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Games and Equilibria

1/2

1/2

1/2

A pair of randomized 
strategies so that no player 
has incentive to deviate if 
the other stays put.

Equilibrium:

[von Neumann ’28]: It always exists in two-player zero-sum games.

Kick
Dive

Left Right

Left 1 , -1 -1 , 1

Right -1 , 1 1, -1
Penalty Shot Game

1/2

⇐ Strong LP duality
+ equilibrium can be computed in poly-time with Linear Programming



[Nash ’50]: An equilibrium exists in every game.

1/2

1/2

2/5

A pair of randomized 
strategies so that no player 
has incentive to deviate if 
the other stays put.

Equilibrium:Kick
Dive

Left Right

Left 2 , -1 -1 , 1

Right -1 , 1 1, -1

3/5

no proof using LP duality known
no poly-time algorithm known, despite intense effort

Games and Equilibria
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Brouwer’s Fixed Point Theorem

f

[Brouwer 1910]: Let f : D       D be a continuous function from 
a convex and compact subset D of the Euclidean space to itself. 

Then there exists an  x s.t.  x = f (x) .

N.B. All conditions in the statement of the theorem are necessary.

closed and bounded

D D

Below we show a few examples, when D is the 2-dimensional disk.



fixed point

Brouwer’s Fixed Point Theorem



fixed point
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fixed point

Brouwer’s Fixed Point Theorem



Brouwer ⇒ Nash



 ƒ: [0,1]2 →[0,1]2, continuous
such that

fixed points ≡ Nash eq.

Kick
Dive

Left Right

Left 1 , -1 -1 , 1

Right -1 , 1 1, -1

Visualizing Nash’s Proof

Penalty Shot Game
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ƒ: [0,1]2 →[0,1]2, cont.
such that

fixed point ≡ Nash eq.

Kick
Dive

Left Right

Left 1 , -1 -1 , 1

Right -1 , 1 1, -1

Penalty Shot Game

0 1
0

1

Pr[Right]
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]
fixed point
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½

½

Visualizing Nash’s Proof
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Sperner’s Lemma (2-D)



legal 
boundary 
coloring

Sperner’s Lemma (2-D)



[Sperner 1928]: If the boundary is legally colored (and regardless 
how the internal nodes are colored), there exists a tri-chromatic 
triangle. In fact, an odd number of them.

legal 
boundary 
coloring

Sperner’s Lemma (2-D)



[Sperner 1928]: If the boundary is legally colored (and regardless 
how the internal nodes are colored), there exists a tri-chromatic 
triangle. In fact, an odd number of them.

Sperner’s Lemma (2-D)

legal 
boundary 
coloring



Sperner ⇒ Brouwer



Given f : [0,1]2 → [0,1]2

1. For all ε, existence of approximate fixed point |f(x)-x| < ε, can 
be shown via Sperner’s lemma. 
2. Then use compactness. 

For 1: Triangulate [0,1]2, 

Sperner ⇒ Brouwer
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Sperner ⇒ Brouwer
Given f : [0,1]2 → [0,1]2

1. For all ε, existence of approximate fixed point |f(x)-x| < ε, can 
be shown via Sperner’s lemma. 
2. Then use compactness. 

For 1: Triangulate [0,1]2, 
then color points according 
to the direction of f (x)-x.
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SPERNER

y

2n

2n

x
C

(i) Grid of side 2n:

(ii) Suppose boundary has standard coloring, and colors of 
internal vertices are given by a circuit:

input: the 
coordinates 
of a point
(n bits each)

INPUT:

OUTPUT: A tri-chromatic triangle.



NASH
INPUT: (i) A Game defined by 

- the number of players n;
- an enumeration of the strategy set Sp of every player p = 1,…, n;

- the utility function                         of every player.

OUTPUT:

(ii) An approximation requirement ε

An  ε-Nash equilibrium of the game.  
i.e. the expected payoff of every player is within additive ε
from the optimal expected payoff given the others’ strategies

* Approximation: Already in 1951, Nash provides a 3-player game whose 
unique equilibrium is irrational. This motivates our definition of the 
problem in terms of approximation.

