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We shall prove theorems of the following flavor (see textbook/papers for precise statements and proofs).

Thm. For any planar graph G = (V,E) on n = |V | vertices and for any1 weight function w : V → R+,
we can partition V into A,B, S ⊆ V such that

• [α–balanced] w(A), w(B) ≤ α · w(V ) for some α ∈ (0, 1)

• [separation] no edge between any a ∈ A and b ∈ B (A×B ∩ E = ∅)

• [small separator] |S| ≤ f(n)

• [efficient] A,B, S can be found in linear time.

Trees what if G is a (binary) tree? can do 1/2–balanced partition with |S| = 1?  only 2/3–balanced!
with one edge in separator?  only 3/4–balanced for binary trees
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Grids What happens for a grid on n vertices (say square:
√
n×
√
n)? |S| ≤

√
n

1/2–balanced 
√
n 2/3–balanced <

√
n but Θ(

√
n)

cut out a diagonal and remain 2/3–balanced, s vertices separate≈ s2/2 vertices from the rest, n/3 ≤ s2/2.
O(
√
n) is “right order of magnitude” today’s lecture: can generalize to all planar graphs

Beyond Extensions to bounded-genus and minor-free graphs to be discussed in Lecture 5

General Graphs Is there a separator theorem that works for any graph? No (complete graph)! For any
sparse graph? No (expander graphs)!

1almost — need individual weights ≤ (1− α)w(V )
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1 Fundamental Cycle Separator

We shall prove two versions of the main theorem. Both proofs use the following lemma (a weighted version).

Lemma. For any planar graph G = (V,E) with a spanning tree of radius d rooted at r ∈ V ,
we can partition V into A,B, S ⊆ V such that

• [balanced] |A|, |B| ≤ 3n/4

• [separation] no edge between any a ∈ A and b ∈ B (A×B ∩ E = ∅)

• [separator size] |S| ≤ 2d+ 1

• [efficient] A,B, S can be found in linear time.

Proof (sketch). Let T be the spanning tree of depth d rooted at r. Triangulate G. Recall interdigitating trees
from Lecture 2. Let T ∗ be the dual tree in the triangulated version of G. Every non-tree edge e defines a
fundamental cycle C(e). Since T has depth d, we have |C(e)| ≤ 2d+ 1.
 assign appropriate weights to faces. then find edge separator in interdigitating tree! (T ∗ has degree 3)

Problem Set: how to efficiently find the best edge e (how to compute w(ext(C(e))), w(int(C(e))) for each
edge e, where ext(C), int(C) denote the exterior and interior of a cycle C, respectively)

Problem Diameter of G may be large! Want |S| ≤
√
n.  two ways to reduce the diameter
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2 Vertex Separators

We prove the theorem with |S| ≤ 4
√
n+ O(1). Algorithms with better constants are known.

Overview 1) Diameter Reduction in primal G′ 2) Fundamental Cycle in G′ (lemma)

Algorithm

• Breadth-First Search (BFS) from any v ∈ V , let Li(v) denote all the vertices at level i of the BFS tree
Note: any level Li(v) is a separator — not necessarily balanced, not necessarily small
Define sentinel level L∆+1(v) = ∅, where ∆ denotes diameter of G

• Find level i0 with the median vertex (
∑

i≤i0
|Li(v)| ≥ n/2 and

∑
i≥i0
|Li(v)| ≥ n/2)

• Find levels i− ≤ i0 ≤ i+ (start from i0 and decrease i− / increase i+) until |Li− |, |Li+ | ≤
√
n. by

counting argument (each part has only half the vertices), we have that |i0 − i−|, |i+ − i0| ≤
√
n/2.

0 1 i− i0 i+ ∆ ∆ + 1

v

L0 L1

Figure 1: Levels of the breadth-first search tree rooted at v and vertex count per level.

have separator |Li− ∪ Li+ | ≤ 2
√
n; RETURN if some combination of L<i− , L>i+ , L(i−,i+) is balanced

• Heavy part is in L(i−,i+). Why? (median!) to apply the lemma, form a graph G′ as follows:

– delete (contraction also works) L≥i+

– contract all edges in L≤i−  super vertex v, connected to all u ∈ Li−+1

v

BFS tree in G′ rooted at v has depth |i+ − i−| ≤
√
n, triangulate, apply lemma, let C denote the cycle

• RETURN some combination of int(C), ext(C), L<i− , L>i+ as A and B and some combination of C and
Li− , Li+ as separator S
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3 Recursive Separation

We apply the theorem recursively to obtain an r–division.

