
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE 

SPRING 2013 

LECTURE 5 

COMMUNICATION MODELS: 

SHARED MEMORY AND MESSAGE PASSING 

DANIEL SANCHEZ AND JOEL EMER 



Administrivia 
2 

 HW1 is out! 

 Due March 6 

 Code and data under MIT certs or from Stata 

 Start thinking about project 

 Explore possible teams! 

 Project proposal (~2 page) due March 18 

 Ask us about topics, infrastructure, etc. beforehand 

 Start thinking about seminars 

6.888 Spring 2013 - Sanchez and Emer - L05 



Today’s Menu 
3 

 A bit more on evaluating parallel systems 

 Some notes on HW1 

 Communication models & paper discussion 

 

6.888 Spring 2013 - Sanchez and Emer - L05 



Statistically Significant Experiments 
4 

 Most fields: “Our experiment shows the vaccine is effective in 

85%(+/-2%) of subjects…” 

 Computer architects (often): “We ran each experiment once, 

here are the bars” 

 “What are the confidence intervals?” Common responses: 

 Madness is doing the same thing twice and expecting a different result! 

 Simulations take a long time! Better to simulate for 5x longer… 

 Confidence what? 

 

 The Java tribe: “We ran each benchmark 10 times and report 

the best execution times” 

 The other 9 are to warm the JVM up… 

6.888 Spring 2013 - Sanchez and Emer - L05 



Observational Error 
5 

 Most experiments (and definitely computers) are subject to 
variability 

 Two types of observational error: 

 Systematic: Always occurs in the same way 

 Performance counter bugs, instrumentation overhead, room temperature & 
turbo, simulator bugs… 

 Random: Due to natural system variability and non-determinism 

 Initial machine state, VM mappings, ASLR, interrupts, benchmarks that use 
randomized algorithms, … 

 In parallel systems, amplified by lock acquisition order, barrier synchronization, 
etc. 

 

 Avoiding systematic error: 

 Detect them… good luck 

 Either redesign experiment or estimate impact and adjust measurement 

 Reducing random error: Make your confidence intervals small 

6.888 Spring 2013 - Sanchez and Emer - L05 



Confidence Intervals 
6 

 We take N samples from a population (e.g., run a benchmark 

N times) and want to approximate a parameter about the 

whole population (e.g., the true mean time of all runs) with 

those samples (e.g., the sample mean time of the N runs) 

 Can we compute the actual error between both? 

 An X% confidence interval is the range of values that is X% 

likely to contain the true value across the whole population 

 Multiple ways to estimate 

 Typically, assume gaussian distribution, compute sample mean and 

std, and use inverse CDF to compute (symmetric) range 

 In most real-world systems, increasing N makes interval smaller 

 Infinite-variance distributions exist, in paper… 

6.888 Spring 2013 - Sanchez and Emer - L05 



The real system has randomness… 

does your simulator? 7 

 Same starting state, no interrupts, deterministic event 

ordering? You have a problem 

 e.g., your benchmark executes +/-10% of instructions in the 

real system depending on e.g., starting machine state 

 Your baseline design happens to hit the -10% 

 Your 5% IPC-improved design happens to hit the +10%... 

Often worse in parallel benchmarks 

 Add some randomness, even artificially (+/-2 cycles on 

memory accesses) [Alameldeen and Wood, IEEE Micro 06] 

May not model the real randomness, but often good enough 

6.888 Spring 2013 - Sanchez and Emer - L05 



Sampling and cold-start effects 
8 

 Often, can only run short benchmarks (~100M instrs) 

 But want to estimate performance of much longer runs! 

 Problem 1: Choose statistically significant portions of the 

program. Options: 

 Analyze the workload beforehand, pick samples [SimPoints, 

Sherwood et al, ISCA/SIGMETRICS 03] 

 Periodic or randomized sampling, and treat it as a sampling 

problem [SMARTS, Wunderlich et al, ISCA 03] 

 Problem 2: Microarchitectural state (caches, predictors, 

etc) not warmed up! 

