
Oct. 17,2011 6.889 Leture 10 [OFHT 65] Bidimens, and ity 101: Supexperior that Parameterizal Algorithms, in Planar and H-minor-free graphs general
1.28 k H-mina-fre apex-minorfre 20(5K) 200m) vertex cever 3. 3 K Leedbuck vertex set k-path 3.72 K mux lenf spanning tree (ir) 2 K converted vetex over 2 005 m) [eas;] WCI)-hard independent set " [nitt bg W(2)-hard dominating set " [FLST 12] WC2-hard connected claminating set 11 All blue results via bidimensionality/ Common algorithmic idea: -check thee width - if small - easy - if lage?

- suse existence of a certificate In

lage trevidth

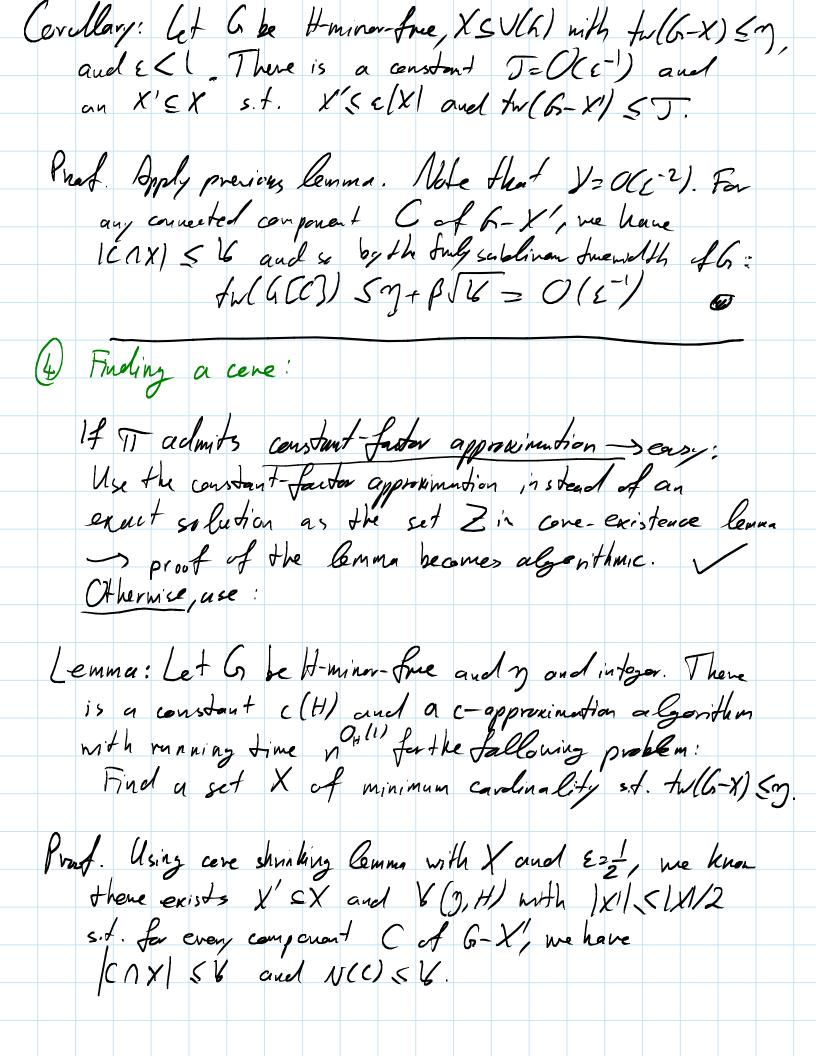
	1																		
4	pub	lem	T	Γ,	15	min	ev -	pide	men	3	al a	if							
		<i>i</i> / ₅	val	ve	doe	s n	at i	nci	reas	e h	her	r den	kin	j h	u'ne	ers.			
		4	v ale	,	٩	<i>L</i>	0	'. <i>I</i>	\cap	10	2]		,	1 1	,	. /			
		4														d.			
A	puh	lem	T	ı îs		en t	rect	l'en.	نرط	Line	15,00	rul	i ŧ	0					
	_ ,· /	3 hz	alu		dre.	n	, لر	inci	reas	e h	ka	, Ce	ndn	ret	12	de	25		
	_ id	3 Y	ulu	e ,	' 's	a t	lea	s + _	[[(l')	on	the	gr	aph	1	e'.			
													_						
7	hear	чm	: <i>(</i>	En	e v	m ₁	hur-	bio	lim	ensi	mal	(Cons	home	hian	b,'e	line	u i on	al/
	her	שו	llen	1	ern	be	Sol	lve	1 12	ı tiv	ne,	200	JE)	h	01	_	al	2	
	<u>l</u>	t-n elve	nin	er -	fue	(ap	ex-	mi'n	ov-	hee) g	اورسا	hs	if i	<i>+</i>	Can	be	
	5	elve	d	iu	di'u	w	2	0 (E,	h	00	7	hque	1 6	4	dre	emb	114	ϵ	•
					-												-	-	
5	OWN	a, i	LeN _	h.'a	lime	M & 1'0	,, ,, /	,	be	, , , , , , , ,	· \4	وملدر		4.647	1			00.	/
	ony	f_{ℓ}	max	·le	al.	h-	vat	6			VC				04		ach	ven	E
		/		V-	'	1													
5	cme	con	4m	chia	-	b, d,	men	s i o	al	pn	bler	t S .'	d	mi	nads	12	set,		
	v-d															_/_	1,	erf	~
	Cone			1	/	1 L	L 4	_	/	1		□ 1.		1. 1					

