
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 5

COMMUNICATION MODELS:

SHARED MEMORY AND MESSAGE PASSING

DANIEL SANCHEZ AND JOEL EMER

Administrivia
2

 HW1 is out!

 Due March 6

 Code and data under MIT certs or from Stata

 Start thinking about project

 Explore possible teams!

 Project proposal (~2 page) due March 18

 Ask us about topics, infrastructure, etc. beforehand

 Start thinking about seminars

6.888 Spring 2013 - Sanchez and Emer - L05

Today’s Menu
3

 A bit more on evaluating parallel systems

 Some notes on HW1

 Communication models & paper discussion

6.888 Spring 2013 - Sanchez and Emer - L05

Statistically Significant Experiments
4

 Most fields: “Our experiment shows the vaccine is effective in

85%(+/-2%) of subjects…”

 Computer architects (often): “We ran each experiment once,

here are the bars”

 “What are the confidence intervals?” Common responses:

 Madness is doing the same thing twice and expecting a different result!

 Simulations take a long time! Better to simulate for 5x longer…

 Confidence what?

 The Java tribe: “We ran each benchmark 10 times and report

the best execution times”

 The other 9 are to warm the JVM up…

6.888 Spring 2013 - Sanchez and Emer - L05

Observational Error
5

 Most experiments (and definitely computers) are subject to
variability

 Two types of observational error:

 Systematic: Always occurs in the same way

 Performance counter bugs, instrumentation overhead, room temperature &
turbo, simulator bugs…

 Random: Due to natural system variability and non-determinism

 Initial machine state, VM mappings, ASLR, interrupts, benchmarks that use
randomized algorithms, …

 In parallel systems, amplified by lock acquisition order, barrier synchronization,
etc.

 Avoiding systematic error:

 Detect them… good luck

 Either redesign experiment or estimate impact and adjust measurement

 Reducing random error: Make your confidence intervals small

6.888 Spring 2013 - Sanchez and Emer - L05

Confidence Intervals
6

 We take N samples from a population (e.g., run a benchmark

N times) and want to approximate a parameter about the

whole population (e.g., the true mean time of all runs) with

those samples (e.g., the sample mean time of the N runs)

 Can we compute the actual error between both?

 An X% confidence interval is the range of values that is X%

likely to contain the true value across the whole population

 Multiple ways to estimate

 Typically, assume gaussian distribution, compute sample mean and

std, and use inverse CDF to compute (symmetric) range

 In most real-world systems, increasing N makes interval smaller

 Infinite-variance distributions exist, in paper…

6.888 Spring 2013 - Sanchez and Emer - L05

The real system has randomness…

does your simulator? 7

 Same starting state, no interrupts, deterministic event

ordering? You have a problem

 e.g., your benchmark executes +/-10% of instructions in the

real system depending on e.g., starting machine state

 Your baseline design happens to hit the -10%

 Your 5% IPC-improved design happens to hit the +10%...

Often worse in parallel benchmarks

 Add some randomness, even artificially (+/-2 cycles on

memory accesses) [Alameldeen and Wood, IEEE Micro 06]

May not model the real randomness, but often good enough

6.888 Spring 2013 - Sanchez and Emer - L05

Sampling and cold-start effects
8

 Often, can only run short benchmarks (~100M instrs)

 But want to estimate performance of much longer runs!

 Problem 1: Choose statistically significant portions of the

program. Options:

 Analyze the workload beforehand, pick samples [SimPoints,

Sherwood et al, ISCA/SIGMETRICS 03]

 Periodic or randomized sampling, and treat it as a sampling

problem [SMARTS, Wunderlich et al, ISCA 03]

 Problem 2: Microarchitectural state (caches, predictors,

etc) not warmed up!

 Functional-only or detailed (timing) warming

 6.888 Spring 2013 - Sanchez and Emer - L05

Summarizing Performance
9

 Ideal world:

 Ideal chip manufacturer: Compared to our old chip, our new

one improves performance of benchmark 1 by 10%,

benchmark 2 by 50%, benchmark 3 by -10%, etc.

 Ideal customer 1: I mostly run (something similar to)

benchmark 2, let’s upgrade

 Ideal customer 2: I’m half ~1, half ~3, not for me…

 Real word:

 Customer: I don’t know what I run, just give me a number!

 Chip manufacturer: OK, here’s the mean improvement…

6.888 Spring 2013 - Sanchez and Emer - L05

Means
10

 Arithmetic:

 Harmonic:

 Geometric:

 For positive differing quantities, amean > gmean > hmean

 Rules of thumb: amean for absolutes, hmean for rates
(speeds), gmean for ratios

 In practice, use first principles as much as possible to derive
aggregate metrics

 Weighting or other means can be useful

 And be honest… (Q: most/least used means in papers?)

