Problem Set 2

This problem set is due Wednesday, September 28 at noon.

- 1. Prove that any undirected planar graph G with non-negative edge weights can be transformed into an undirected planar graph G' with maximum degree 3 such that,
 - for any $u, v \in V(G)$, $d_G(u, v) = d_{G'}(f(u), f(v))$, where $f: V(G) \to V(G')$ maps vertices between G and G'; and
 - |V(G')| = O(|V(G)|).
- 2. A ρ -clustering of G is a decomposition into $O(n/\rho)$ vertex-disjoint connected pieces, each with $\Theta(\rho)$ vertices. Recall that a ρ -clustering, if computed efficiently, can be used to compute an r-division in $o(n \log n)$ time. Give a linear-time algorithm to compute a ρ -clustering for any graph with maximum degree three.