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1 Overview

In this lecture, we will look at a variety of graph-related problems and other miscellany which
may be helpful but have not fit into any topic from the past lectures. In particular, we will look
at problems involving vertex covers, coloring, and ordering. We also look at problems involving
orientations of graphs. We conclude by looking at graph crossing number and Rubik’s cubes.

2 Vertex Cover

Recall that a vertex cover is a set of k vertices such that each edge in a graph is adjacent to at least
one vertex in the set. Lichtenstein showed in [10] that planar vertex cover is NP-hard by reducing
from planar 3SAT. This result holds even for graphs with maximum degree 3.

Note that vertex cover can be interpreted as a 2SAT problem on a graph, where we must choose
exactly k vertices (in other words, there will be exactly k true variables).

We start by briefly mention two related problems, both of which are solvable in polynomial time:

• Exact vertex cover, where each edge must be incident to exactly one vertex.

• Edge cover, where we choose k edges to cover all vertices in a graph.

2.1 Planar connected vertex cover

In this variation of a vertex cover, we require the chosen vertices to induce a connected subgraph.
This problem is NP-hard, and we prove this by reducing from planar vertex cover. Our reduction
will hold for planar subgraphs with maximum degree 4.
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Planar Connected Vertex Cover
[Garey & Johnson 1977]

In the diagram above, we transform our given planar graph G by adding a closed loop for each face
in the graph. For each edge in G that separates two loops l1 and l2, we add several vertices that
”connect” the two closed loops together. The construction adds exactly 5 · |E| edges to the graph,
and increases each of the original vertex’s degrees up to 4.

Note that there always exists an optimal vertex cover where we never choose any leaves in the
graph. This is because choosing the node adjacent to a leaf in our cover is always at least as good
as choosing the leaf itself. Thus, to obtain a connected vertex cover, we must choose exactly one
of the two nodes in each subdivided edge to connect each of the closed loops together. (It is never
more useful to choose both, since we could simply choose a vertex of our original graph G and
be guaranteed to cover at least as many nodes.) After we have done so, these additions induce a
connected graph.

3 Rectilinear Steiner Tree

Given n points in the plane, the Steiner tree problem asks for the minimum length of ”road” needed
to connect all the points together. Note that we are allowed to add arbitrary vertices to shorten
the length of road. For example, if we are given 4 points at (−1,−1), (−1, 1), (1,−1), (1, 1), then
we can add a vertex at (0, 0) and connect each of our four given vertices to the new vertex to form
the minimum Steiner tree.

In the rectilinear Steiner tree problem, all roads must be parallel to one of the coordinate axes. We
can prove this problem is NP-hard by reducing from the connected vertex cover problem, as in [7].

2



Rectilinear Steiner Tree
[Garey & Johnson 1977]

We draw our given graph rectilinearly on the grid, and scale it by 4n2. We add auxiliary points at all
integer points along the edges, except within radius 1 of the vertices. (The vertex transformation is
shown in the diagram above.) It is fairly easy to see that each of the points comprising the ”edges”
of the graph must be connected to its adjacent points. Also, every edge must connect to a vertex,
so we must add at least 2|E| edges. We must also connect the other end of the edges in a spanning
tree of G, which means we must add at least 2(|V | − 1) edges.

4 Vertex k-coloring

Given a graph and a positive integer k, the vertex k-coloring problem is to find whether a color
assignment c : V → {1, 2, . . . , k} exists, such that no edge (v, w) has c(v) = c(w).

Checking whether a 2-coloring exists (bipartiteness) is doable in polynomial time. However, [8]
shows that checking whether a 3-coloring exists is NP-hard by reducing from 3SAT. We do so by
constructing variable, clause, and ”colors” gadgets. In the diagrams below, the blue color represents
true, and the red color represents false. The only bad case is where the rightmost node of the clause
gadget must be red, meaning the graph cannot be colored. This occurs only when all xi are red.
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Vertex 3-Coloring
[Garey, Johnson, Stockmeyer 1976]
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Vertex 3-Coloring
[Garey, Johnson, Stockmeyer 1976]
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4.1 Planar 3-coloring

We can show that planar 3-coloring is NP-hard by reducing to vertex 3-coloring. We only need
present a ”crossover” gadget, which we do below.

