6.889 — Lecture 3: Planar Separators

Christian Sommer csom@mit.edu

September 13, 2011

We shall prove theorems of the following flavor (see textbook/papers for precise statements and proofs).

Thm. For any planar graph G = (V, E) on n = |V| vertices and for any¹ weight function $w : V \to \mathbb{R}^+$, we can partition V into $A, B, S \subseteq V$ such that

- [α -balanced] $w(A), w(B) \leq \alpha \cdot w(V)$ for some $\alpha \in (0, 1)$
- [separation] no edge between any $a \in A$ and $b \in B$ ($A \times B \cap E = \emptyset$)
- [small separator] $|S| \le f(n)$
- [efficient] A, B, S can be found in linear time.

Trees what if G is a (binary) tree? can do 1/2-balanced partition with |S| = 1? \rightarrow only 2/3-balanced! with one *edge* in separator? \rightarrow only 3/4-balanced for binary trees

Grids What happens for a grid on *n* vertices (say square: $\sqrt{n} \times \sqrt{n}$)? $|S| \le \sqrt{n}$

cut out a diagonal and remain 2/3–balanced, *s* vertices separate $\approx s^2/2$ vertices from the rest, $n/3 \leq s^2/2$. $O(\sqrt{n})$ is "right order of magnitude" \rightarrow today's lecture: can generalize to *all* planar graphs

Beyond Extensions to bounded-genus and minor-free graphs to be discussed in Lecture 5

General Graphs Is there a separator theorem that works for *any* graph? No (complete graph)! For any sparse graph? No (expander graphs)!

¹almost — need individual weights $\leq (1 - \alpha)w(V)$

1 Fundamental Cycle Separator

We shall prove two versions of the main theorem. Both proofs use the following lemma (a weighted version).

Lemma. For any planar graph G = (V, E) with a spanning tree of radius d rooted at $r \in V$, we can partition V into $A, B, S \subseteq V$ such that

- [balanced] $|A|, |B| \le 3n/4$
- [separation] no edge between any $a \in A$ and $b \in B$ ($A \times B \cap E = \emptyset$)
- [separator size] $|S| \le 2d + 1$
- [efficient] A, B, S can be found in linear time.

Proof (sketch). Let *T* be the spanning tree of depth *d* rooted at *r*. Triangulate *G*. Recall *interdigitating trees* from Lecture 2. Let T^* be the dual tree in the triangulated version of *G*. Every non-tree edge *e* defines a *fundamental cycle* C(e). Since *T* has depth *d*, we have $|C(e)| \le 2d + 1$.

 \rightarrow assign appropriate weights to faces. then find edge separator in interdigitating tree! (T^* has degree 3)

Problem Set: how to *efficiently* find the best edge e (how to compute w(ext(C(e))), w(int(C(e)))) for each edge e, where ext(C), int(C) denote the *exterior* and *interior* of a cycle C, respectively)

Problem Diameter of G may be large! Want $|S| \leq \sqrt{n}$. \rightsquigarrow two ways to reduce the diameter

2 Vertex Separators

We prove the theorem with $|S| \le 4\sqrt{n} + O(1)$. Algorithms with better constants are known.

Overview 1) Diameter Reduction in primal \rightsquigarrow G' 2) Fundamental Cycle in G' (lemma)

Algorithm

- Breadth-First Search (BFS) from any $v \in V$, let $L_i(v)$ denote all the vertices at level i of the BFS tree Note: any level $L_i(v)$ is a separator — not necessarily balanced, not necessarily small Define sentinel level $L_{\Delta+1}(v) = \emptyset$, where Δ denotes diameter of G
- Find level i_0 with the median vertex ($\sum_{i < i_0} |L_i(v)| \ge n/2$ and $\sum_{i > i_0} |L_i(v)| \ge n/2$)
- Find levels $i_{-} \leq i_{0} \leq i_{+}$ (start from i_{0} and decrease i_{-} / increase i_{+}) until $|L_{i_{-}}|, |L_{i_{+}}| \leq \sqrt{n}$. by counting argument (each part has only half the vertices), we have that $|i_{0} i_{-}|, |i_{+} i_{0}| \leq \sqrt{n}/2$.