Def. An r–division of G is a decomposition into

• O(n/r) edge-disjoint pieces,

• each with ≤ r vertices and

• O(
√
r) boundary vertices. ⇐ vertices with edges to at least two pieces

Figure 2: Illustration of an r–division, extracted from [Fre87, p. 1006, Fig. 1]

Lemma. For planar G, we can compute an r–division in time O(n log n).

Proof (sketch). Two phases.

1) Total Boundary O(n/
√
r). apply thm  two pieces A′ ⊆ A ∪ S,B′ ⊆ B ∪ S, sizes αn + O(

√
n) and

(1 − α)n + O(
√
n) with α ∈ [1/4, 3/4]. let B(n, r) denote the number of boundary vertices. recurrence:

B(n, r) = 0 for n ≤ r and

B(n, r) ≤ O(
√
n) +B(αn+ O(

√
n), r) +B((1− α)n+ O(

√
n), r) for n > r

2) O(
√
r) Boundary per Piece. WHILE there is piece P with large boundary of size n′, apply thm to P with

weights s.t. boundary vertex has weight 1/n′ and interior vertex weight 0 separates boundary vertices
prove that number of pieces and total boundary still bounded (details in textbook and papers)

4 Example Application: Divide & Conquer for Planar Graphs

MAXIMUM INDEPENDENT SET (MIS) Problem: find set of maximum size I ⊆ V with no two vertices adjacent,
classical NP–complete problem, also hard to approximate (MaxSNP–complete)

Approximation Algorithm recursively apply separator theorem until separated sets (pieces) have size
log log n; find MIS I(P ) per piece P (by exhaustive search, O(2log log n) per piece); return union

⋃
P I(P )

Analysis total number of boundary vertices is O(n/
√

log log n). let I∗ denote optimal solution. have
|I(P )| ≥ |I∗(P )| for each piece P . Thus |I∗| − |I| ≤ O(n/

√
log log n). Planar graphs are 4–colorable,

which implies |I∗| ≥ n/4. therefore, relative error is at most |I
∗|−|I|
|I∗| = O(1/

√
log log n).
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5 Cycle Separators

Problem vertex separator S is small but not very “nice,” problem in some applications, simple cut desired

Solution prove thm for S a cycle. what ifG is a tree? one triangle does not help either. need 2–connectivity!
what if G is a cycle itself? separator size depends on face sizes! for this lecture: assume G is triangulated.

Idea and Overview reduce diameter to O(
√
n) without having to add nodes/edges to separator. merge

faces without making the resulting face too heavy (weight > 1/2) or too big (# nodes >
√
n)

1) Diameter Reduction in dual [“almost” above arguments for G∗] G′ 2) Fundamental Cycle in G′

Algorithm (sketch)

• BFS in the dual G∗, rooted at any face f∞. as above, let Li(f∞) denote all the vertices (here: faces)
at level i of the BFS tree. front of the search is collection of cycles. union of their exteriors is explored;
union of their interiors is yet unexplored. each cycle C has weight (interior of C, yet unexplored) and
boundary (cycle length |C|)

• compute heavy subtree of BFS tree as follows:

– start at root, DO follow heaviest child (cycle weight) UNTIL reach cycle C0 with weight > 1/2 and
all enclosed cycles have weight ≤ 1/2 (“BFS-deepest heaviest cycle”).

– find level i− with boundary size O(
√
n) (above counting arguments). within Li− choose cycle Cr

enclosing C0.

– find level i+ with small total boundary (at most O(
√
n))

C0

V (G∗)− f∞

C1

Cr ∼ i−

∼ i0

∼ i+

≤
√
n

• obtain low-diameter primal graph G′: for cycles C in L+ enclosed by C0 merge faces enclosed by C
(contract edges in the dual ⇔ delete edges in the primal); merge faces not enclosed by Cr. G′ has
diameter O(

√
n) (diameter in dual, triangulated, plus merged faces)

• compute spanning tree T ′ (almost BFS) and apply lemma to G′ with T ′
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