Planar 3-Coloring
[Garey, Johnson, Stockmeyer 1976]

𝑥𝑥 𝑥𝑥′

𝑦𝑦
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crossover gadget
[Michael Paterson]

Below are the two distinct ways (up to permutation) in which the crossover gadget can be colored.
Both cases result in x = x′ and y = y′.
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Planar 3-Coloring
[Garey, Johnson, Stockmeyer 1976]
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[Michael Paterson]

Planar 3-Coloring
[Garey, Johnson, Stockmeyer 1976]
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crossover gadget
[Michael Paterson]

There is one subtlety in the use of the crossover gadget. Say the edge from x to z included a
crossing, and we wished to use the above crossover gadget. We would NOT identify x′ with z, as
we wish those vertices to be different colors. Instead, draw a segment connecting x′ to z.

4.2 Planar 3-coloring, maximum degree 4

We show that this is NP-complete by reducing to the previous problem of planar 3-coloring. We
construct a ”high degree” gadget, which we use to emulate vertices with degree larger than 4.

Planar 3-Coloring, Max Degree 4
[Garey, Johnson, Stockmeyer 1976]
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Note that 3-coloring with maximum degree 3 can be solved in polynomial time, even when the
graph is not planar. This is because coloring the graph is always possible unless the graph is K4

(or, if the graph is not connected, contains K4 as a component). This result is known as Brooks’

5



Theorem [1].

5 Pushing 1× 1 blocks

We start with an overview of the known complexities of some variations of the Push-k puzzle, and
then proceed to show the NP-hardness of some of these varities.

Pushing 𝟏𝟏 × 𝟏𝟏 Blocks Complexity
Name Push Fixed Slide Goal Complexity Reference
Push-𝑘𝑘 𝑘𝑘 ≥ 1 no min path NP-hard D, D, O’Rourke 2000
Push-∗ ∞ no min path NP-hard Hoffmann 2000
PushPush-𝑘𝑘 𝑘𝑘 ≥ 1 no max path PSPACE-complete D, Hoffmann, Holzer

2004
PushPush-∗ ∞ no max path NP-hard Hoffmann 2000
Push-1F 1 yes min path NP-hard DDO 2000
Push-𝑘𝑘F 𝑘𝑘 ≥ 2 yes min path PSPACE-complete D, Hearn, Hoffmann 

2002
Push-∗F ∞ yes min path PSPACE-complete Bremner, O’Rourke, 

Shermer 1994
Push-𝑘𝑘X 𝑘𝑘 ≥ 1 no min simple 

path
NP-complete D, Hoffmann 2001

Push-∗X ∞ no min simple 
path

NP-complete Hoffmann 2000

Sokoban 1 yes min storage PSPACE-complete Culberson 1998

5.1 Planar Euler tour

We use the existence of a planar Euler tour in the upcoming proof. Such a tour visits all the
edges of a planar graph in a ”planar” way: in other words, it visits all the edges of each vertex in
a clockwise order, and does not cross its own path. Such a tour’s existence can easily be proven
and constructed inductively as in the following diagram. On the right half of this diagram, we
see a graph such that two disjoint subgraphs have planar Euler tours, and the two subgraphs are
connected by an edge. We run the planar Euler tours ’around’ this edge, thus generating a planar
Euler tour for the entire graph.
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Planar Euler Tours

[Demaine, Demaine, Hoffmann, O’Rourke 2003]