 Functional-only or detailed (timing) warming 

 6.888 Spring 2013 - Sanchez and Emer - L05 



Summarizing Performance 
9 

 Ideal world: 

 Ideal chip manufacturer: Compared to our old chip, our new 

one improves performance of benchmark 1 by 10%, 

benchmark 2 by 50%, benchmark 3 by -10%, etc. 

 Ideal customer 1: I mostly run (something similar to) 

benchmark 2, let’s upgrade 

 Ideal customer 2: I’m half ~1, half ~3, not for me… 

 

 Real word: 

 Customer: I don’t know what I run, just give me a number! 

 Chip manufacturer: OK, here’s the mean improvement… 

6.888 Spring 2013 - Sanchez and Emer - L05 



Means 
10 

 

 Arithmetic:  
 

 Harmonic: 
 

 Geometric: 
 

 For positive differing quantities, amean > gmean > hmean 

 Rules of thumb: amean for absolutes, hmean for rates 
(speeds), gmean for ratios 

 In practice, use first principles as much as possible to derive 
aggregate metrics 

 Weighting or other means can be useful 

 And be honest… (Q: most/least used means in papers?) 

6.888 Spring 2013 - Sanchez and Emer - L05 

amean =
1

N
xi

i=1

N

å

hmean = N
1

xii=1

N

å

gmean = xi
i=1

N

Õ
æ

è
ç

ö

ø
÷

1/N



Scalability 
11 

 Speedup(N) = Time on 1 processor/Time on N processors 

What’s the best we can do? Linear? 

Often sublinear… 

 

 Strong scaling: Speedup on 1…N processors with fixed 

total problem size 

 

 Weak scaling: Speedup on 1…N processors with fixed 

per-processor problem size 

 

 
6.888 Spring 2013 - Sanchez and Emer - L05 



Work != Instructions 
12 

 Especially with multithreaded benchmarks 

 Classic example: Spinning 

 Increase memory latency, more spinning on lock acquires, 

spinning is really fast  higher IPC! 

 Solution 1: Run applications to completion 

 Solution 2: Instrument applications to measure units of 

work, measure time needed for N units 

 Solution 3: Discount “useless instructions” 

Great because we can still correlate to architectural metrics 

 But often hard in full-system simulations… 

6.888 Spring 2013 - Sanchez and Emer - L05 



Multi-programmed setups 
13 

 Parallel processors execute multiple jobs… 

 How to compute performance improvement of this? 

 

 

 Options (assuming work == instructions): 

 Variable-work methodology: Measure time to finish N 
instructions 

 Issues? 

 Fixed-work methodology: Measure time to finish N instructions 
for each program, then average 

 Terminate/keep running/rewind programs as they finish? 

 Issues? 

6.888 Spring 2013 - Sanchez and Emer - L05 

Job 1 Core 1 

Job 2 Core 2 

Job 1 

Job 2 

1.1x 

0.4x 



HW1 Notes 
14 

 “Here’s a simulator driver and some base code, build a cache 
hierarchy and measure how it does” 

 Underspecified problem, on purpose 

 Very simple core & memory model (why?) 

 ST or MP workloads (SPECCPU2006), so no coherence needed 

 Some unspecified dimensions: 

 Multilevel policies: Inclusive, non-inclusive, exclusive 
 Hard to do inclusive as is (hint: what does inclusion require?) 

