

Theore	m [HK	RS '9	7]:			
Griven	graph	Gwi	th max.	in/out-de	pree 2 (and
				e that sa		
				ا ۾		
flr,) 20	T(1,-1	XZV	1.1 (= 1	log Y	(米)
for al	l v; ex	ceeding	L 01 (01	nstant,		
						in lines time
A suital be consi	le line	ear-tin	ne recu	vsive di	vision C	an
-m11	nor-cl	used mall	Separe	tars -	O(n)	1-2]
	in lin	ear f	ime	tors—		
Catch	algo	rithmo	ulsu re	equires b	ounded	degree.
				luster		
			,			

Theorem LRW 09 bases/on AST 90]: Every proper minor-closed class of graphs admits a balanced separator of size O(n2/3) that can be found in linear time. What about bounded degree requirement? - easy for surface-embedded graphs - not possible for arbitrary H-minor-free graphs (laim: For every given kell, there exists a Ko-minor-free graph Gx that contains a vertex v such that for any permutation Tr, the graph resulting from splitting v according to The centains Kkas a minor. ___ see exercises/

P-clustering/ Knitted H-model H-Partition partition P= {P, ,..., Pt} of VG partition P= {P, ,..., Pt} of VG $t = O(n/p) \qquad \qquad t = O(n/p)$ 1Pil = O(P)
each part is connected 1P:1 = 0(P) bijection T: VIHI-3P | bijection T: VIHI-3P Vuv & E(H), there is an edge vuv & E(H), there is an edge between T(u) and T(u) in between every connected component of T(u) and every connected component of TT(V) in G contracting the parts gives Has a minor collopsing each part gives Has a miner

There is a linear-time algorithm that given a constant z and a graph Gexcluding Ke as a miner outputs on knited H-partition P2 {P1, ..., P3 of General IS is to whome Co=21+1.

Theorem [I. - Müller-Hannemann '09]:

There is a linear time algorithm that, given a Ke-minor-free graph G, finds an (F)-vecursive division of a that satisfies inequalify for all V; exceeding a constant.

Covallary: In every H-minor-free class of graphs, single-source shortest paths can be computed in linear time.

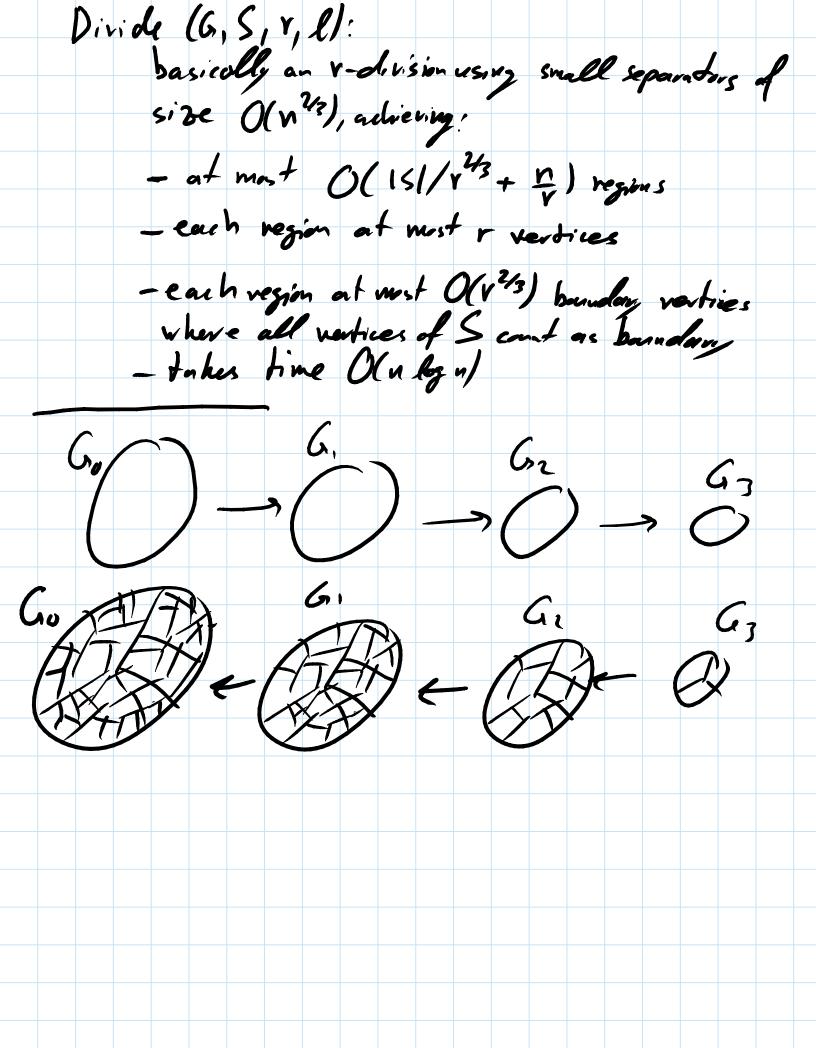
Greneralized Recursive Division Algorithm:

