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Single-Source Shortest Path (SSSP) Problem: given a graph G = (V,E) and a source vertex s ∈ V , compute
shortest-path distance dG(s, v) for each v ∈ V (and encode shortest-path tree)

Multiple-Source Shortest Path (MSSP) Problem: given a graphG = (V,E) and a source set S ⊆ V , compute
shortest-path distance dG(s, v) for some (s, v) ∈ S×V (and encode shortest-path trees rooted at each s ∈ S)

Assumption (all of Lecture 11) planar G (extends to bdd. genus), non-negative edge lengths ` : E → R+

Straightforward SSSP for each source s ∈ S, time and encoding size O(|S| · n)

This Lecture if all s ∈ S on single face f , time and encoding size O(n log n) (independent of |S| / face size!)

Why? one important application: all-pairs shortest paths between boundary nodes of a piece in r–division.
requires only time O(r log r) (instead of O(r3/2))

How? Main Idea compute one explicit shortest-path tree rooted at a root ri ∈ f , then modify tree to obtain
shortest-path tree rooted at neighbor ri+1 ∈ f . tree changes: some edges not in tree anymore, some new
edges join.
modify using dynamic trees, each modification can be done in time O(log n)

• how many modifications?

• which edges to modify?
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How many modifications?

Claim. Going around the face f , for each edge e ∈ E:

• e joins the tree at most once and

• e leaves the tree at most once.

total of at most 2|E| modifications, each takes time O(log n) overall running time O(n log n)

Figure 1: Roots whose shortest-path trees contain dart d form an interval. Pf. by contradiction. Assume
unique shortest paths. Suppose d is in r1– and r3–rooted SP trees but neither in r2– nor r4–rooted SP tree. If
shortest r1–to–v and r3–to–v paths do use d but shortest r2–to–v and r4–to–v paths do not use d, one of the
latter paths must cross one of the former (planarity). Let u denote a vertex where they cross. Since P1 ◦ d is
shortest u–to–v path, its length is shorter than that of P2, which implies that d must be in r2–rooted SP tree,
a contradiction.

Recall: Dynamic Trees

the following operations can be implemented in O(log n) amortized time

primal: need four operations of Euler-Tour trees

• CUT(e) removes edge e from forest

• JOIN(e) adds edge e, joins two trees

• GETVALUE(v) returns root distance dT (r, v)

• ADDSUBTREE(∆, x) increases distances in
subtree of x by ∆

dual: need four operations of link-cut trees / top trees

• CUT(e) removes edge e from forest

• JOIN(e) adds edge e, joins two trees

• MAXPATH(π) finds edge with maximum tension
(to be defined)

• ADDPATH(∆, π) adds ±∆ to tension of edges in π

2



Which edges enter the tree?

Tension for an edge uv define its tension t(uv) = dT (r, v)− `(uv)− dT (r, u), where T is a tree rooted at r.
edge is tense if t(uv) > 0 (shorter path to v via node u). if no tense edge uv ∈ T then T is shortest-path tree.

Idea maintain tension for every non-tree edge (recall: non-tree edges form interdigitating tree). gradually
move from old root ri to new root ri+1. blue nodes: already “under” ri+1, no change; red nodes: not yet.
changing tension: edges in fundamental cycle in (G \ Ti)∗ defined by (riri+1)∗

primal dual
let D = dTi(ri, ri+1) (which is `(ri, ri+1) if riri+1 ∈ Ti; shorter otherwise — assume riri+1 ∈ Ti).
let T = Ti. let π∗ = π(f1f∞) (path in fundamental cycle).

• edge uv with max. tension (found in dual),
let t(uv) = ∆

• (uv)∗:=MAXPATH(π∗)

IF ∆ 6 D: move root from ri to ri+1 by ∆ (decrease D by ∆)

• ADDSUBTREE(ri,∆)

• ADDSUBTREE(ri+1,−∆)

• ADDPATH(π∗,±2∆)

delete u′v ∈ T from T . add uv to T .

• CUT(u′v)

• JOIN(uv)

(some red nodes are now blue)

• CUT((uv)∗) (cannot change anymore)

• JOIN((u′v)∗)

(fundamental cycle and π∗ changed)

Figure 2: Tension of the edges in the fundamental cycle in (G \ Ti)∗ defined by f∞f1 = (riri+1)∗ changes.
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Query data structure

Multiple-Source Shortest Path (MSSP) Data Structure: given planar G and face f∞, preprocess into data
structure of size O(n log n) such that queries dG(r, v) for r on f∞ and v ∈ V (G) can be answered in O(log n)

Main Idea GETVALUE(v) of Euler Tour tree returns root distance dT (r, v). we did compute T during prepro-
cessing. need to efficiently recover the right T at query time  can be done using persistent data structure,
“remember” all changes made to dynamic tree, recover any state of the data structure

r–division with O(1) “holes” per piece

Application all-pairs shortest paths between boundary nodes of a piece in r–division. using MSSP: requires
only time O(r log r) (instead of O(r3/2))

Need boundary nodes on O(1) faces! let holes of a piece be internal faces containing boundary nodes

Lemma. For planarG, an r–division with O(1) holes per piece can be computed in time O(n log r+nr−1/2 log n).

Idea interleave separator steps: in odd steps, separate nodes, in even steps, separate holes
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