Figure 1: Levels of the breadth-first search tree rooted at v and vertex count per level.

have separator $|L_{i_-} \cup L_{i_+}| \le 2\sqrt{n}$; Return if some combination of $L_{< i_-}, L_{> i_+}, L_{(i_-,i_+)}$ is balanced

- Heavy part is in $L_{(i_-,i_+)}$. Why? (median!) to apply the lemma, form a graph G' as follows:
 - delete (contraction also works) $L_{>i_+}$
 - contract all edges in $L_{\leq i_{-}} \rightsquigarrow$ super vertex v, connected to all $u \in L_{i_{-}+1}$

BFS tree in G' rooted at v has depth $|i_+ - i_-| \le \sqrt{n}$, triangulate, apply lemma, let C denote the cycle

• RETURN some combination of int(C), ext(C), $L_{<i_{-}}$, $L_{>i_{+}}$ as A and B and some combination of C and $L_{i_{-}}$, $L_{i_{+}}$ as separator S

3 Recursive Separation

We apply the theorem recursively to obtain an r-division.

Def. An r-division of G is a decomposition into

- O(n/r) edge-disjoint pieces,
- each with $\leq r$ vertices and
- $O(\sqrt{r})$ boundary vertices. \Leftarrow vertices with edges to at least two pieces

Figure 2: Illustration of an *r*-division, extracted from [Fre87, p. 1006, Fig. 1]

Lemma. For planar G, we can compute an r-division in time $O(n \log n)$.

Proof (sketch). Two phases.

1) Total Boundary $\mathcal{O}(n/\sqrt{r})$. apply thm \rightsquigarrow two pieces $A' \subseteq A \cup S, B' \subseteq B \cup S$, sizes $\alpha n + \mathcal{O}(\sqrt{n})$ and $(1 - \alpha)n + \mathcal{O}(\sqrt{n})$ with $\alpha \in [1/4, 3/4]$. let B(n, r) denote the number of boundary vertices. recurrence: B(n, r) = 0 for $n \leq r$ and

 $B(n,r) \leq \mathbb{O}(\sqrt{n}) + B(\alpha n + \mathbb{O}(\sqrt{n}), r) + B((1-\alpha)n + \mathbb{O}(\sqrt{n}), r) \quad \text{for } n > r$

2) $O(\sqrt{r})$ **Boundary per Piece.** WHILE there is piece *P* with large boundary of size *n'*, apply thm to *P* with weights s.t. boundary vertex has weight 1/n' and interior vertex weight $0 \rightarrow$ separates boundary vertices prove that number of pieces and total boundary still bounded (details in textbook and papers) \Box

4 Example Application: Divide & Conquer for Planar Graphs

MAXIMUM INDEPENDENT SET (MIS) Problem: find set of maximum size $I \subseteq V$ with no two vertices adjacent, classical NP–complete problem, also hard to approximate (MaxSNP–complete)

Approximation Algorithm recursively apply separator theorem until separated sets (*pieces*) have size $\log \log n$; find MIS I(P) per piece P (by exhaustive search, $O(2^{\log \log n})$ per piece); return union $\bigcup_P I(P)$

Analysis total number of boundary vertices is $\mathcal{O}(n/\sqrt{\log \log n})$. let I^* denote optimal solution. have $|I(P)| \ge |I^*(P)|$ for each piece P. Thus $|I^*| - |I| \le \mathcal{O}(n/\sqrt{\log \log n})$. Planar graphs are 4-colorable, which implies $|I^*| \ge n/4$. therefore, relative error is at most $\frac{|I^*| - |I|}{|I^*|} = \mathcal{O}(1/\sqrt{\log \log n})$.

5 Cycle Separators

Problem vertex separator S is small but not very "nice," problem in some applications, simple cut desired

Solution prove thm for S a *cycle*. what if G is a tree? one triangle does not help either. need 2–connectivity! what if G is a cycle itself? separator size depends on face sizes! for this lecture: assume G is triangulated.