6.888 Spring 2013 - Sanchez and Emer - L05

amean =
1

N
xi

i=1

N

å

hmean = N
1

xii=1

N

å

gmean = xi
i=1

N

Õ
æ

è
ç

ö

ø
÷

1/N

Scalability
11

 Speedup(N) = Time on 1 processor/Time on N processors

What’s the best we can do? Linear?

Often sublinear…

 Strong scaling: Speedup on 1…N processors with fixed

total problem size

 Weak scaling: Speedup on 1…N processors with fixed

per-processor problem size

6.888 Spring 2013 - Sanchez and Emer - L05

Work != Instructions
12

 Especially with multithreaded benchmarks

 Classic example: Spinning

 Increase memory latency, more spinning on lock acquires,

spinning is really fast higher IPC!

 Solution 1: Run applications to completion

 Solution 2: Instrument applications to measure units of

work, measure time needed for N units

 Solution 3: Discount “useless instructions”

Great because we can still correlate to architectural metrics

 But often hard in full-system simulations…

6.888 Spring 2013 - Sanchez and Emer - L05

Multi-programmed setups
13

 Parallel processors execute multiple jobs…

 How to compute performance improvement of this?

 Options (assuming work == instructions):

 Variable-work methodology: Measure time to finish N
instructions

 Issues?

 Fixed-work methodology: Measure time to finish N instructions
for each program, then average

 Terminate/keep running/rewind programs as they finish?

 Issues?

6.888 Spring 2013 - Sanchez and Emer - L05

Job 1 Core 1

Job 2 Core 2

Job 1

Job 2

1.1x

0.4x

HW1 Notes
14

 “Here’s a simulator driver and some base code, build a cache
hierarchy and measure how it does”

 Underspecified problem, on purpose

 Very simple core & memory model (why?)

 ST or MP workloads (SPECCPU2006), so no coherence needed

 Some unspecified dimensions:

 Multilevel policies: Inclusive, non-inclusive, exclusive
 Hard to do inclusive as is (hint: what does inclusion require?)

 Write-through (hard, we only give you cache line addresses) vs write-back

 Set selection policy (bit-selection or hashing)

 Remember to use an appropriate methodology

 Most issues are minor (work ~ instructions, minimal variability…)

 Problem 3 explores fixed vs variable-work

 Problem 5 requires design space exploration… don’t try to bruteforce

 Questions? Mieszko, staff list

6.888 Spring 2013 - Sanchez and Emer - L05

Communication Models
15

 Shared memory:

 Single address space

 Implicit communication by reading/writing memory

 Data

 Control (semaphores, locks, barriers, …)

 Low-level programming model: threads (e.g., pthreads)

 Message passing:

 Separate address spaces

 Explicit communication by send/rcv messages

 Data & control (blocking msgs, barriers, …)

 Low-level programming model:
processes + IPC (e.g., MPI)

6.888 Spring 2013 - Sanchez and Emer - L05

Mem

Mem Mem Mem

Network

MIMD Taxonomy
16

 Shared memory:

 Uniform Memory Access (UMA):
Small-scale SMPs & CMPs (e.g., P6)

 Non-Uniform Memory Accesses (NUMA):

 Cache-coherent (ccNUMA) (e.g., Origin,
Cray T3E, modern multi-socket)

 Cache-only (COMA) (e.g., KSR1)

 Non-coherent (e.g., Cray T3D)

 Message-passing:

Massively Parallel Processors (MPPs):
Tightly-coupled, high-performance
parts (e.g., BlueGene/Q)

 Clusters: Loosely coupled, commodity parts (e.g., datacenters)

6.888 Spring 2013 - Sanchez and Emer - L05

P/$ P/$ P/$

Network

Mem Mem

P/$ P/$ P/$

Network

Mem Mem Mem

P/$ P/$ P/$

Network

Mem Mem Mem

Shared Memory vs Message-Passing

Programming 17

 Shared memory: Typically,

 Easier to improve incrementally
 Start with sequential version, add synchronization, analyze bottlenecks

 Harder to fully optimize
 False sharing, spinning, remote accesses, harder to analyze…

 Harder to scale
 Communication is implicit Ignore, overuse

 Message passing: Typically,

 Harder to improve incrementally
 Explicit data partitioning and communication; changing algorithm often

requires rewrite

 Easier to fully optimize
 Easier to analyze, easier to hide latencies

 Easier to scale
 Explicit communication is explicit Think about it, minimize

6.888 Spring 2013 - Sanchez and Emer - L05

Example: Iterative Solver
18

double a[2][MAXI+2][MAXJ+2]; //two copies of state

 //use one to compute the other

for (s = 0; s < STEPS; s++) {

 k = s&1; // 0 1 0 1 0 1 ...