Bidimensionality and EPTAS [here: FLKS'1), firstiden: OH'OS Let 6 be an H-minor-free graph, To a minor-bidimens ward pullen, OPT an aphinal salution to TT, in G of value k. (Same works for contraction bidin problem on apex minor face) Muin idea! () find a cove X SVG) for the problem of size O(k) st tw(G-X) is constant or depending on Tandlt (3) shrink the cove to a set X'EX of size Sc.k s.t. tw(G-X) is f(E). 3) calve publin (ova variant thereof) aptimally on G-X' 4) combine solution of G-X' with X' to obtain solution of Size & (1+c)k in G. reducibilité bidimension- (sepaintin)

property

preperty allen steps existence (core shrinking)
chacere app hor me tin aborithm for core Core (EPTAS) y-transversible

	an	idine	et 7 usion t be the	el p	ape	ew x/ g	wi.	th +	he	se _l	oar. is	n tie	en p	PT	enty		
	, fee	u nect	h ve	fex.	set,	ve.	Lex R	en Imit	ier, E,	mac PT H	x-le Is o	of:	span m,	mvuz			dhs
راب	demi	nating	compat sel, set,	r-do indep	min en de	hing	se:	thia	nnech uzle	par	den	i'nat	/inj			-	-
	Gute	nce of	Lac	one	('	<u> </u>	M, u	uv-	bid	Im.	, (S : }					
	para V	Tha	s Si	Ppam Of Of	tion pT(6.C.	upe A }) B}/	51	ert	T N	A/ B/	/ +0	O(1 ((s.	SI) (1)			
 >	solut.	bon the	not he	perty n e l o	e cel Aim	ller	3 u	, √	be be	OU W	l so	,'2e	Arc	grin	Line. Le	nl u s	


Lemma: Let G be a graph of treenable t, and w:V-> Ro be a weight function. Then Go has a separator 5 of size at most till, such that werey converted comparent C of G-S we have $w(V(c)) \leq w(v)$. ->ohderin separation (A, B, S), s. f. $w(v) - w(s) \leq w(A) \leq 2 \frac{w(v) - w(s)}{3}$ Lemma lexistence ta cone): [FLST 10]
For minor-bidin. IT with separation property and optimal solution value k as H-min- Lue G, we have: There is a subset S & VCG/ and a constant & such that 15/2 O(k) and tw (6-5) SE. Proved: minor-ladimensionality => tw(4) Sol Th (since ofherwise there would be a large grid and the solution value would be layer than h) -fix a sulution Zet size k and let w/v/=10 o. w. - find a separation (A, B, X) as in previous Burna - set S2SUX and recurse on GCA3 and GCB3. Let ZA be opt of G. (A) and ZB god of G (B). Note that by separation property 12/14/= 12/1 ± a(1x1) Hence 151=m(G, Z, h) < m(GCA), Z, b + dsh) + (dsht) + m (GCB), Z, 26, 26 + dsh) + (dsht) mesalves to O(h)

