
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 2

ILP, DLP AND TLP IN MODERN MULTICORES

DANIEL SANCHEZ AND JOEL EMER

Review: ILP Challenges

 Clock frequency: getting close to pipelining limits

 Clocking overheads, CPI degradation

 Branch prediction & memory latency limit the practical
benefits of out-of-order execution

 Power grows superlinearly with higher clock & more
OOO logic

 Design complexity grows exponentially with issue width

 Limited ILP  Must exploit TLP and DLP

 Thead-Level Parallelism: Multithreading and multicore

 Data-Level Parallelism: SIMD

2

6.888 Spring 2013 - Sanchez and Emer - L02

Review: Memory Hierarchy
3

 Caching: Reduce latency, energy, BW of memory accesses

 Why multilevel?

 Why not just on-chip memories?

 How does parallelism impact latency/BW constraints?

 Prefetching: Trade-off latency for bandwidth, energy, capacity (pollution)

 6.888 Spring 2013 - Sanchez and Emer - L02

L3

6MB

Core

Main Memory

16GB

L1I

64KB

L1D

64KB

L2

256KB

Core

L1I

64KB

L1D

64KB

L2

256KB

Core

L1I

64KB

L1D

64KB

L2

256KB

Core

L1I

64KB

L1D

64KB

L2

256KB

4 cycles, 72GB/s

8 cycles, 48GB/s

26-31 cycles, 96GB/s

(24GB/s/core)

150 cycles, 21GB/s

Flynn’s Taxonomy
4

Single instruction Multiple instruction

Single data SISD MISD (?)

Multiple data SIMD MIMD

6.888 Spring 2013 - Sanchez and Emer - L02

SIMD Processing
5

 Same instruction sequence applies to multiple elements

 Vector processing  Amortize instruction costs (fetch, decode,

…) across multiple operations

 Requires regular data parallelism (no or minimal divergence)

 Exploiting SIMD:

 Explicit & low-level, using vector intrinsics

 Explicit & high-level, convey parallel semantics (e.g., foreach)

 Implicitly: Parallelizing compiler infers loop dependencies

 How easy is this in C++? Java?

6.888 Spring 2013 - Sanchez and Emer - L02

SIMD Implementations
6

 Modern CPUs: SIMD extensions & wider regs

 SSE: 128-bit operands (4x32-bit or 2x64-bit)

 AVX (2011): 256-bit operands (8x32-bit or 4x64-bit)

 LRB (upcoming): 512-bit operands

 Explicit SIMD: Parallelization performed at compile time

 GPUs: Architected for SIMD from the ground up

 32 to 64 32-bit floats

 Implicit SIMD: Scalar binary, multiple instances always run in

lockstep

 How to handle divergence?

6.888 Spring 2013 - Sanchez and Emer - L02

Multithreading: Options
7

 Motivation: Hardware
underutilized on stalls 
TLP to increase utilization

 CGMT, SMT typically
increase throughput with
moderate cost, maintain
single-thread performance

 FGMT typically trades
throughput and simplicity
at the expense of single-
thread performance

6.888 Spring 2013 - Sanchez and Emer - L02

Example 1: SMT (Nehalem)
8

 SMT design choices: For each component,

 Replicate, partition statically, or share

 Tradeoffs? Complexity, utilization, interference & fairness

 Example: Intel Nehalem

 4-wide superscalar, 2-way SMT

 Replicated: Register file, RAS predictor, large-page ITLB

 Partitioned: Load buffer, store buffer, ROB, small-page ITLB

 Shared: Instruction window, execution units, predictors, caches, DTLBs

 SMT policies:

 Fetch policies: Utilization vs fairness

 Long-latency stall tolerance: Flushing vs stalling

6.888 Spring 2013 - Sanchez and Emer - L02

[See: “Exploiting Choice: Instruction

Fetch and Issue on an Implementable

Simultaneous Multithreading

Processor”, Tullsen et al, ISCA 96]

Example 2: FGMT (Niagara)
9

 4 threads/core, round-robin scheduling

 No branch prediction, minimal bypasses  more stalls

 Small L1 caches (can tolerate higher L1 miss rates)

 But L2 is still large… performance with long-latency stalls?

6.888 Spring 2013 - Sanchez and Emer - L02

Example 3: Extreme FGMT (Tera MTA)
10

 Use FGMT to hide all instruction latencies

 Worst case instruction latency is 128 cycles  128 threads

 Benefits: no interlocks, no bypass, and no cache

 Problem: single-thread performance

 GPUs also exploit high FGMT for latency tolerance (e.g., Fermi, 48-way MT)

 Throughput-oriented functional units: Longer latency, deeply pipelined

 Throughput-oriented memory system: Small caches, aggressive memory scheduler

 6.888 Spring 2013 - Sanchez and Emer - L02

InstT1

InstT3

A B C F G H

A B C D E E G H

D E

A B E F G H C D

A B E F G H C D

InstT2

InstT4

A B E F G H C D

A B E F G H C D

A B E F G H C D

A B E F G H C D

A B E F G H C D

InstT5

InstT7

InstT6

InstT8

InstT1

Multithreading: How Many Threads?
11

 With more HW threads:

 Larger/multiple register files

 Replicated & partitioned resources 
Lower utilization, lower single-thread
performance

 Shared resources  Utilization vs
interference and thrashing

 Impact of MT/MC on memory hierarchy?