** 2-player Games: 2-player games always have a rational equilibrium of 
polynomial description complexity in the size of the game. So we can 
also define the exact NASH problem for 2-player games.



Function NP (FNP)

A search problem L is defined by a relation RL ⊆ {0,1}* × {0,1}*

such that (x, y) ∈ RL iff y is a solution to x

A search problem L ∈ FNP iff there exists a poly-time algorithm AL(⋅, ⋅) 
and a polynomial function pL( ⋅ ) such that

(ii) ∀ x: ∃ y s.t. (x, y) ∈ RL ⇒ ∃ z with |z| ≤ pL(|x|) s.t.  (x, z) ∈ RL

(i) ∀ x, y:             AL(x, y)=1 ⇔ (x, y) ∈ RL

A search problem is called total iff ∀ x. ∃ y such that (x, y) ∈ RL.

TFNP = {L ∈ FNP | L is total}

SPERNER, NASH, BROUWER ∈ FNP.



FNP-completeness

A search problem L ∈ FNP, associated with AL and pL , is poly-time 
(Karp) reducible to another problem L’ ∈ FNP, associated with AL’
and pL’, iff there exist efficiently computable functions f, g such that

(i) f : {0,1}* → {0,1}* maps inputs x to L into inputs f(x) to L’

∀ x,y: AL’ (f(x), y)=1 ⇒ AL(x, g(y))=1
∀ x: AL’ (f(x), y)=0, ∀ y ⇒ AL(x, y)=0, ∀ y

(ii) 

A search problem L is FNP-complete iff

L’ is poly-time reducible to L, for all L’ ∈ FNP
L ∈ FNP

e.g. SAT

can’t reduce SAT to 
SPERNER, NASH 

or BROUWER



A Complexity Theory of Total Search 
Problems ? ??



100-feet overview of our methodology:

1. identify the combinatorial argument of existence, responsible for 
making these problems total;

2. define a complexity class inspired by the argument of existence;

3. make sure that the complexity of the problem was captured as tightly 
as possible (via completeness results).

A Complexity Theory of Total Search 
Problems ?
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[Sperner 1928]: If the boundary is legally colored (and regardless 
how the internal nodes are colored), there exists a tri-chromatic 
triangle. In fact, an odd number of them.

Proof of Sperner’s Lemma



[Sperner 1928]: If the boundary is legally colored (and regardless 
how the internal nodes are colored), there exists a tri-chromatic 
triangle. In fact, an odd number of them.

Proof of Sperner’s Lemma

1. We introduce 
an artificial 

tri-chromatic
triangle.

2. We define a 
directed walk 

starting from the 
artificial triangle.



Transition Rule: If  ∃ red - yellow door cross it
keeping yellow on your left hand.

?

1

2

Set of Triangles

Proof of Sperner’s Lemma



!

[Sperner 1928]: If the boundary is legally colored (and regardless 
how the internal nodes are colored), there exists a tri-chromatic 
triangle. In fact, an odd number of them.

Proof of Sperner’s Lemma

1. We introduce 
an artificial 

tri-chromatic
triangle.

2. We define a 
directed walk 

starting from the 
artificial triangle.

Claim: The walk 
cannot exit the 
square, nor can it 
loop into itself.

Hence, it must stop 
somewhere inside. 
This can only happen 
at tri-chromatic 
triangle…
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A directed parity argument

Vertices of Graph ≡ Triangles
all vertices have in-degree, out-degree ≤ 1

Proof:  ∃ at least one trichromatic (artificial one)

degree 1 vertices: trichromatic triangles
degree 2 vertices: no blue, non-trichromatic
degree 0 vertices: all other triangles

 ∃ another trichromatic

...
Artificial 

Trichromatic



The Non-Constructive Step

A directed graph with an unbalanced node (a node with indegree ≠
outdegree) must have another.

