LECTURE 2
ILP, DLP AND TLP IN MODERN MULTICORES

DANIEL SANCHEZ AND JOEL EMER

6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE
SPRING 2013

I I I I Massachusetts Institute of Technology |

CSAIL

Review: ILP Challenges

Clock frequency: getting close to pipelining limits
Clocking overheads, CPl degradation

Branch prediction & memory latency limit the practical
benefits of out-of-order execution

Power grows superlinearly with higher clock & more

OO0 logic

Design complexity grows exponentially with issue width

Limited ILP = Must exploit TLP and DLP
Thead-Level Parallelism: Multithreading and multicore
Data-Level Parallelism: SIMD

Review: Memory Hierarchy

3
Main Memor
16GB ’ 150 cycles, 21GB/s
L3 26-31 cycles, 96GB/s
(24GB/s/core)
12 12 12 12
256KB 256KB 256KB 256KB 8 cycles, 48GB/s
it | o i | it | i |
64kB | 64kB W 64KB 64KB 64kB | 64KkB 4 cycles, 72GB/s

Core Core Core Core

1 Caching: Reduce latency, energy, BW of memory accesses
o Why multilevel?
2 Why not just on-chip memories?
01 How does parallelism impact latency /BW constraints?
71 Prefetching: Trade-off latency for bandwidth, energy, capacity (pollution)

6.888 Spring 2013 - Sanchez and Emer - LO2

Flynn’s Taxonomy

Multiple data SIMD MIMD

6.888 Spring 2013 - Sanchez and Emer - LO2

SIMD Processing

Same instruction sequence applies to multiple elements

Vector processing =2 Amortize instruction costs (fetch, decode,
...) across multiple operations

Requires regular data parallelism (no or minimal divergence)

Exploiting SIMD:
Explicit & low-level, using vector intrinsics
Explicit & high-level, convey parallel semantics (e.g., foreach)

Implicitly: Parallelizing compiler infers loop dependencies

How easy is this in C++2 Java?

SIMD Implementations

Modern CPUs: SIMD extensions & wider regs
SSE: 128-bit operands (4x32-bit or 2x64-bit)
AVX (2011): 256-bit operands (8x32-bit or 4x64-bit)
LRB (upcoming): 512-bit operands

Explicit SIMD: Parallelization performed at compile time

GPUs: Architected for SIMD from the ground up
32 to 64 32-bit floats

Implicit SIMD: Scalar binary, multiple instances always run in
lockstep

How to handle divergence?

Multithreading: Options

Thread 1 05 context switch code Thread 2

Mothvtion Hordwore ot BlNGEEE-EREEEEEE

TLP to increase utilization

Tntermpt, exception, or 08 a]l rehum frorn excepton T

Thread 1 Thread 2 Thread 3 Thread 1

comt, smT wypicalty iz GUIRGEERANHRREAR:

(CMT)
increase throughput with

moderate cost, maintain o

single-thread performance 2zt 1 ERRZRNGE

(FMT)

Cache ross Cache ross T Cache ross T

ELEEL]

A Bies Mol [t [[L |

) (SMT)
at the expense of single-

Execution
thread performance Units L"ﬁme

6.888 Spring 2013 - Sanchez and Emer - LO2

Example 1: SMT (Nehalem)

SMT design choices: For each component,
Replicate, partition statically, or share

Tradeoffs?2 Complexity, utilization, interference & fairness

Example: Intel Nehalem
4-wide superscalar, 2-way SMT
Replicated: Register file, RAS predictor, large-page ITLB
Partitioned: Load buffer, store buffer, ROB, small-page ITLB

Shared: Instruction window, execution units, predictors, caches, DTLBs

SMT pOIICIeS: [See: “Exploiting Choice: Instruction

Fetch policies: Utilization vs fairness Fetch and Issue on an Implementable
. . Simultaneous Multithreading
Long-latency stall tolerance: Flushing vs stalling Processor”, Tullsen et al, ISCA 96]

6.888 Spring 2013 - Sanchez and Emer - LO2

Example 2: FGMT (Niagara)

9
l ol | ol | al | ol | 1 -
A A AL I Fetch U Thrdsel U Decode U Execute o Memory o WEB
2|2l el !
AHHHEHEHEE Rﬂﬁz"h—l
L B T T I T B I W |
JHEHEHEE |-Cache Inst t AU |
- - - - - - = > | ; —
S ‘ tib bufx 4 T~ Thrd Mul |y D-CaChe T cbar
Tl T |+ 5 " » Sel —f Decode Shit Dtlb Interface
Crossbar sl:;gd ;"""”-':“ NDI".-' | Sthufx 4 '
: Y : functions '
a : : +— |nstruction type
5 i ; Thread SEIE!IE/T Thread misses R
Select
4dbay bankbd L2 cabhe l L ogic +—— traps & interrupts
: 5 : PC loeic +— resource conflicts
T Thrd =77~ %8 \
a 5 : - x4
i Sel |,
Memory controllers & 1/0 Mux o

1 4 threads/core, round-robin scheduling
No branch prediction, minimal bypasses = more stalls

Small L1 caches (can tolerate higher L1 miss rates)

w But L2 is still large... performance with long-latency stalls?