5.2 NP-completeness of Push-1X

The Push-1X problem is the problem of whether we can get to a specified location by pushing
blocks in a grid, subject to the stipulation that we never visit the same location twice. We show
this is NP-complete by reducing from planar 3-coloring with maximum degree 4; the reduction is
due to Demaine et al. [3] We start by constructing a planar Euler tour of the graph, and choose the
color of each vertex whenever we visit it. We choose the color along our tour by using a ”triple”
planar Euler tour, in which we split the path into three paths, each one corresponding to a chosen
color. We also construct ”one-way” gadgets, so that we can forget the color we have chosen for the
next vertex we visit.
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Push-1X is NP-complete
[Demaine, Demaine, Hoffmann, O’Rourke 2003]

fork
one-way

equal
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non-
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fork

one way

We also construct gadgets that force equality and non-equality at two vertices. These gadgets can
be reduced to XOR crossovers and NAND gates (two adjacent paths, only one of which can be
used). Whenever we enter the area around a vertex, we also enter an ”equal” gadget to ensure
each vertex only has one selected color. However, on the two paths going in both directions on
each edge, we bind them together with a ”nonequal” gadget. The two paths in each direction will
correspond to the two colors chosen at the endpoints; thus, a ”nonequal” gadget will ensure the
3-coloring condition holds.

Push-1X is NP-complete
[Demaine, Demaine, Hoffmann, O’Rourke 2003]

NAND
gadget

XOR
crossover

nonequal
gadget

Push-1X is NP-complete
[Demaine, Demaine, Hoffmann, O’Rourke 2003]

equal
gadget

5.3 NP-completeness of Push-1G

The Push-1G problem is We again reduce to this problem from planar 3-coloring with maximum
degree 4. The reduction is due to Friedman [5]. As before, we construct a one-way gadget, a fork
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gadget, and an XOR crossover gadget. The construction of these gadgets is simpler (as we are
allowed to revisit squares), and is shown below.

Push-1G is NP-complete
[Friedman 2002]

one way

XOR crossover

fork

NAND

=

=

In the one way gadget above, the gray block falls down when approaching from the left, but will
not be passable when approaching from the right. In the XOR crossover, traversing either path
will also disable the other path due to a falling block. The NAND gadget is constructed out of two
XOR crossovers (in fact, this could have been done for the Push-1X proof above as well, but that
construction is presented as it was performed in the original paper).

6 Graph orientation

The problem of graph orientation, proposed by Horiyama et al. in [9], is as follows: we are given
an undirected 3-regular graph, and want to find an orientation of its edges subject to the following
constraints on each vertex:

• 1-in-3: exactly 1 incoming and 2 outgoing edges

• 2-in-3: exactly 2 incoming and 1 outgoing edge

• 0-or-3: exactly 3 incoming or 3 outgoing edges

We show this problem is NP-complete by reducing from 1-in-3SAT. For every clause Ci, we build
the anticlause and set it to false (by making it a 2-in-3 clause), which enforces 3-regularity of the
graph. The truth value of each variable corresponds to whether the edges at the corresponding
vertex are directed inwards or outwards (see the right graph in the image below).
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Graph Orientation
[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]
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6.1 Packing L-Trominoes into a Polygon

We reduce from the problem of graph orientation. We construct the necessary gadgets (edge and
crossover gadgets, 0-or-3 gadget, 1-in-3 and 2-in-3 gadgets) as below. The 0-or-3 gadget comes in
the form of a double 0-or-3 gadget, which is the only one required for the reduction from graph
orientation (since they are only used in pairs to set the variables). The orientation of the trominoes
represents the directedness of the edge. For example, in the edge gadget below, it is easy to check
that exactly one of the grid squares outside the large square will be filled. An exact packing will
only be possible if we can satisfy the corresponding graph orientation problem. We omit the full
details of the casework.

Packing L Trominoes into Polygon
[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

edge gadget

Packing L Trominoes into Polygon
[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

crossover

Packing L Trominoes into Polygon
[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

1-in-3

double 0-or-3

2-in-3

6.2 Packing I-Trominoes into a Polygon

We follow the same techniques as for packing L-Trominoes, and construct the necessary gadgets
as below. The bend in the edge gadget is to ensure that only two parities exist (if we just used
I shapes in a line, we could have a missing block on one end and a protrusion of 2 blocks on the
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other end). Other than that, the construction is similar to that of the L-Tromino case.

