph would change, please draw the
new graph. Otherwise state that there are no changes.

S1

S2 J1

J2

J3

E1

If the judges make their decisions independently of each other (but still contingent on
the spokespersons), we simply remove all the arrows between the judges.

4. (4 points) Explain under what circumstances (setting of some of the variables etc.)
we might observe “explaining away” in the graph you just drew. If none exists, briefly
explain why not.

(For your convience, here’s a brief description of “explaining away”: When we have
multiple possible causes for a single known effect, explaining away refers to the phe-
nomenon where acquiring further evidence about the presence of one of the causes
makes the other ones less likely.)
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There is a natural explaining away effect here. Suppose we know the outcome of the
election (E1 = 1). This increases the probability that each judge individually voted
for candidate 1. If we now learn that the first two judges voted for candidate 1 (i.e.,
J1 = 1 and J2 = 1), then there’s no remaining evidence supporting that J3 voted for
candidate 1 (since the election outcome is a majority vote). The additional evidence
(J1 = 1 and J2 = 1) now fully explains the initial observation (E1 = 1).

5. (T/F – 2 points) The graph structure is useful only if it captures
all the independence properties present in the underlying probability
distribution

F

Graph structure is useful if the properties that we can derive from the
graph are true for the underlying probability distribution. It is often
the case that we cannot capture all the independence properties with a
graph.

6. (T/F – 2 points) Given any probability distribution, we can find a
Bayesian network as well as a Markov random field that is consistent
with the distribution

T

A fully connected undirected graph (or its directed quivalent) is con-
sistent with any distribution as it makes no independence assumptions
whatsoever.

7. (T/F – 2 points) A Boltzmann machine where all the variables are
observable can only capture second order statistics (means and covari-
ances) between the variables

T

When all the variables are observed, Boltzmann machines care only
about the second order statistics (recall the estimation equations in the
lecture notes). This is no longer true if there are unobserved variables
as such variables can correlate more than two observed variables (this is
analogous to the case of one underlying but unknown cause and multiple
effects).
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