LECTURE 5
COMMUNICATION MODELS:
SHARED MEMORY AND MESSAGE PASSING

DANIEL SANCHEZ AND JOEL EMER

6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE
SPRING 2013

I I I I Massachusetts Institute of Technology |

CSAIL

Administrivia

HW1 is out!

Due March 6

Code and data under MIT certs or from Stata
Start thinking about project

Explore possible teams!

Project proposal (~2 page) due March 18

Ask us about topics, infrastructure, etc. beforehand

Start thinking about seminars

6.888 Spring 2013 - Sanchez and Emer - LO5

Today’s Menu

A bit more on evaluating parallel systems
Some notes on HW]

Communication models & paper discussion

6.888 Spring 2013 - Sanchez and Emer - LO5

Statistically Significant Experiments

Most fields: “Our experiment shows the vaccine is effective in
85%(+/-2%) of subjects...”

Computer architects (often): “We ran each experiment once,
here are the bars”

“What are the confidence intervalse” Common responses:
Madness is doing the same thing twice and expecting a different result!
Simulations take a long time! Better to simulate for 5x longer...

Confidence what?

The Java tribe: “We ran each benchmark 10 times and report
the best execution times”

The other 9 are to warm the JVM up...

Observational Error

Most experiments (and definitely computers) are subject to
variability
Two types of observational error:

Systematic: Always occurs in the same way

Performance counter bugs, instrumentation overhead, room temperature &
turbo, simulator bugs...

Random: Due to natural system variability and non-determinism

Initial machine state, VM mappings, ASLR, interrupts, benchmarks that use
randomized algorithms, ...

In parallel systems, amplified by lock acquisition order, barrier synchronization,
etc.

Avoiding systematic error:
Detect them... good luck
Either redesign experiment or estimate impact and adjust measurement

Reducing random error: Make your confidence intervals small

Confidence Intervals

6

We take N samples from a population (e.g., run a benchmark
N times) and want to approximate a parameter about the
whole population (e.g., the true mean time of all runs) with
those samples (e.g., the sample mean time of the N runs)

Can we compute the actual error between both?
An X% confidence interval is the range of values that is X%
likely to contain the true value across the whole population
Multiple ways to estimate

Typically, assume gaussian distribution, compute sample mean and
std, and use inverse CDF to compute (symmetric) range

In most real-world systems, increasing N makes interval smaller

Infinite-variance distributions exist, in paper...

The real system has randomness...
does your simulator?

Same starting state, no interrupts, deterministic event
ordering? You have a problem

e.g., Yyour benchmark executes +/-10% of instructions in the
real system depending on e.g., starting machine state

Your baseline design happens to hit the -10%
Your 5% IPC-improved design happens to hit the +10%...
Often worse in parallel benchmarks
Add some randomness, even artificially (+/-2 cycles on
memory accesses) [Alameldeen and Wood, IEEE Micro 06]

May not model the real randomness, but often good enough

Sampling and cold-start effects

Often, can only run short benchmarks (~100M instrs)

But want to estimate performance of much longer runs!

Problem 1: Choose statistically significant portions of the
program. Options:

Analyze the workload beforehand, pick samples [SimPoints,

Sherwood et al, ISCA/SIGMETRICS 03]

Periodic or randomized sampling, and treat it as a sampling

problem [SMARTS, Wunderlich et al, ISCA 03]

Problem 2: Microarchitectural state (caches, predictors,
etc) not warmed up!

Functional-only or detailed (timing) warming

Summarizing Performance

|deal world:

|ldeal chip manufacturer: Compared to our old chip, our new
one improves performance of benchmark 1 by 10%,

benchmark 2 by 50%, benchmark 3 by -10%, etc.

|deal customer 1: | mostly run (something similar to)
benchmark 2, let’s upgrade

|deal customer 2: I'm half ~1, half ~3, not for me...

Real word:
Customer: | don’t know what | run, just give me a number!

Chip manufacturer: OK, here’s the mean improvement...

Means

Arithmetic:
Harmonic:

Geometric:

10

N
1o
amean =—gq| X,

i
i=1

o 1
hmean=N/ Q —

i=1 xi

o §"

gmean = QO X+
€ O

For positive differing quantities, amean > gmean > hmean

Rules of thumb: amean for absolutes, hmean for rates
(speeds), gmean for ratios

In practice, use first principles as much as possible to derive

aggregate metrics

Weighting or other means can be useful
And be honest... (Q: most/least used means in papers?)

