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Evolution of FPGA applications   
3 

¨  Logic Replacement 
¤ Low design cost and effort 
¤ Low volume applications 
¤ Often replaced with ASIC as volume increases 

 

¨  Algorithmic computation 
¤ Offloads a general purpose processor 
¤ Used for multiple algorithms 
¤ ASIC replacement not expected 
 

6.888 Spring 2013 - Sanchez and Emer – L16 



Benefits of FPGA computation 
4 

 
 
¨ Custom operations/data types – custom operations/data types 
 

¨  Flexible flow control - control flow based on arbitrary state machines 
 
¨  Local state access - local state elements allows parallel state access 
 
¨  Fine grain parallelism - replicated logic permits easy parallelism 
 

¨  Custom communication - explicit direct inter-module communication 
 
¨  Reduced memory references – more direct reuse of data 
 

¨  Better power efficiency – more activity directly applied to computation 
 
¨  Better area efficiency – more area directly applied to computation 
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QPI-attached FPGA platform 
Intel QuickAssist QPI-based FPGA Accelerator 
Platform (QAP) 
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Reed Solomon Results 

Xilinx IP Catapult-
C 

Bluespec 

Equivalent 
Gate Count  297,409 596,730 267,741 

Frequency 
(MHz)  145.3 91.2 108.5 

Steady State 
(Cycles/
Block)  

660 2073 276 

Data rate 
(Mbps)  392.8 89.7 701.3 

Lower is better  Higher is better  

   WiMAX requirement is to support a throughput of 134Mbps 

Source: MIT, Abhinav Agarwal, Alfred Ng – CSG 



BORPH 

¨  Berkeley Operating system for ReProgrammable 
Hardware 

¨  OS for reconfigurable computers 
¤  Treats reconfigurable hardware as computational 

resources 
¨  UNIX interface to HW designs 

¤  Familiar to both software and hardware engineers 
¤ Design language independent 

¨  Goal: 

Make FPGA-based reconfigurable computers  
easy to use 
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Conventional View of FPGA Systems 
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BORPH Layers 
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Overview of BORPH Concepts 

¨  Hardware process 
¨  Hardware syscall interface 

¨  Interacting with an FPGA 
¤  ioreg virtual file interface 
¤  Hardware file I/O 
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Hardware Process (1) 

¨  An executing instance of a 
hardware design 
¤  SW: An executing instance of a 

program 

¨  Normal UNIX process 
¤  Has pid, check status with ps, 
kill, etc 

¨  Unit of management 
¨  Created when a BORPH Object 

File (BOF) file is  
exec-ed 
¤  Kernel selects and configure 

hardware region automatically 
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Benefits of UNIX Process Model 

¨  Very easy for user to reason about 
¨  Enable FPGA designs to become active component of the 

system 
¤  e.g. an FIR filter: 
¤ Conventional: a passive entity where software sends/receives data 
¤  BORPH: an active entity that pulls/pushes data as needed   

¨  Enable multiple instances of the same FPGA design running 
in the system 
¤ No more fixed accelerator concept 
¤ Works well in true reconfigurable computing systems 
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SW SW SW 
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HW Processes I/O 
¨  I/O managed by kernel 

¤  Similar to SW 

¨  Hide details from users 
¤  e.g. HW-SW, HW-HW UNIX 

file pipe 

¨  Standard UNIX I/O 
mechanism 
¤  File I/O, pipe, signal 

¨  HW specific service 
¤  ioreg virtual file system 

Don’t ask “How do I … in HW”. 
Think: “What if it were SW?” 
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ioreg Virtual File System 
¨  Maps user defined hardware constructs as virtual files under the process’s /

proc/<pid>/hw/ioreg/ directory 
¤  Single word register 
¤  Memory: On-chip + Off-chip 
¤  FIFO 

¨  Example: 
¤  /proc/123/hw/ioreg/COUNTERVAL 

¨  ioreg information embedded in the executing BOF file 
¨  read and write system calls translated to message packet by the kernel 

¤  Any UNIX program can communicate with hardware processes 
n  Shell: echo 1 > /proc/123/hw/ioreg/enable 
n  C: MEM_FILE =  
n      fopen(“/proc/123/hw/ioreg/MyMemory”, “r”); 
n    fread(swbuf, 1, MEM_SIZE, MEM_FILE); 
n  Python, Java, etc… 
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Hardware File I/O 
¨  Access to the general file system from hardware processes 
¨  Debug by printing 

¤  printf 
¨  Read test vectors, record output 

 
¨  SW/HW processes chained by file pipe 

Baseband 
Process A/D Analog 

Frontend 
Upper 
Layer 

Decode Resize 
Edge 

Detect Encode 

video.in video.out 

bash$ decode video.in | resize | edgdet.bof | encode > video.out 

bash$ receiver.bof < file.in > file.out 
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Latency-Insensitive Design: A Higher Semantic 

¨  Inter-module communication by latency insensitive channels 
¤  Changing the timing behavior of a module does not affect functional correctness of 

the program 

¨  Many HW designs use this methodology 
¤  Improved modularity 
¤  Simplified design-space exploration 

¨  Implemented with guarded FIFOs in current RTLs 
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Latency-Insensitive Design: A Higher Semantic 
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17 Behavior of LI channels does not affect functional correctness. 



Latency-Insensitive Design: A Higher Semantic 

¨  There are many FIFOs in the design 
¤  It may not be safe to modify some of them 

¨  Compilers see only wires and registers 
¤  Reasoning about cycle accuracy is difficult  
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A Syntax for LI Design 

¨  Programmer needs to 
differentiate LI channels from 
normal FIFOs 

¨  Latency-Insensitive Send/Recv 
endpoints 
¤  Implementation chosen by 

compiler 
¤  FIFO order 
¤  Guaranteed delivery 

¨  Explicit programmer contract 
¤  Unspecified buffering & 

unspecified latency 
¤  Programmer responsible for 

correct annotation 

module mkTimeP;  
 Send#(Inst) send <- mkSend(“Decode”); 
endmodule  

module mkFuncP;  
  Recv#(Inst) recv <- mkRecv(“Decode”); 
endmodule  

mkFuncP 
RTL 

mkTimeP 
RTL 

19 Easy to use – often a textual substitution!  
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