2) Truly sublinear treewolth of H-miner- Ine graphs: Commu: Let G be an H-minor-free graph and X SUG/ such that tw (G-X) Sy, where y is a constant There exists a constant $\beta(H,y)$ such that $f(G) \leq y + \beta \sqrt{|X|}$. Prof. Suppose not. Then Go contains a good-miner of
size (y+1) \[\sqrt{1\times 1\times 1} \times (y+1) \[\sqrt{1\times 1\times 1} \] Grantains at least Ist I disjoint (7+1) x (7+1) grids as a minor=> one of them is dospoint from X

-> tw(6-x1> y+1 & (3) Shripping a core: Lemma: Let G be tt minor-fine, VEVG) with tw6-4) En and E < 1 be given. There exist X' = X with 1x1 5 E/X1 and constant of such that every connected component Cut G-X has at most & neighbors in X' and contains at most & vetices of X Small & Brofidea: Clever choice of $V = O(E^{-2})$ If $|X| \le V$, set |X'' = U|. Otherwise

and find

balanced separation (A_1, B_1, S) . Since |X' = V' = U| |X' = V' = U| |X' = V' = U|Profidea: Clever choice of $V = O(E^{-2})$ |Y' = V' = U|Representation of |X' = U| |X' = V' = U| |X' = V' = U|Representation of |X' = U| |X' = V' = U| |X' = U' = U| |X' = V' = U| |X' = V'X=X'US and recure. Recursion magically nesolves to 1X'/ 5 E/X/!
See paper!

X is smallest set with tw/h-x/sy - there is a component Coff-X' with the > my Let Z=NC/. Then Z = X' and 1215 b and C is connected component of G-Z. Algerithia: Indialize S-1 Try ell (4) possibilities for Z to find a connected compensar t C of G-Z with tw>7. Note that two (CC3) = n + (154) (due to truly sublinea two f G)

-> salue poblem apprimally on C[C] and let Xe be solution Let S=SUXeUNCC). Repeat on G- (CUMCI) as long as its two y Let Ci, _ , Ce be the components Lowel by algorithm.

X must contain at least one vertex in each C;

- 1 (X1>C. _) () N(C;) | 5 × 1×1 Also for each C, /Xc/5/XAd=/UXc/5/X/ _s 15/ \(\(\lambda +1/) \(\lambda \)

References

- [DFHT05] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866–893, 2005.
- [DH05a] Erik D. Demaine and Mohammad Taghi Hajiaghayi. Bidimensionality: new connections between FPT algorithms and PTASs. In SODA '05: Proceedings of the 16th annual ACM-SIAM Symposium on Discrete Algorithms, pages 590–601, Philadelphia, PA, USA, 2005.
- [DH05b] Erik D. Demaine and MohammadTaghi Hajiaghayi. Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality. In SODA '05: Proceedings of the 16th annual ACM-SIAM Symposium on Discrete Algorithms, pages 682–689, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.
- [FGT09] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction bidimensionality: The accurate picture. In ESA '09: Proceedings of the 17th annual European Symposium on Algorithms, pages 706–717, 2009.
- [FLRS11] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimensionality and EPTAS. In SODA '11: Proceedings of the 22nd annual ACM-SIAM Symposium on Discrete Algorithms, pages 748–759, 2011.
- [FLST10] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimensionality and kernels. In SODA '10: Proceedings of the 21st annual ACM-SIAM Symposium on Discrete Algorithms, pages 503–510, 2010.
- [RST94] Neil Robertson, Paul Seymour, and Robin Thomas. Quickly excluding a planar graph. J. Comb. Theory Ser. B, 62(2):323– 348, 1994.