 Write-through (hard, we only give you cache line addresses) vs write-back 

 Set selection policy (bit-selection or hashing) 

 Remember to use an appropriate methodology 

 Most issues are minor (work ~ instructions, minimal variability…) 

 Problem 3 explores fixed vs variable-work 

 Problem 5 requires design space exploration… don’t try to bruteforce 

 Questions? Mieszko, staff list 

6.888 Spring 2013 - Sanchez and Emer - L05 



Communication Models 
15 

 Shared memory: 

 Single address space 

 Implicit communication by reading/writing memory 

 Data 

 Control (semaphores, locks, barriers, …) 

 Low-level programming model: threads (e.g., pthreads) 

 Message passing: 

 Separate address spaces 

 Explicit communication by send/rcv messages 

 Data & control (blocking msgs, barriers, …) 

 Low-level programming model: 
processes + IPC (e.g., MPI) 

6.888 Spring 2013 - Sanchez and Emer - L05 

Mem 

Mem Mem Mem 

Network 



MIMD Taxonomy 
16 

 Shared memory: 

 Uniform Memory Access (UMA): 
Small-scale SMPs & CMPs (e.g., P6) 

 Non-Uniform Memory Accesses (NUMA): 

 Cache-coherent (ccNUMA) (e.g., Origin, 
Cray T3E, modern multi-socket) 

 Cache-only (COMA) (e.g., KSR1) 

 Non-coherent (e.g., Cray T3D) 

 Message-passing: 

Massively Parallel Processors (MPPs): 
Tightly-coupled, high-performance 
parts (e.g., BlueGene/Q) 

 Clusters: Loosely coupled, commodity parts (e.g., datacenters) 

6.888 Spring 2013 - Sanchez and Emer - L05 

P/$ P/$ P/$ 

Network 

Mem Mem 

P/$ P/$ P/$ 

Network 

Mem Mem Mem 

P/$ P/$ P/$ 

Network 

Mem Mem Mem 



Shared Memory vs Message-Passing 

Programming 17 

 Shared memory: Typically, 

 Easier to improve incrementally 
 Start with sequential version, add synchronization, analyze bottlenecks 

 Harder to fully optimize 
 False sharing, spinning, remote accesses, harder to analyze… 

 Harder to scale 
 Communication is implicit  Ignore, overuse 

 Message passing: Typically, 

 Harder to improve incrementally 
 Explicit data partitioning and communication; changing algorithm often 

requires rewrite 

 Easier to fully optimize 
 Easier to analyze, easier to hide latencies 

 Easier to scale 
 Explicit communication is explicit  Think about it, minimize 

6.888 Spring 2013 - Sanchez and Emer - L05 



Example: Iterative Solver 
18 

double a[2][MAXI+2][MAXJ+2]; //two copies of state 

                             //use one to compute the other 

for (s = 0; s < STEPS; s++) { 

 k = s&1; // 0 1 0 1 0 1 ... 

 m = k^1; // 1 0 1 0 1 0 ... 

 for(i = 1; i <= MAXI; i++) {  // do iterations in parallel 

  for(j=1; j <= MAXJ; j++){ 

   a[k][i][j] = c1*a[m][i][j] + c2*a[m][i-1][j] + 

     c3*a[m][i+1][j] + c4*a[m][i][j-1] + 

     c5*a[m][i][j+1]; 

  } 

 } 

} 

6.888 Spring 2013 - Sanchez and Emer - L05 

a[k] a[m] 

[based on 

Kozyrakis & Binkert, 

EE282 L7, 2011] 



Data Partitioning & Communication 
19 

 Divide matrix in square blocks 

 e.g.  64x64 matrix, each 

processor owns a 16x16 submatrix 

 Processor 6 

Owns [i][j] = [32…47][16…31] 

 Shares [i][j] = [31][16…31] 

and three other strips 

 Each processor: 