An easy parity lemma:

But, wait, why is this non-constructive?

Given a directed graph and an unbalanced node, isn’t it trivial 
to find another unbalanced node?

The graph can be exponentially large, but has succinct description…



The PPAD Class [Papadimitriou ’94]

Suppose that an exponentially large graph with vertex set {0,1}n is defined by 
two circuits:

P

N

node id

node id

node id

node id

END OF THE LINE: Given P and  N: If 0n is an unbalanced node, find 
another unbalanced node. Otherwise output 0n.

PPAD = { Search problems in FNP reducible to END OF THE LINE }

possible previous

possible next



{0,1}n

...
0n

= solution

END OF THE LINE

⇔
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Inclusions that are easy to establish:

[Daskalakis-Goldberg-Papadimitriou’06]:



PPAD-Completeness of NASH

...
0n

Generic PPAD

Embed PPAD 
graph in [0,1]3

3D-SPERNER
NASH

[Daskalakis, Goldberg, Papadimitriou’06]

∨
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ARITHMCIRCUITSAT
INPUT: A circuit comprising: 

- variable nodes v1,…, vn

- gate nodes g1,…, gm  of types:     ,       ,       ,       ,       ,      

- directed edges connecting variables to gates and gates to 
variables (loops are allowed); 

- variable nodes have in-degree 1; gates have 0, 1, or 2 inputs 
depending on type as above; gates & nodes have arbitrary fan-out 

OUTPUT: Values v1,…, vn ∈ [0,1] satisfying the gate constraints:

-+:= xa >a

multiply by constant :
set equal to a constant :

subtraction :

addition :

assignment :

1 2 1 2

c

>½

a

:=

b

1 2

[Daskalakis, Goldberg, Papadimitriou’06]



Comparator Gate Constraints

any value is allowed



ARITHMCIRCUITSAT (example)

Satisfying assignment?

c

>½

a

:=

b

a = b = c = ½ 

1 2



ARITHMCIRCUITSAT

OUTPUT: An assignment of values v1,…, vn ∈ [0,1] satisfying:
:=

-

+

a

xa

>

INPUT: A circuit comprising: 
- variable nodes v1,…, vn

- gate nodes g1,…, gm  of types:     ,       ,       ,       ,       ,      

- directed edges connecting variables to gates and gates to 
variables (loops are allowed); 

- variable nodes have in-degree 1; gates have 0, 1, or 2 inputs 
depending on type as above; gates & nodes have arbitrary fan-out 

-+:= xa >a

1 2 1 2

[DGP’06]: but is PPAD-complete to find

[Daskalakis, Goldberg, Papadimitriou’06]

[DGP’06]: Always exists satisfying assignment!



PPAD-Completeness of NASH

...
0n

Generic PPAD

Embed PPAD 
graph in [0,1]3

3D-SPERNER
NASH

[Daskalakis, Goldberg, Papadimitriou’06]

∨

:=

∧

¬

-+

xa

>

ARITHMCIRCUITSAT



APPROXIMATE-ARITHMCIRCUITSAT

OUTPUT: An assignment of values x1,…, xn ∈ [0,1] satisfying:
:=

-

+

a

xa

>

[Chen, Deng, Teng’06]
INPUT: 1. A circuit comprising: 

- variable nodes x1,…, xn

- gate nodes g1,…, gm  of types:     ,       ,       ,       ,       ,      

- directed edges connecting variables to gates and gates to 
variables (loops are allowed); 

- variable nodes have in-degree 1; gates have 0, 1, or 2 inputs 
depending on type as above; gates & nodes have arbitrary fan-out 

-+:= xa >a

1 2 1 2

2. ε=1/(n+m)γ, for some given γ>0

[CDT’06]: still PPAD-complete to find
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PPAD-completeness of:
- Nash, Market Equilibrium, 
- Fractional Hypergraph matching, Scarf’s Lemma

Other existence arguments: PPA, PPP, PLS

NEXT TIME:
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