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Single-Source Shortest Path (SSSP) Problem: given a graph G = (V, E') and a source vertex s € V, compute
shortest-path distance dg (s, v) for each v € V' (and encode shortest-path tree)

Multiple-Source Shortest Path (MSSP) Problem: given a graph G = (V, E') and a source set S C V, compute
shortest-path distance dg (s, v) for some (s,v) € S x V (and encode shortest-path trees rooted at each s € S)

Assumption (all of Lecture 11) planar G (extends to bdd. genus), non-negative edge lengths £ : £ — R+
Straightforward SSSP for each source s € S, time and encoding size O(|S| - n)
This Lecture if all s € S on single face f, time and encoding size O(n logn) (independent of |S| / face size!)

Why? one important application: all-pairs shortest paths between boundary nodes of a piece in r—division.
requires only time O(rlogr) (instead of O(r*/?))

How? Main Idea compute one explicit shortest-path tree rooted at a root r; € f, then modify tree to obtain
shortest-path tree rooted at neighbor r;;1 € f. tree changes: some edges not in tree anymore, some new
edges join.

modify using dynamic trees, each modification can be done in time O(logn)

e how many modifications?

e which edges to modify?
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How many modifications?

Claim. Going around the face f, for each edge e € E:
e ¢ joins the tree at most once and
e ¢ leaves the tree at most once.

total of at most 2|FE| modifications, each takes time O(logn) ~~ overall running time O(nlogn)
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Figure 1: Roots whose shortest-path trees contain dart d form an interval. Pf. by contradiction. Assume
unique shortest paths. Suppose d is in 71— and r3-rooted SP trees but neither in ro— nor r4—rooted SP tree. If
shortest r1—to—v and r3—to—v paths do use d but shortest r,—to—v and r4—to—v paths do not use d, one of the
latter paths must cross one of the former (planarity). Let u denote a vertex where they cross. Since P; o d is
shortest u—to—v path, its length is shorter than that of P, which implies that d must be in r,—rooted SP tree,
a contradiction.

Recall: Dynamic Trees
the following operations can be implemented in O(logn) amortized time

primal: need four operations of Euler-Tour trees  dual: need four operations of link-cut trees / top trees
e CuUT(e) removes edge e from forest e CuUT(e) removes edge e from forest

e JOIN(e) adds edge e, joins two trees

JOIN(e) adds edge e, joins two trees

e GETVALUE(v) returns root distance dr(r,v)

MAXPATH(7) finds edge with maximum tension

) . . (to be defined)
e ADDSUBTREE(A,x) increases distances in

subtree of x by A

ADDPATH(A, ) adds +A to tension of edges in 7



Which edges enter the tree?

Tension for an edge uv define its tension ¢(uv) = dr(r,v) — £(uv) — dr(r,u), where T is a tree rooted at r.
edge is tense if t(uv) > 0 (shorter path to v via node w). if no tense edge uv € T then T is shortest-path tree.

Idea maintain tension for every non-tree edge (recall: non-tree edges form interdigitating tree). gradually
move from old root r; to new root ;. 1. blue nodes: already “under” r;, 1, no change; red nodes: not yet.
changing tension: edges in fundamental cycle in (G \ T;)* defined by (r;r;41)*

| primal dual
let D = dr,(r;,mi41) (which is £(r;, 7;41) if ;741 € T;; shorter otherwise — assume r;7;41 € T;).
let T =1T;. let 7* = 7(f1f) (path in fundamental cycle).
e edge uv with max. tension (found in dual), o (uv)*:=MAXPATH(7*)
let t(uwv) = A

IF A < D: move root from r; to r;11 by A (decrease D by A)

ADDSUBTREE(r;, A) e ADDPATH(7*,+2A)

ADDSUBTREE(7;41, —A)

delete v'v € T from T. add uv to T.

e CUT(u'v) e CUT((uv)*) (cannot change anymore)
e JOIN(uv) e JOIN((u'v)*)
(some red nodes are now blue) (fundamental cycle and 7* changed)

Figure 2: Tension of the edges in the fundamental cycle in (G \ T;)* defined by f f1 = (r;r;4+1)* changes.



Query data structure

Multiple-Source Shortest Path (MSSP) Data Structure: given planar G and face f.,, preprocess into data
structure of size O(nlogn) such that queries dg(r, v) for r on f, and v € V(G) can be answered in O(log n)

Main Idea GETVALUE(v) of Euler Tour tree returns root distance dr(r, v). we did compute T during prepro-
cessing. need to efficiently recover the right T' at query time ~~ can be done using persistent data structure,
“remember” all changes made to dynamic tree, recover any state of the data structure

r—division with O(1) “holes” per piece

Application all-pairs shortest paths between boundary nodes of a piece in r—division. using MSSP: requires
only time O(rlogr) (instead of O(r*/2))

Need boundary nodes on O(1) faces! let holes of a piece be internal faces containing boundary nodes

Lemma. For planar G, an r—division with O(1) holes per piece can be computed in time O(n log r+nr='/?logn).

Idea interleave separator steps: in odd steps, separate nodes, in even steps, separate holes
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