
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 7

CACHE COHERENCE

DANIEL SANCHEZ AND JOEL EMER

Coherence & Consistency
2

 Shared memory systems:

 Have multiple private caches for performance reasons

 Need to provide the illusion of a single shared memory

 Intuition: A read should return the most recently written value

 What is most recent?

 Formally:

 Coherence: What values can a read return?

 Concerns reads/writes to a single memory location

 Consistency: When do writes become visible to reads?

 Concerns reads/writes to multiple memory locations

6.888 Spring 2013 - Sanchez and Emer - L07

Coherence Rules
3

 Writes eventually become visible to all processors

 Writes to the same location are serialized

6.888 Spring 2013 - Sanchez and Emer - L07

Snoopy Coherence Protocols
4

 Bus provides serialization point

 Broadcast, totally ordered

 Each cache controller “snoops” all bus transactions

 Controller updates state of cache in response to processor and
snoop events and generates bus transactions

 Snoopy protocol (FSM)

 State-transition diagram

 Actions

 Handling writes:

 Write-invalidate

 Write-update

6.888 Spring 2013 - Sanchez and Emer - L07

Processor

ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

Cache

[adapted from Olukotun & Kozyrakis, CS316 lecture notes, 2012]

Valid/Invalid (VI) Protocol

 Write-through, no-

write-allocate

cache

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / --

Action Abbreviation

Processor Read PrRd

Processor Write PrWr

Bus Read BusRd

Bus Write BusWr

5

6.888 Spring 2013 - Sanchez and Emer - L07

MSI State Diagram

PrRd /--

M

BusRdX /

BusWB PrWr /

BusRdX

S

I

PrWr / --

BusRd /

BusWB PrWr / BusRdX

PrRd / BusRd

BusRdX / --

PrRd / --
BusRd / --

Abbreviation Action

PrRd Processor Read

PrWr Processor Write

BusRd Bus Read

BusRdX Bus Read

Exclusive

BusWB Bus Writeback

Processor initiated
Bus initiated

6

6.888 Spring 2013 - Sanchez and Emer - L07

Exclusive State
7

 Observation: Doing read-modify-write sequences on

private data is common

What’s the problem with MSI?

 Solution: E state (exclusive, clean)

 If no other sharers, a read acquires line in E

Writes silently cause EM (exclusive, dirty)

 Does everything get faster?

6.888 Spring 2013 - Sanchez and Emer - L07

Owner State
8

 Observation: On MS transitions, must write back line!

 What happens with frequent read-write sharing?

 Can we defer the write after S?

 Solution: O state (Owner)

 O = S + responsibility to write back

 On MS transition, one sharer (typically the one who had the line
in M) retains the line in O instead of S

 On eviction, O writes back line (or other sharer does SO)

 MSI, MESI, MOSI, MOESI…

 Typically E if private read-write >> read-shared (common)

 Typically O only if writebacks are expensive (main mem vs L3)

6.888 Spring 2013 - Sanchez and Emer - L07

Split-Transaction and Pipelined Buses

 Supports multiple simultaneous transactions

 Higher throughput

 Responses may be OOO

 Often implemented as multiple buses (req+resp)

 What happens to coherence?

Req
Delay

Response

Atomic Transaction Bus

R2 R1

R1

R3

R3

Split-Transaction Bus

 Simple, but low throughput!

9

6.888 Spring 2013 - Sanchez and Emer - L07

Non-Atomicity  Transient States

PrRd / --
BusRd / --

PrRd /--

M

BusRdX /

BusWB

I

PrWr / --

BusRd /

BusWB

PrRd /

BusReq

BusRdX / --

SM

S

IS

IM

PrWr /

BusReq

BusGnt /

BusRd

BusGnt /

BusRdX

PrWr /

BusReq

BusGnt /

BusInv

Action Abbr.

Bus Request BusReq

Bus Grant BusGnt

 Must extend protocol

 Two types of states

 Stable (e.g. MSI)

 Transient

 Split + race transitions

 Higher complexity

10

6.888 Spring 2013 - Sanchez and Emer - L07

Complex Protocols  More Races
11

 How to ensure the protocol works?

 Preserve coherence invariants

 Deadlock, livelock, starvation-free

6.888 Spring 2013 - Sanchez and Emer - L07

[Vantrease et al.,

“Atomic Coherence”,

HPCA 2011]

Scaling Cache Coherence
12

 Can implement more scalable ordered interconnects…

 … but broadcast is fundamentally unscalable

 Bandwidth, energy of transactions with 1K cache snoops?
6.888 Spring 2013 - Sanchez and Emer - L07

Starfire E10000 (drawn with only eight processors for clarity). A coherence

request is unicast up to the root, where it is serialized, before being broadcast

down to all processors

Directory-Based Coherence
13

 Route all coherence transactions through a directory

 Tracks contents of private caches  No broadcasts

 Serves as ordering point for conflicting requests 

Unordered networks

 6.888 Spring 2013 - Sanchez and Emer - L07

Example: Shared Cache Line Read
14

Shared L3

Core 0 Core 1 Core 2 Core 3 Core 4 Core 6 Core 7

Directory

Main Memory

Core 5

Private

L2 0

Private

L2 1

Private

L2 2

Private

L2 3

Private

L2 4

Private

L2 6

Private

L2 7

Private

L2 5

GETS A

ld A

GETS A INVX A WB A

WB A

 A

 A

L2 4 has A (Modified)

Record sharer L2s 0,4

1

2

3

4

7 5 6
7

7

8

6.888 Spring 2013 - Sanchez and Emer - L07

Directory Taxonomy & Scalability
15

 Duplicate tags

 Full-map

 Sparse

 Full bit-vectors

 Coarse-grain bit-vectors

 Limited-pointers

 In-cache

 Hierarchical sparse

6.888 Spring 2013 - Sanchez and Emer - L07

Readings for Monday
16

 Read BulkSC

 Skim Consistency Tutorial

6.888 Spring 2013 - Sanchez and Emer - L07