Scalability

11

Speedup(N) = Time on 1 processor/Time on N processors
What’s the best we can do? Linear?

Often sublinear...

Strong scaling: Speedup on 1...N processors with fixed
total problem size

Weak scaling: Speedup on 1...N processors with fixed
per-processor problem size

Work = Instructions

12

Especially with multithreaded benchmarks

Classic example: Spinning

Increase memory latency, more spinning on lock acquires,
spinning is really fast = higher IPC!

Solution 1: Run applications to completion

Solution 2: Instrument applications to measure units of
work, measure time needed for N units
Solution 3: Discount “useless instructions”

Great because we can still correlate to architectural metrics

But often hard in full-system simulations...

Multi-programmed setups

13

Parallel processors execute multiple jobs...
How to compute performance improvement of this?

Core 1 :> 1.1x
Core 2 0.4x
Options (assuming work == instructions):

Variable-work methodology: Measure time to finish N
instructions

Issues?
Fixed-work methodology: Measure time to finish N instructions
for each program, then average

Terminate /keep running /rewind programs as they finish?

Issues?

HW'1 Notes

“Here’s a simulator driver and some base code, build a cache
hierarchy and measure how it does”

Underspecified problem, on purpose
Very simple core & memory model (why?)

ST or MP workloads (SPECCPU2006), so no coherence needed

Some unspecified dimensions:

Multilevel policies: Inclusive, non-inclusive, exclusive
Hard to do inclusive as is (hint: what does inclusion require?)

Write-through (hard, we only give you cache line addresses) vs write-back
Set selection policy (bit-selection or hashing)
Remember to use an appropriate methodology
Most issues are minor (work ~ instructions, minimal variability...)
Problem 3 explores fixed vs variable-work
Problem 5 requires design space exploration... don’t try to bruteforce

Questionse Mieszko, staff list

Communication Models

15

Shared memory:

Single address space

Implicit communication by reading/writing memory ? ? ?

Data

Control (semaphores, locks, barriers, ...)
Low-level programming model: threads (e.g., pthreads)
Message passing:
Separate address spaces N
Explicit communication by send/rcv messages
Data & control (blocking msgs, barriers, ...)
Low-level programming model: ? ? ?

processes + IPC (e.g., MPI)

6.888 Spring 2013 - Sanchez and Emer - LO5

MIMD Taxonomy

16

Shared memory:

Uniform Memory Access (UMA):
Small-scale SMPs & CMPs (e.g., P6)

Non-Uniform Memory Accesses (NUMA):

Cache-coherent (ccNUMA) (e.g., Origin,
Cray T3E, modern multi-socket)

Cache-only (COMA) (e.g., KSR1)
Non-coherent (e.g., Cray T3D)

Message-passing:
Massively Parallel Processors (MPPs):
Tightly-coupled, high-performance
parts (e.g., BlueGene /Q)

Clusters: Loosely coupled, commodity parts (e.g., datacenters)

Shared Memory vs Message-Passing

Programming "
Shared memory: Typically,

Easier to improve incrementally

Start with sequential version, add synchronization, analyze bottlenecks
Harder to fully optimize

False sharing, spinning, remote accesses, harder to analyze...

Harder to scale
Communication is implicit = Ignore, overuse

Message passing: Typically,
Harder to improve incrementally

Explicit data partitioning and communication; changing algorithm often
requires rewrite

Easier to fully optimize
Easier to analyze, easier to hide latencies

Easier to scale
Explicit communication is explicit = Think about it, minimize

Example: Iterative Solver

18
double a[2] [MAXI+2] [MAXJ+2]; //two copies of state
//use one to compute the other
for (s = 0; s < STEPS; s++) {
k =s&l; // 010101 ...
m=%k*1;, // 101010 ...
for(i = 1; i <= MAXI; i++) { // do iterations in parallel
for(j=1; j <= MAXJ, Jj++) {
alk][1][3J] = cel*a[m] [i][]J] + c2*a[m] [i-1][]] +
c3*a[m] [1+1][J] + cd4*a[m][i][j-1] +
cS*a[m] [1] [j+1];
\ alk] a[m]
} > [based on