Input: Ke-minor-frae graph G 11 shrink the graph recursively let n=1V1, Go = G, zo = 2, i=0, While /V(Gi)/> n do $\begin{cases} k + G_{i,-1} = H - Partition(6,,2i,l), \\ k + Z_{i,-1} = 14 \\ I = i-1, \end{cases}$ Il build r-divisions in small graphs and exposed back to bigger amphs to obtain recursive division tree T let VG be the rest of Ti let DI 11 be the trivial division of GI, with single region for, i = I dounte O de for each region R of Dis, do let SK be the boundary vertices of R, let 1 p! = Divide (K, SR, 21, 8). for each region R'ef DR do

Expand R'into region R" of G; by expanding

every vertex; assign each boundary edge

to a region; create a child VR, ef v in T. let D. bes the de composition of Gi consisting of II add the leaves



Overview of	anulysi's		
- Percla 1988	ing of Oil	1 (1/22)	
and at	most $O(2, \frac{5/3}{3})$	boundary vert	ices.
,			
_ snow flum where	ber of regions k , in $n_1 = V(G_1) $ (re	n division Di	S(n, Z, Z)
- show alg	erithm runs in	livear time:	
- fin	re to form graphs G	6,, 6 _{I+1} : 0(2; V	$1/2: J = O(\alpha)$
- fime	to apply Divide to re O(nR log nR) = O(n)	gion K of Git, w.	th he vadices
ļ	rence ER O(np la	22:1) = 0 (Nix, &	2 Z _{i+1}
_ time	to obtain divisions	of all the G;	
	5,0(Min,log Zin)	$= \mathcal{E}, \mathcal{O}(\frac{n}{2} \cdot 2)$	(4) = O(4)
	since nin (ni/	2, < 4/2,	
- show inequ	and log Zin, = ()(2;)	
70		_ pup)	
+:00			0 (0
- fix	ed to achieve by an in-order to	vare is al of me	e for SSP
	ivision tree		
- cn	nduces a testal	circular order	on all edge,
- sp	late each vertex	to this order.	·

References

- [HKRS97] Monika R. Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster shortest-path algorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23, 1997. Previously appeared STOC '94: Proceedings of the 26th annual ACM Symposium on Theory of Computing, pp. 27–37, ACM Press.
- [RW09] Bruce Reed and David R. Wood. A linear-time algorithm to find a separator in a graph excluding a minor. *ACM Transactions on Algorithms*, 5(4):1–16, 2009.
- [Taz10] Siamak Tazari. Algorithmic Graph Minor Theory: Approximation, Parameterized Complexity, and Practical Aspects. PhD thesis, Humboldt-Universität zu Berlin, Berlin, Germany, 2010.

[TMH09] Siamak Tazari and Matthias Müller-Hannemann. Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation. *Discrete Applied Mathematics*, 157:673–684, 2009. An extended abstract appeared in WG '08: Proceedings of the 34th Workshop on Graph Theoretic Concepts in Computer Science, LNCS 5344, pp. 360–371, Springer, 2008.