Problem Set 2

This problem set is due Wednesday, September 28 at noon.

- 1. Prove that any undirected planar graph G with non-negative edge weights can be transformed into an undirected planar graph G' with maximum degree 3 such that,
 - for any $u, v \in V(G)$, $d_G(u, v) = d_{G'}(f(u), f(v))$, where $f : V(G) \to V(G')$ maps vertices between G and G'; and
 - |V(G')| = O(|V(G)|).

Solution: We replace each node u of degree d by a cycle C_u on d nodes. Each edge uv is represented by (1) one node c_{uv} on the cycle C_u , (2) one node c_{vu} on the cycle C_v , and (3) an edge $c_{uv}c_{vu}$. The edge $c_{uv}c_{vu}$ is assigned the weight of uv. The edges on the cycle have zero weight. f maps any node u to an arbitrary node of C_u . Shortest-path distances are maintained. For each edge we introduce two nodes. The number of nodes in G' is thus O(|E(G)|) = O(|V(G)|).

2. A ρ -clustering of G is a decomposition into $O(n/\rho)$ vertex-disjoint connected pieces, each with $\Theta(\rho)$ vertices. Recall that a ρ -clustering, if computed efficiently, can be used to compute an r-division in $o(n \log n)$ time. Give a linear-time algorithm to compute a ρ -clustering for any connected graph with maximum degree three.

Solution: This solution is also described in a paper by Greg N. Frederickson entitled "Data structures for on-line updating of minimum spanning trees" (SICOMP 1985).

We begin with computing any spanning tree T of G. Note that T has maximum degree three. Starting from an arbitrary leaf of T, we traverse T in *depth-first order*. The following recursive procedure CSEARCH, called for a vertex v, generates clusters of size between ρ and $2\rho - 1$ and (potentially) returns one "remainder" set of size $< \rho$.

CSEARCH(v)

- $C := \{v\}$
- FOR EACH child w of v DO: $C := C \cup \text{CSEARCH}(w)$
- If $|C| < \rho$: Return C
- Else: Output C and Return \emptyset

In the end, we create the union of the last cluster output with the set returned by CSEARCH to ensure that all the clusters have size at least ρ .

Clusters form connected components (they are connected in T). Since we started at a leaf and since T has degree at most three, each vertex has at most two children. CSEARCH returns sets of size $\leq \rho - 1$. At any node u with children v and w, the union of $\{u\}$, CSEARCH(v), and CSEARCH(w) has size at most $2\rho - 1$. The final cluster may consist of the union of a set of size $\leq \rho - 1$ and a cluster of size $\leq 2\rho - 1$, which has total cardinality $3\rho - 2$. As a consequence, clusters have sizes between ρ and $3\rho - 2$.