Kozyrakis & Binkert,
EE282 L7, 2011]

6.888 Spring 2013 - Sanchez and Emer - LO5

Data Partitioning & Communication

Divide matrix in square blocks

e.g. 64x64 matrix, each
processor owns a 16x16 submatrix

Processor 6
Owns [i][j] = [32...47][16...31]
Shares [i][j] = [31][16...31]

and three other strips

Each processor:

Communicates to get shared data
it needs

Computes its data

0
0]

15

47

12
63

13

19

47 63
2 3
6 7
10 11
14 15

Message-Passing Code

Fork N processes and distribute subarrays to processors
Each process computes north[p], south[p],

east[p], west[p],-1 if no neighbor in direction

for (s=0; s<STEPS; s++) {

k = s&l;

m = k*1;

if (north[p]>= 0) send(north[p], NORTH, a[m][1][1l..MAXSUBJ])

if (east[p]>= 0) send(east[p], EAST, a[m][1l..MAXSUBI][1]);

same for south and west

if (north[p]>= 0) receive(NORTH, a[m][0][1l..MAXSUBJ]) ;

same for other directions

for (i=1l; i<=MAXSUBI; i++) {

for (j=1; j<=MAXSUBJ; j++) {
alk][i]1[j] = cl*a[m][i][]j] + c2*a[m][i-1][]] +

c3*a[m] [i+1] [j] + cé4*a[m][i][j-1] +
cS5*a[m] [1] [J+1];

6.888 Spring 2013 - Sanchez and Emer - LO5

20

Shared Memory Code

21

Create N threads
Each thread p computes istart[p], iend[p], Jstart[p], Jend[p]
Each thread runs:

for (s=0; s<STEPS; s++) {

k = s&l;
m = k*1;
for (i=istart[p]; i<=iend[p]; i++) { // e.g. 32..47
for (j=jstart[p]; j<=jend[p]; j++){ // e.g. 16..31
a[k][i]1[3j] = cl*a[m][i][]] + c2*a[m][i-1][]] +
c3*a[m] [i+1][j] + c4*a[m] [i][j-1] +
cS5*a[m] [1] [j+1];
}
} So much easier! And similar performance!

barrier () ; And no one would have written it this way first!

6.888 Spring 2013 - Sanchez and Emer - LO5

The Perils of Implicit Communication

By writing MP version first, we forced ourselves to think
about data partitioning and communication

Most shared mem programmers just do this:

for (i=istart[p]; i<=iend[p]; i++) {
for (j=start; j<=end; j++) {

High-level programming models are good, right?

#pragma omp parallel for
for (i=istart; i<=iend; i++) {
for (j=jstart; j<=jend; Jj++) {

forall (i=istart; i<=iend; i++) {
for (j=jstart; j<=jend; j++) {

What'’s the issue here?

6.888 Spring 2013 - Sanchez and Emer - LO5

22

Computation/Communication Ratio

0 15 31 47

0

0 1 2
15

4 5
31

8 9 10
47

12 13 14
63

Send 16*4 elems
Rev 16*4 elems

Compute 16*16 elems

11

15

63

15

31

47

63

Send 64*2 elems
Rev 64*2 elems

Compute 64%4 elems

71 Uh-oh... 2x communication/computation ratio
How does it scale to larger matrices/processor counts?

6.888 Spring 2013 - Sanchez and Emer - LO5

23

Shared Memory Discussion

UMA Scalability?
NUMA Scalability?

Cache coherence, consistency, atomic operations
Complexity?

Alternatives?

Can we cheaply emulate message-passing on shared
memory HW?¢

6.888 Spring 2013 - Sanchez and Emer - LO5

24

Message-passing Discussion

Network speed /latency
Memory bus vs 1/O bus

Messaging overheads: Buffering, copying, protection
OS-level vs user-level messaging

Protocol overheads vs network complexity

Synchronization overheads: Synchronous vs asynchronous

Polling vs interrupts?

Can we cheaply emulate shared memory on message-
passing HW?

25

Readings for Wed

High-level programming models

4 tracks, let’s divide up:

Task-parallel
Data-parallel
Pipeline-parallel

Implicit

6.888 Spring 2013 - Sanchez and Emer - LO5

26

