# Lecture 4 Simulation

Joel Emer and Daniel Sanchez
6.888 Parallel and Heterogeneous Computer
Architecture
Spring 2013





### Scientific Research

- □Take hypothesis about environment
- □Design experiment
- □Run experiment and quantify
- □Interpret results
- □If necessary, create new hypothesis

- □Take hypothesis about environment
- □Design experiment
- □Run experiment and quantify
- □Interpret results
- □If necessary, create new hypothesis

- □Take hypothesis about environment
- □Design Experiment pick baseline design and workload
- □Run experiment and quantify
- □Interpret results
- □If necessary, create new hypothesis

- □Take hypothesis about environment
- □Design Experiment pick baseline design and workload
- □Run experiment and quantify run model or measure hardware
- □Interpret results
- □If necessary, create new hypothesis

- □Take hypothesis about environment
- □Design Experiment pick baseline design and workload
- □Run experiment and quantify run model or measure hardware
- □Interpret results
- □If necessary, propose new design

## Simulator wars



## Simulation Tradeoffs

# Modeling Approaches

```
□Hardware measurement
□ Prototyping
   □Hardware
   □Simulation
   ■Software
   Hardware
   □ Emulation
   □Software
   Hardware
   What are the basic strengths and weaknesses of each approach?
```

# **Techniques**

- □Parallelization
- □Modularization
- □Split functional/timing
  - Timing-directed vs Functional-directed
- □Split behavior/timing
- Hardware-only
  - Time-division multiplexing
  - "Transplanting"