 Communicates to get shared data 

it needs 

 Computes its data 

 6.888 Spring 2013 - Sanchez and Emer - L05 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

0 

15 

31 

47 

63 

0 15 31 47 63 



Message-Passing Code 
20 

6.888 Spring 2013 - Sanchez and Emer - L05 

Fork N processes and distribute subarrays to processors 

 Each process computes north[p], south[p], 

 east[p], west[p],-1 if no neighbor in direction 

 

for (s=0; s<STEPS; s++) { 

 k = s&1; 

 m = k^1; 

 if (north[p]>= 0) send(north[p], NORTH, a[m][1][1..MAXSUBJ]); 

 if (east[p]>= 0) send(east[p], EAST, a[m][1..MAXSUBI][1]); 

 same for south and west 

 if (north[p]>= 0) receive(NORTH, a[m][0][1..MAXSUBJ]); 

 same for other directions 

 for (i=1; i<=MAXSUBI; i++) {   

  for (j=1; j<=MAXSUBJ; j++){ 

   a[k][i][j] =  c1*a[m][i][j] + c2*a[m][i-1][j] + 

      c3*a[m][i+1][j] + c4*a[m][i][j-1] + 

      c5*a[m][i][j+1]; 

  } 

 } 

} 



Shared Memory Code 
21 

Create N threads 

 Each thread p computes istart[p], iend[p], jstart[p], jend[p] 

 Each thread runs: 

for (s=0; s<STEPS; s++) { 

 k = s&1; 

 m = k^1; 

 for(i=istart[p]; i<=iend[p]; i++) {     // e.g. 32..47 

  for(j=jstart[p]; j<=jend[p]; j++){  // e.g. 16..31 

   a[k][i][j] =  c1*a[m][i][j] + c2*a[m][i-1][j] + 

      c3*a[m][i+1][j] + c4*a[m][i][j-1] + 

      c5*a[m][i][j+1]; 

  } 

 } 

 barrier(); 

} 
6.888 Spring 2013 - Sanchez and Emer - L05 

So much easier! And similar performance! 

And no one would have written it this way first! 



The Perils of Implicit Communication 
22 

 By writing MP version first, we forced ourselves to think 

about data partitioning and communication 

 Most shared mem programmers just do this: 

6.888 Spring 2013 - Sanchez and Emer - L05 

 for(i=istart[p]; i<=iend[p]; i++) { 

  for(j=start; j<=end; j++){ 

 High-level programming models are good, right? 
 #pragma omp parallel for 

 for(i=istart; i<=iend; i++) { 

  for(j=jstart; j<=jend; j++){ 

 forall(i=istart; i<=iend; i++) { 

  for(j=jstart; j<=jend; j++){ 

 What’s the issue here? 



Computation/Communication Ratio 
23 

 Uh-oh… 2x communication/computation ratio 

 How does it scale to larger matrices/processor counts? 

6.888 Spring 2013 - Sanchez and Emer - L05 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

0 

15 

31 

47 

63 

0 15 31 47 63 
0 

15 

31 

47 

63 

Send      16*4 elems 

Rcv         16*4 elems 

Compute 16*16 elems 

Send       64*2 elems 

Rcv         64*2 elems 

Compute 64*4 elems 



Shared Memory Discussion 
24 

 UMA Scalability? 

 NUMA Scalability? 

 Cache coherence, consistency, atomic operations 

 Complexity? 

 Alternatives? 

 

 Can we cheaply emulate message-passing on shared 

memory HW? 

 

6.888 Spring 2013 - Sanchez and Emer - L05 



Message-passing Discussion 
25 

 Network speed/latency 

Memory bus vs I/O bus 

 Messaging overheads: Buffering, copying, protection 

OS-level vs user-level messaging 

 Protocol overheads vs network complexity 

 Synchronization overheads: Synchronous vs asynchronous 

 Polling vs interrupts? 

 

 Can we cheaply emulate shared memory on message-

passing HW? 

 
6.888 Spring 2013 - Sanchez and Emer - L05 



Readings for Wed 
26 

 High-level programming models 

 4 tracks, let’s divide up: 

 Task-parallel 

 Data-parallel 

 Pipeline-parallel 

 Implicit 

6.888 Spring 2013 - Sanchez and Emer - L05 