 m = k^1; // 1 0 1 0 1 0 ...

 for(i = 1; i <= MAXI; i++) { // do iterations in parallel

 for(j=1; j <= MAXJ; j++){

 a[k][i][j] = c1*a[m][i][j] + c2*a[m][i-1][j] +

 c3*a[m][i+1][j] + c4*a[m][i][j-1] +

 c5*a[m][i][j+1];

 }

 }

}

6.888 Spring 2013 - Sanchez and Emer - L05

a[k] a[m]

[based on

Kozyrakis & Binkert,

EE282 L7, 2011]

Data Partitioning & Communication
19

 Divide matrix in square blocks

 e.g. 64x64 matrix, each

processor owns a 16x16 submatrix

 Processor 6

Owns [i][j] = [32…47][16…31]

 Shares [i][j] = [31][16…31]

and three other strips

 Each processor:

 Communicates to get shared data

it needs

 Computes its data

 6.888 Spring 2013 - Sanchez and Emer - L05

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

15

31

47

63

0 15 31 47 63

Message-Passing Code
20

6.888 Spring 2013 - Sanchez and Emer - L05

Fork N processes and distribute subarrays to processors

 Each process computes north[p], south[p],

 east[p], west[p],-1 if no neighbor in direction

for (s=0; s<STEPS; s++) {

 k = s&1;

 m = k^1;

 if (north[p]>= 0) send(north[p], NORTH, a[m][1][1..MAXSUBJ]);

 if (east[p]>= 0) send(east[p], EAST, a[m][1..MAXSUBI][1]);

 same for south and west

 if (north[p]>= 0) receive(NORTH, a[m][0][1..MAXSUBJ]);

 same for other directions

 for (i=1; i<=MAXSUBI; i++) {

 for (j=1; j<=MAXSUBJ; j++){

 a[k][i][j] = c1*a[m][i][j] + c2*a[m][i-1][j] +

 c3*a[m][i+1][j] + c4*a[m][i][j-1] +

 c5*a[m][i][j+1];

 }

 }

}

Shared Memory Code
21

Create N threads

 Each thread p computes istart[p], iend[p], jstart[p], jend[p]

 Each thread runs:

for (s=0; s<STEPS; s++) {

 k = s&1;

 m = k^1;

 for(i=istart[p]; i<=iend[p]; i++) { // e.g. 32..47

 for(j=jstart[p]; j<=jend[p]; j++){ // e.g. 16..31

 a[k][i][j] = c1*a[m][i][j] + c2*a[m][i-1][j] +

 c3*a[m][i+1][j] + c4*a[m][i][j-1] +

 c5*a[m][i][j+1];

 }

 }

 barrier();

}
6.888 Spring 2013 - Sanchez and Emer - L05

So much easier! And similar performance!

And no one would have written it this way first!

The Perils of Implicit Communication
22

 By writing MP version first, we forced ourselves to think

about data partitioning and communication

 Most shared mem programmers just do this:

6.888 Spring 2013 - Sanchez and Emer - L05

 for(i=istart[p]; i<=iend[p]; i++) {

 for(j=start; j<=end; j++){

 High-level programming models are good, right?
 #pragma omp parallel for

 for(i=istart; i<=iend; i++) {

 for(j=jstart; j<=jend; j++){

 forall(i=istart; i<=iend; i++) {

 for(j=jstart; j<=jend; j++){

 What’s the issue here?

Computation/Communication Ratio
23

 Uh-oh… 2x communication/computation ratio

 How does it scale to larger matrices/processor counts?

6.888 Spring 2013 - Sanchez and Emer - L05

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

15

31

47

63

0 15 31 47 63
0

15

31

47

63

Send 16*4 elems

Rcv 16*4 elems

Compute 16*16 elems

Send 64*2 elems

Rcv 64*2 elems

Compute 64*4 elems

Shared Memory Discussion
24

 UMA Scalability?

 NUMA Scalability?

 Cache coherence, consistency, atomic operations

 Complexity?

 Alternatives?

 Can we cheaply emulate message-passing on shared

memory HW?

6.888 Spring 2013 - Sanchez and Emer - L05

Message-passing Discussion
25

 Network speed/latency

Memory bus vs I/O bus

 Messaging overheads: Buffering, copying, protection

OS-level vs user-level messaging

 Protocol overheads vs network complexity

 Synchronization overheads: Synchronous vs asynchronous

 Polling vs interrupts?

 Can we cheaply emulate shared memory on message-

passing HW?

6.888 Spring 2013 - Sanchez and Emer - L05

Readings for Wed
26

 High-level programming models

 4 tracks, let’s divide up:

 Task-parallel

 Data-parallel

 Pipeline-parallel

 Implicit

6.888 Spring 2013 - Sanchez and Emer - L05

