LECTURE /
CACHE COHERENCE

DANIEL SANCHEZ AND JOEL EMER

6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE
SPRING 2013

I I I I Massachusetts Institute of Technology |

CSAIL

Coherence & Consistency

Shared memory systems:
Have multiple private caches for performance reasons

Need to provide the illusion of a single shared memory

Intuition: A read should return the most recently written value

What is most recent?

Formally:

Coherence: What values can a read return?

Concerns reads/writes to a single memory location

Consistency: When do writes become visible to reads?

Concerns reads/writes to multiple memory locations

6.888 Spring 2013 - Sanchez and Emer - LO7

Coherence Rules

Writes eventually become visible to all processors

Writes to the same location are serialized

6.888 Spring 2013 - Sanchez and Emer - LO7

Snoopy Coherence Protocols

Bus provides serialization point
Broadcast, totally ordered
Each cache controller “snoops” all bus transactions

Controller updates state of cache in response to processor and
snoop events and generates bus transactions

Snoopy protocol (FSM) Processor Cache
State-transition diagram /st \/ R
Acﬁons State [Tag Data

Handling writes: .o
Write-invalidate _ Y,
Write-update Sn/c:op (observed bus transaction)

[adapted from Olukotun & Kozyrakis, CS316 lecture notes, 2012]

6.888 Spring 2013 - Sanchez and Emer - LO7

Valid /Invalid (VI) Protocol

PrRd / -- PrWr / BuswWr Write-through, no-
write-allocate
cache

BusWr
PrRd / BusRd

Processor Read PrRd
Processor Write PrWr
Bus Read BusRd

PrWr / BusWr
Bus Write BusWr

6.888 Spring 2013 - Sanchez and Emer - LO7

MSI State Diagram

PrRd
PrWr
BusRd
BusRdX

Processor Read
Processor Write
Bus Read

Bus Read
Exclusive

Bus Writeback

\ BUSWB

6.888 Spring 2013 - Sanchez and Emer - LO7

Exclusive State

Observation: Doing read-modify-write sequences on
private data is common

What’s the problem with MSI?2

Solution: E state (exclusive, clean)
If no other sharers, a read acquires line in E
Writes silently cause E->M (exclusive, dirty)

Does everything get faster?

6.888 Spring 2013 - Sanchez and Emer - LO7

Owner State

Observation: On M—2S transitions, must write back linel
What happens with frequent read-write sharing?
Can we defer the write after S¢

Solution: O state (Owner)
O = S + responsibility to write back

On M—2S transition, one sharer (typically the one who had the line
in M) retains the line in O instead of S

On eviction, O writes back line (or other sharer does S>O)

M3SI, MESI, MOSI, MOESI...

Typically E if private read-write >> read-shared (common)
Typically O only if writebacks are expensive (main mem vs L3)

Split-Transaction and Pipelined Buses

Atomic Transaction Bus
Req

Delay

Response

Simple, but low throughput!

Split-Transaction Bus
R1 R2 R3

R1 R3

Supports multiple simultaneous transactions
Higher throughput
Responses may be OOO
Often implemented as multiple buses (req+resp)
What happens to coherence?

6.888 Spring 2013 - Sanchez and Emer - LO7

Non-Atomicity =2 Transient States

Must extend protocol
Two types of states

Stable (e.g. MSI)
Transient
Split + race transitions

Higher complexity

Bus Request BusReq

(o)
> A 5

6.888 Spring 2013 - Sanchez and Emer - LO7

10

Complex Protocols =2 More Races

11

MSI

Stable + Split + Race

NE

R,

MOESTI

[Vantrease et al.,

180 Stable + 40 Split + 181 Race = 401 transitions
Fig. 1: L2 Transitions for Two Protocols.

“Atomic Coherence”,
HPCA 2011]
How to ensure the protocol works?

Preserve coherence invariants
Deadlock, livelock, starvation-free

6.888 Spring 2013 - Sanchez and Emer - LO7

Scaling Cache Coherence

12

Can implement more scalable ordered interconnects...

root of logical bus

broadcast broadcast
request down switch request down
28 » N\

T d . [
‘ ' unicast

switch < switch
%, request ,
e up to root
A

-

/ swntc swntc swmh

crossbar data network g

‘

Starfire E10000 (drawn with only elgh’r processors for clarity). A coherence
request is unicast up to the root, where it is serialized, before being broadcast
down to all processors

... but broadcast is fundamentally unscalable

Bandwidth, energy of transactions with 1K cache snoops?

6.888 Spring 2013 - Sanchez and Emer - LO7

Directory-Based Coherence

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory I— 110 Memory I— 110 Memory I— 110 Memory '——(m
[Interconnection network j
Memory I— le} Memory I— /0 Memory I— le} Memory I_ 110

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

13

Route all coherence transactions through a directory
Tracks contents of private caches = No broadcasts

Serves as ordering point for conflicting requests 2
Unordered networks

6.888 Spring 2013 - Sanchez and Emer - LO7

Example: Shared Cache Line Read

14

Shared L3

Y L2 4 has A (Modified)
WB A° a Record sharer L2s 0,4

Private Private Private
L2 5) L2 7

6.888 Spring 2013 - Sanchez and Emer - LO7

Directory Taxonomy & Scalability

Duplicate tags
Full-map

Sparse
Full bit-vectors
Coarse-grain bit-vectors
Limited-pointers
In-cache

Hierarchical sparse

6.888 Spring 2013 - Sanchez and Emer - LO7

Readings for Monday

Read BulkSC

Skim Consistency Tutorial

6.888 Spring 2013 - Sanchez and Emer - LO7

16