Packing I Trominoes into Polygon
[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]
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edge gadget

Packing I Trominoes into Polygon
[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]
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7 Linear Layout and Crossings

7.1 What is linear layout?

A linear layout of a graph G with vertices V and edges E is a bijection of its vertices to the set
{1, 2, ...|V |}. These numbers 1 through |V | correspond to |V | points on a number line in order.
The edges of G are then drawn between the points on the line according to the bijection, and
some metric is computed upon the resulting figure. Problems in the linear layout family deal with
optimizations or decisions about this metric.

7.2 Linear Layout Variants

There are many problems that can be described as linear layout, a collection of which can be found
in a survey by Diaz, Petit, and Serna from 2002 [4]. These overarching types of linear layout
problems are described here.
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[Díaz, Petit, Serna 2002]

• Bandwidth - Let the points be laid out on a number line so that the distance between con-
secutive points is a unit length. Minimize the maximum length of any edge between two
points. This problem is motivated by the concept of bandwidth in linear algebra. In linear
algebra, matrices whose nonzero values are all in a thin band around the main diagonal are
much easier to manipulate and, if they represent a system of linear equations, easier to solve.
Permuting the columns and rows of an adjacency matrix is analogous to permuting the points
on a linear layout. Bandwidth problems are hard even for very constrained graphs, such as
trees of maximum degree 3 and caterpillars.

• MinLA - Short for minimum linear arrangement, the goal in this problem is to minimize the
sum of the edge lengths (as opposed to the maximum edge length, as in bandwidth). MinLA
problems are motivated by VLSI chip design.

• Cut width - Let the size of a cut in a linear layout be the number of edges with one endpoint
at i or less and the other endpoint at i + 1 or more, for some i. Minimize the maximum size
of any cut. Note that attempting to minimize the sum of the cuts is identical to minLA.

• Vertex separation - This problem is similar to cut width, except that we consider the vertex
separation of a cut, which is the number of vertices that have at least one edge crossing the
cut. We aim to minimize the maximum vertex separation of any cut.

• Sum cut - This problem uses the same setup as vertex separation. The only difference is that
we aim to minimize the sum of the cuts instead.

• Edge bisection - Minimize the number of edges that cross the middle cut.

• Vertex bisection - Minimize the number of vertices in the left half with edges to the right half.
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• Betweenness - This problem is not posed in a graph-based way. Instead, you are given a list
of rules of the form ”y is between x and z,” meaning that either ”x < y < z” or ”z < y < x”.
The goal is to impose a total ordering (like a linear layout of all the symbols) that satisfies
all the rules. This problem was originally posed by Opatrny in 1979 [11].

7.3 MinLA and Bipartite Crossing Number

We now turn to a different problem, that of determining the crossing number of a graph. The
crossing number of a graph is a metric somewhat related to planarity. It is defined as the mini-
mum number of crossings between edges (excluding edges that meet at vertices) over all drawings
of the graph in 2 dimensions. We will show this problem is NP-Hard using a two-step reduction
from the MinLA variant of linear layout. The entire reduction that follows is due to Garey and
Johnson [6].

First, we introduce an intermediate problem, bipartite crossing number. In this problem, we are
given a bipartite graph, and we must arrange its vertices on two parallel straight rails (one rail
per part) in order to minimize the number of crossings of edges. The edges pass outside the area
between the two rails. We reduce from MinLA as follows.

Given a MinLA problem G with vertices V = {v0, . . . vm} and edges E, we first duplicate the
vertices. Create a v′i for each vi. Now, we modify the edges so that they run between a point and
its duplicate version instead. If an edge originally ran between vi and vj for i < j, modify it to
instead connect vi and v′j . This transforms the MinLA graph into a bipartite graph. Lastly, we
attach large bundles of B parallel edges between vi and v′i for each i (B is some number larger than
(|V | + |E|)2). This prevents rearrangement of the vertices between rails: the order of the original
vertices must be the same as the order of the new vertices (if two vertices were rearranged, we
would get B2 crossings from the bundles alone).
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Bipartite Crossing Number
[Garey & Johnson 1983]

𝐸𝐸 2

Now consider the number of crossings of an original edge. The number of bundles it crosses is
exactly one less than the length of the edge in a linear layout with the same order on the vertices.
The crossings between original edges are negligible in comparison, since crossing one bundle adds
B crossings but the original edges can only cross each other |E|2 times. Since each bundle is the
same size and the number of edges is constant, minimizing the crossing number of this bipartite
graph also solves the original MinLA problem.