6.888 Spring 2013 - Sanchez and Emer - L02

[“Many-Core vs. Many-Thread Machines: Stay

Away From the Valley”, Guz et al, CAL 09]

Amdahl’s Law
12

 Amdahl’s Law: If a change improves a fraction f of the

workload by a factor K, the total speedup is:

 Not only valid for performance!

 Energy, complexity, …

 I/D/TLP techniques make different tradeoffs between K

and f

 SIMD vs MIMD f and K?

6.888 Spring 2013 - Sanchez and Emer - L02

)1(/

1

Time

Time
Speedup

after

before

fKf 


Amdahls’ Law in the Multicore Era

[Hill & Marty, CACM 08]

 Should we focus on a single approach to extract parallelism?

 At what point should we trade ILP for TLP?

 Assume a resource-limited multi-core

 N base core equivalent (BCEs) due to area or power constraints

 A 1-BCE core leads to performance of 1

 A R-BCE core leads to performance of perf(R)

 Assuming perf(R) = sqrt(R) in following drawings (Pollack’s rule)

 How should we design the multi-core?

 Select type & number of cores

 Assume caches & interconnect are rather constant

 Assume no application scaling (or equal scaling for seq/par portions)

13

6.888 Spring 2013 - Sanchez and Emer - L02

Three Multicore Approaches

Large Cores
(R BCEs/core)

Simple Cores
(1 BCE/core)

Number Performance Number Performance

Symmetric CMP N/R Seq: Perf(R)
Par: N/R*Perf(R)

- -

Asymmetric
CMP

1 Seq: Perf(R)
Par: Perf(R)

N-R Seq: -
Par: N-R

Dynamic CMP 1 Seq: Perf(R)
Par: -

N Seq: -
Par: N

16 1-BCE cores Symmetric:

4 4-BCE cores

Asymmetric:

1 4-BCE core

& 12 1-BCE cores

Dynamic:

Adapt between

16 1-BCEs and 1 16-BCE

14

6.888 Spring 2013 - Sanchez and Emer - L02

Amdahl’s Law x3

 Symmetric CMP

 Asymmetric CMP

 Dynamic CMP

Symmetric Speedup =

1

+
1 - F

Perf(R)

F * R

Perf(R)*N

Asymmetric Speedup =

1

+
1 - F

Perf(R)

F

Perf(R) + N - R

Dynamic Speedup =

1

+
1 - F

Perf(R)

F

N

15

6.888 Spring 2013 - Sanchez and Emer - L02

6.888 Spring 2013 - Sanchez and Emer - L01

Symmetric Multicore Chip

N = 256 BCEs

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

Sy
m

m
e

tr
ic

 S
p

e
e

d
u

p

R BCEs/core

F=0.999

F=0.99

F=0.975

F=0.9

F=0.5
F=0.9

R=28 (vs. 2)

Cores=9 (vs. 8)

Speedup=26.7 (vs. 6.7)

CORE ENHANCEMENTS!

F1

R=1 (vs. 1)

Cores=256 (vs. 16)

Speedup=204 (vs. 16)

 MORE CORES!

F=0.99

R=3 (vs. 1)

Cores=85 (vs. 16)

Speedup=80 (vs. 13.9)

CORE ENHANCEMENTS

& MORE CORES!

 Results in parentheses  N= 16

 Higher N  Higher R (more ILP) for fixed f

16

6.888 Spring 2013 - Sanchez and Emer - L01

Asymmetric Multicore Chip

N = 256 BCEs

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

A
sy

m
m

et
ri

c
Sp

e
e

d
u

p

R BCEs

F=0.999

F=0.99

F=0.975

F=0.9

F=0.5
F=0.9

R=118 (vs. 28)

Cores= 139 (vs. 9)

Speedup=65.6

 (vs. 26.7)

F=0.99

R=41 (vs. 3)

Cores=216 (vs. 85)

Speedup=166 (vs. 80)

 Results in parentheses  N= 16

 Better speedups than symmetric

 Software complexity?

17

6.888 Spring 2013 - Sanchez and Emer - L01

Dynamic Multicore Chip

N = 256 BCEs

 Results in parenthesis refer to N=16

 Dynamic offers even higher speedups than asymmetric

 SW and HW complexity?

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

D
yn

am
ic

 S
p

e
e

d
u

p

R BCEs

F=0.999

F=0.99

F=0.975

F=0.9

F=0.5

F=0.99

R=256 (vs. 41)

Cores=256 (vs. 216)

Speedup=223 (vs. 166)

Note:

#Cores

always

N=256

18

Readings for Wednesday

1. Is Dark Silicon Useful?

2. Dark Silicon and the End of Multicore Scaling

3. Single-Chip Heterogeneous Computing

19

6.888 Spring 2013 - Sanchez and Emer - L02

