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Review: ILP Challenges 

 Clock frequency: getting close to pipelining limits 

 Clocking overheads, CPI degradation 

 Branch prediction & memory latency limit the practical 
benefits of out-of-order execution 

 Power grows superlinearly with higher clock & more 
OOO logic 

 Design complexity grows exponentially with issue width 

 

 Limited ILP  Must exploit TLP and DLP 

 Thead-Level Parallelism: Multithreading and multicore 

 Data-Level Parallelism: SIMD 
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Review: Memory Hierarchy 
3 

 Caching: Reduce latency, energy, BW of memory accesses  

 Why multilevel? 

 Why not just on-chip memories? 

 How does parallelism impact latency/BW constraints? 

 Prefetching: Trade-off latency for bandwidth, energy, capacity (pollution) 
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Flynn’s Taxonomy 
4 

Single instruction Multiple instruction 

Single data SISD MISD (?) 

Multiple data SIMD MIMD 
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SIMD Processing 
5 

 Same instruction sequence applies to multiple elements 

 Vector processing  Amortize instruction costs (fetch, decode, 

…) across multiple operations 

 Requires regular data parallelism (no or minimal divergence) 

 

 Exploiting SIMD: 

 Explicit & low-level, using vector intrinsics 

 Explicit & high-level, convey parallel semantics (e.g., foreach) 

 Implicitly: Parallelizing compiler infers loop dependencies 

 How easy is this in C++? Java? 
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SIMD Implementations 
6 

 Modern CPUs: SIMD extensions & wider regs 

 SSE: 128-bit operands (4x32-bit or 2x64-bit) 

 AVX (2011): 256-bit operands (8x32-bit or 4x64-bit) 

 LRB (upcoming): 512-bit operands 

 Explicit SIMD: Parallelization performed at compile time 

 

 GPUs: Architected for SIMD from the ground up 

 32 to 64 32-bit floats 

 Implicit SIMD: Scalar binary, multiple instances always run in 

lockstep 

 How to handle divergence? 
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Multithreading: Options 
7 

 Motivation: Hardware 
underutilized on stalls  
TLP to increase utilization 

 

 CGMT, SMT typically 
increase throughput with 
moderate cost, maintain 
single-thread performance 

 

 FGMT typically trades 
throughput and simplicity 
at the expense of single-
thread performance 
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Example 1: SMT (Nehalem) 
8 

 SMT design choices: For each component,  

 Replicate, partition statically, or share 

 Tradeoffs? Complexity, utilization, interference & fairness 

 

 Example: Intel Nehalem 

 4-wide superscalar, 2-way SMT 

 Replicated: Register file, RAS predictor, large-page ITLB 

 Partitioned: Load buffer, store buffer, ROB, small-page ITLB 

 Shared: Instruction window, execution units, predictors, caches, DTLBs 

 

 SMT policies: 

 Fetch policies: Utilization vs fairness 

 Long-latency stall tolerance: Flushing vs stalling 
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[See: “Exploiting Choice: Instruction 

Fetch and Issue on an Implementable 

Simultaneous Multithreading 

Processor”, Tullsen et al, ISCA 96] 



Example 2: FGMT (Niagara) 
9 

 4 threads/core, round-robin scheduling 

 No branch prediction, minimal bypasses  more stalls 

 Small L1 caches (can tolerate higher L1 miss rates) 

 But L2 is still large… performance with long-latency stalls? 
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Example 3: Extreme FGMT (Tera MTA) 
10 

 Use FGMT to hide all instruction latencies 

 Worst case instruction latency is 128 cycles  128 threads 

 Benefits: no interlocks, no bypass, and no cache 

 Problem: single-thread performance 

 GPUs also exploit high FGMT for latency tolerance (e.g., Fermi, 48-way MT) 

 Throughput-oriented functional units: Longer latency, deeply pipelined 

 Throughput-oriented memory system: Small caches, aggressive memory scheduler 
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Multithreading: How Many Threads? 
11 

 With more HW threads: 

 Larger/multiple register files 

 Replicated & partitioned resources  
Lower utilization, lower single-thread 
performance 

 Shared resources  Utilization vs 
interference and thrashing  

 

 Impact of MT/MC on memory hierarchy? 
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[“Many-Core vs. Many-Thread Machines: Stay 

Away From the Valley”,  Guz et al, CAL 09] 



Amdahl’s Law 
12 

 Amdahl’s Law: If a change improves a fraction f of the 

workload by a factor K, the total speedup is:  

 

 

 

 Not only valid for performance! 

 Energy, complexity, … 

 I/D/TLP techniques make different tradeoffs between K 

and f 

 SIMD vs MIMD f and K? 
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Amdahls’ Law in the Multicore Era 

[Hill & Marty, CACM 08] 

 Should we focus on a single approach to extract parallelism? 

 At what point should we trade ILP for TLP? 
 

 Assume a resource-limited multi-core 

 N base core equivalent (BCEs) due to area or power constraints 

 A 1-BCE core leads to performance of 1 

 A R-BCE core leads to performance of perf(R) 

 Assuming perf(R) = sqrt(R) in following drawings (Pollack’s rule) 
 

 How should we design the multi-core? 

 Select type & number of cores 

 Assume caches & interconnect are rather constant 

 Assume no application scaling (or equal scaling for seq/par portions) 
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Three Multicore Approaches 

Large Cores  
(R BCEs/core) 

Simple Cores 
(1 BCE/core) 

Number Performance Number Performance 

Symmetric CMP N/R Seq: Perf(R) 
Par: N/R*Perf(R) 

-  -  

Asymmetric 
CMP 

1 Seq: Perf(R) 
Par: Perf(R) 

N-R Seq: -  
Par: N-R 

Dynamic CMP 1 Seq: Perf(R) 
Par: -  

N Seq: -  
Par: N 

16 1-BCE cores Symmetric: 

4 4-BCE cores 

Asymmetric: 

1 4-BCE core 

& 12 1-BCE cores 

Dynamic: 

Adapt between 

16 1-BCEs and 1 16-BCE 
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Amdahl’s Law x3 

 Symmetric CMP 

 

 

 

 Asymmetric CMP 

 

 

 

 Dynamic CMP 

Symmetric Speedup  = 

1 

+ 
1 - F 
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1 

+ 
1 - F 

Perf(R) 
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Symmetric Multicore Chip 

N = 256 BCEs 
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F1 

R=1 (vs. 1) 
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Speedup=204 (vs. 16) 

    MORE CORES! 

F=0.99 

R=3 (vs. 1) 

Cores=85 (vs. 16) 

Speedup=80 (vs. 13.9) 

CORE ENHANCEMENTS 

& MORE CORES! 

 Results in parentheses  N= 16 

 Higher N  Higher R (more ILP) for fixed f 
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Asymmetric Multicore Chip 

N = 256 BCEs 
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 Results in parentheses  N= 16 

 Better speedups than symmetric 

 Software complexity? 
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Dynamic Multicore Chip 

N = 256 BCEs 

 Results in parenthesis refer to N=16 

 Dynamic offers even higher speedups than asymmetric 

 SW and HW complexity? 
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Readings for Wednesday 

1. Is Dark Silicon Useful? 

2. Dark Silicon and the End of Multicore Scaling 

3. Single-Chip Heterogeneous Computing 
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