7.4 Bipartite Crossing Number and General Crossing Number

Finally, we reduce from the intermediate problem of bipartite crossing number to the problem of
crossing number in the case of general graphs. This reduction was introduced in the same paper as
the one in the previous section [6].

Clearly, a bipartite graph is an example of a general graph, so all we have to do is impose some
additional structure on the bipartite graph to mimic the ’two rails’ condition from the bipartite
crossing number problem. To do so, add two ’bounding’ vertices X and Y (the top and bottom
vertices in the following diagram). Connect X to the first part of the bipartite graph using large
bundles, and connect Y to the other part. Then connect X and Y to each other using large bundles
twice. Large bundles should be significantly larger than B (B4 is probably safe, but smaller numbers
may work as well). Then, the drawing of the bipartite graph is forced as shown.
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Crossing Number is NP-Complete
[Garey & Johnson 1983]

3𝑘𝑘 + 1

Having reduced from MinLA, which is NP-hard, to crossing number, we see that finding the crossing
number of a graph in general must also be NP-hard.

8 Solving Rubik’s Cubes

We briefly mention two results regarding Rubik’s Cubes here.
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8.1 Faster solving

How To Solve Rubik’s Cube Faster
[Demaine, Demaine, Eisenstat, Lubiw, Winslow 2011]

• Kill Θ log 𝑛𝑛 birds with Θ 1 stones
• Look for cubies arranged in a grid

that have the same solution sequence
 𝑋𝑋 × 𝑌𝑌 grid can be solved in Θ 𝑋𝑋 + 𝑌𝑌 moves

instead of the usual Θ 𝑋𝑋 ⋅ 𝑌𝑌 moves
 Can always find Θ log𝑛𝑛 -factor savings like this

Demaine et al. determined an O( n2

logn) algorithm for solving a Rubik’s Square, which is a n by n
by 1 variant of a Rubik’s Cube [2]. On a high level, this is done by identifying Θ(log n) ’cubies’
(single faces) that can be solved with the same solution sequence. In the above figure, the four
circled cubies can be solved simultaneously by a vertical flip on those two columns, followed by a
horizontal flip on those two rows, then another vertical and horizontal flip. Demaine et al. showed
that they can always find such a set of cubies to solve as a batch, thus providing a Θ(log n) factor
of savings.
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8.2 Hardness of optimal solving

How To Solve Rubik’s Cube Faster
[Demaine, Demaine, Eisenstat, Lubiw, Winslow 2011]

• Kill Θ log 𝑛𝑛 birds with Θ 1 stones
• Look for cubies arranged in a grid

that have the same solution sequence
 𝑋𝑋 × 𝑌𝑌 grid can be solved in Θ 𝑋𝑋 + 𝑌𝑌 moves

instead of the usual Θ 𝑋𝑋 ⋅ 𝑌𝑌 moves
 Can always find Θ log𝑛𝑛 -factor savings like this

In the same paper [2], Demaine et al. also showed that if you only care about a subset of the
stickers on a Rubik’s Cube, solving it is NP-Hard. The reduction is from betwenness (recall that
betweenness is a problem related to linear layout in which you must order some objects according
to rules of the form ”y is between x and z). In the above figure, the first time column x2 is flipped
must be between the first flips of x1 and x3. The details of the reduction are not reproduced here.

It remains an open problem whether finding the optimal solution is hard if all cubies are important
(this question was posed by Andy Drucker and Jeff Erickson in 2010 on the StackExchange forum
at http://cstheory.stackexchange.com/questions/783).
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