Idea and Overview reduce diameter to $O(\sqrt{n})$ without having to add nodes/edges to separator. merge faces without making the resulting face too heavy (weight > 1/2) or too big (# nodes > \sqrt{n}) 1) Diameter Reduction in dual ["almost" above arguments for G^*] $\rightarrow G'$ 2) Fundamental Cycle in G'

Algorithm (sketch)

- BFS in the dual G^* , rooted at any face f_{∞} . as above, let $L_i(f_{\infty})$ denote all the vertices (here: faces) at level *i* of the BFS tree. front of the search is collection of cycles. union of their *exteriors* is explored; union of their *interiors* is yet unexplored. each cycle *C* has *weight* (interior of *C*, yet unexplored) and boundary (cycle length |C|)
- compute heavy subtree of BFS tree as follows:
 - start at root, DO follow heaviest child (cycle weight) UNTIL reach cycle C_0 with weight > 1/2 and all enclosed cycles have weight $\leq 1/2$ ("BFS-deepest heaviest cycle").
 - find level i_{-} with boundary size $O(\sqrt{n})$ (above counting arguments). within L_{i-} choose cycle C_r enclosing C_0 .
 - find level i_+ with small total boundary (at most $O(\sqrt{n})$)

- obtain low-diameter primal graph G': for cycles C in L₊ enclosed by C₀ merge faces enclosed by C (contract edges in the dual ⇔ delete edges in the primal); merge faces not enclosed by C_r. G' has diameter O(√n) (diameter in dual, triangulated, plus merged faces)
- compute spanning tree T' (almost BFS) and apply lemma to G' with T'

References

Separators Ungar [Ung51] proved the existence of separators of size $O(\sqrt{n \log n})$. Lipton and Tarjan [LT79] gave a linear-time algorithm to find a 2/3–balanced separator of size $\sqrt{8n}$. Many applications (such as the MIS approximation algorithm) can be found in the companion paper [LT80]. Djidjev [Dji82] improved the bound on the separator size to $\sqrt{6n}$. He also proved a lower bound of $(\sqrt{4\pi\sqrt{3}}/3) \cdot \sqrt{n}$. Variants of these algorithms have been implemented and evaluated experimentally [HSW+09].

Miller [Mil86] gave a linear-time algorithm to construct a cycle separator of size $\sqrt{8n}$ for 2–connected, triangulated planar graphs. Djidjev and Venkatesan [DV97] improved the bound on the cycle length to $2\sqrt{n}$. Results extend to planar graphs with larger faces, introducing a multiplicative dependency on the root of the largest face size *d* (see [Mil86]), or an additive dependency on the ℓ_2 –norm of all face sizes [GM90]. A rich body of further work investigates different balance criteria and many other interesting questions.

Recursive Separators Frederickson [Fre87] gave an algorithm that computes an *r*-division in $O(n \log r)$ time. Goodrich [Goo95] gave a linear-time algorithm.

- [Dji82] Hristo Nicolov Djidjev. On the problem of partitioning planar graphs. *SIAM Journal on Algebraic and Discrete Methods*, 3:229–240, 1982.
- [DV97] Hristo Nicolov Djidjev and Shankar M. Venkatesan. Reduced constants for simple cycle graph separation. *Acta Informatica*, 34:231–243, 1997.
- [Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. *SIAM Journal on Computing*, 16(6):1004–1022, 1987.
- [GM90] Hillel Gazit and Gary L. Miller. Planar separators and the euclidean norm. In *SIGAL International Symposium on Algorithms*, pages 338–347, 1990.
- [Goo95] Michael T. Goodrich. Planar separators and parallel polygon triangulation. *Journal of Computer and System Sciences*, 51(3):374–389, 1995. Announced at STOC 1992.
- [HSW⁺09] Martin Holzer, Frank Schulz, Dorothea Wagner, Grigorios Prasinos, and Christos D. Zaroliagis. Engineering planar separator algorithms. *ACM Journal of Experimental Algorithmics*, 14, 2009. Announced at ESA 2005.
- [LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. *SIAM Journal on Applied Mathematics*, 36(2):177–189, 1979.
- [LT80] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem. *SIAM Journal on Computing*, 9(3):615–627, 1980. Announced at FOCS 1977.
- [Mil86] Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. *Journal of Computer and System Sciences*, 32(3):265–279, 1986. Announced at STOC 1984.
- [Ung51] Peter Ungar. A theorem on planar graphs. Journal of the London Mathematical Society, s1-26(4):256–262, 1951.