6.888 Spring 2013 - Sanchez and Emer - LO2

Example 3: Extreme FGMT (Tera MTA)

Inst,

Inst., 1Bl C]
Inst. [E]

Inst;,
Inst LE|
Inst,4 [E]
Inst,
Inst,4

Inst, N

Use FGMT to hide all instruction latencies
Worst case instruction latency is 128 cycles > 128 threads

|
-

[~

LC L]
[F1[c]

Benefits: no interlocks, no bypass, and no cache
Problem: single-thread performance
GPUs also exploit high FGMT for latency tolerance (e.g., Fermi, 48-way MT)

Throughput-oriented functional units: Longer latency, deeply pipelined
Throughput-oriented memory system: Small caches, aggressive memory scheduler

Multithreading: How Many Threads?

11

With more HW threads: 5

Larger /multiple register files

Replicated & partitioned resources =2
Lower utilization, lower single-thread
performance 2-

Shared resources = Utilization vs |
interference and thrashing O s

Throughput (IPC)
1

Impact of MT/MC on memory hierarchy?

MT
Region Valley Region

Performance

[“Many-Core vs. Many-Thread Machines: Stay
Away From the Valley”, Guz et al, CAL 09]

Number Of Threads

6.888 Spring 2013 - Sanchez and Emer - LO2

Amdahl’s Law

Amdahl’s Law: If a change improves a fraction f of the
workload by a factor K, the total speedup is:

Time 1

before

Speedup = =
Time f/IK+(@1-1)

after

Not only valid for performance!

Energy, complexity, ...

|/D/TLP techniques make different tradeoffs between K
and f

SIMD vs MIMD f and K2

6.888 Spring 2013 - Sanchez and Emer - LO2

12

Amdahls’ Law in the Multicore Era

[Hill & Marty, CACM 08]

Should we focus on a single approach to extract parallelism?

At what point should we trade ILP for TLP?¢

Assume a resource-limited multi-core
N base core equivalent (BCEs) due to area or power constraints
A 1-BCE core leads to performance of 1

A R-BCE core leads to performance of perf(R)
Assuming perf(R) = sqrt(R) in following drawings (Pollack’s rule)

How should we design the multi-core?
Select type & number of cores
Assume caches & interconnect are rather constant

Assume no application scaling (or equal scaling for seq/par portions)

13

Three Multicore Approaches

14

Large Cores Simple Cores
(R BCEs/core) (1 BCE/core)
Number Performance Number Performance
Symmetric CMP N/R Seq: Perf(R) - -
Par: N/R*Perf(R)
Asymmetric 1 Seq: Perf(R) N-R Seq: -
CMP Par: Perf(R) Par: N-R
Dynamic CMP 1 Seq: Perf(R) N Seq: -
Par: - Par: N
o [0t [[T R e b b D (10| [i>h] |1
L2 ol it T (1o [Ip] (100 o8] [0 [15E] (158
16 1-BCE cores Symmetric: Asymmetric: Dynamic:
4 4-BCE cores 1 4-BCE core Adapt between

& 12 1-BCE cores 16 1-BCEs and 1 16-BCE

Amdahl’s Law x3

Symmetric CMP

Symmetric Speedup =

1-F FER
Perf(R) Perf(R)*N
Asymmetric CMP
Asymmetric Speedup =
F
1-F
Perf(R) Perf(R) + N - R
Dynamic CMP
Dynamic Speedup =
1-F "
Perf(R) N

6.888 Spring 2013 - Sanchez and Emer - LO2

15

Symmetric Multicore Chip
N = 256 BCEs

250

N
o
o

\ FI

[EY
Ul
o

F=0999 R=] (vs. 1)
\Cores=256 (vs. 16)

100

Symmetric Speedup

50

Speedup=204 (vs. 16)
MORE CORES!

F:

R=3

Cores= 850(v1's 13)

=0.99 F=0.9
vs. 1) F=0.5

8 16 3 R=28 (;r&. 2) 256

4

Speedup=80 (vs. 13. 9) RBCEs/core (Cores=9 (vs. 8)

CORE ENHANCEMENTS Speedup=26.7 (vs. 6.7)
& MORE CORES! CORE ENHANCEMENTS!

71 Results in parentheses 2> N= 16

- Higher N 2> H

igher R (more ILP) for fixed f

6.888 Spring 2013 - Sanchez and Emer - LO1

Asymmetric Multicore Chip
N = 256 BCEs

17
250
F=0.999
S 200 — \ F=0.99
S R 41 (vs. 3)
a Cores—216 (vs. 85)
& 150
9 y Speedup=166 (vs. 80)
L
g 10 F=0.975
>
< F=0.9 F=0.9
. F=05 R=118 (vs. 28)
_=7 . I I
. 5 4 o 16 2 e ¢ Cores= 139 (vs. 9)
R BCEs Speedup 65.6
(vs. 26.7)

Results in parentheses 2> N= 16

Better speedups than symmetric

Software complexity?

6.888 Spring 2013 - Sanchez and Emer - LO1

Dynamic Multicore Chip
N = 256 BCEs 18

250 N

% N

g, 200
2 / F=0.99
@ 150 R=256 (vs. 41)
Q. F=0.99
» / Cores=256 (vs. 216)
[= Speedup=223 (vs. 166
E 100 / F=0.975 P P ()
Ey Note:

50 F=0.9 HCores

=05 __— always
[: . . : . . N=256
1 2 4 8 16 32 64 128 256
R BCEs

Results in parenthesis refer to N=16

Dynamic offers even higher speedups than asymmetric
SW and HW complexity?

6.888 Spring 2013 - Sanchez and Emer - LO1

Readings for Wednesday

Is Dark Silicon Useful?
Dark Silicon and the End of Multicore Scaling
Single-Chip Heterogeneous Computing

6.888 Spring 2013 - Sanchez and Emer - LO2

19

