
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE
SPRING 2013

LECTURE 16
FINE-GRAINED RECONFIGURABLE

COMPUTING: FPGAS

JOEL EMER AND DANIEL SANCHEZ

Field Programmable Gate Arrays (FPGA)

And

00 0

01 0

10 0

11 1

LUT	
Latch	

RAM	

Or

00 0

01 0

10 1

11 1

Evolution of FPGA applications
3

¨  Logic Replacement
¤ Low design cost and effort
¤ Low volume applications
¤ Often replaced with ASIC as volume increases

¨  Algorithmic computation
¤ Offloads a general purpose processor
¤ Used for multiple algorithms
¤ ASIC replacement not expected

6.888 Spring 2013 - Sanchez and Emer – L16

Benefits of FPGA computation
4

¨ Custom operations/data types – custom operations/data types

¨  Flexible flow control - control flow based on arbitrary state machines

¨  Local state access - local state elements allows parallel state access

¨  Fine grain parallelism - replicated logic permits easy parallelism

¨  Custom communication - explicit direct inter-module communication

¨  Reduced memory references – more direct reuse of data

¨  Better power efficiency – more activity directly applied to computation

¨  Better area efficiency – more area directly applied to computation

6.888 Spring 2013 - Sanchez and Emer – L16

QPI-attached FPGA platform
Intel QuickAssist QPI-based FPGA Accelerator
Platform (QAP)

Four Socket QuickAssist Platform
Topology

QPI
Links

P M

P M

M

P M

CS

I/O I/O

CS

I/O I/O

QPI
Links

Altera Stratix IV
Module

Xilinx Virtex 6 Module

Intel® Xeon processor 7000 series

Accelerator Hardware
Module (AHM)

FPGA

QuickAssist FPGA

PCIe attached FPGA

6.888 Spring 2013 - Sanchez and Emer – L16

5

Reed Solomon Results

Xilinx IP Catapult-
C

Bluespec

Equivalent
Gate Count 297,409 596,730 267,741

Frequency
(MHz) 145.3 91.2 108.5

Steady State
(Cycles/
Block)

660 2073 276

Data rate
(Mbps) 392.8 89.7 701.3

Lower is better Higher is better

 WiMAX requirement is to support a throughput of 134Mbps

Source: MIT, Abhinav Agarwal, Alfred Ng – CSG

BORPH

¨  Berkeley Operating system for ReProgrammable
Hardware

¨  OS for reconfigurable computers
¤  Treats reconfigurable hardware as computational

resources
¨  UNIX interface to HW designs

¤  Familiar to both software and hardware engineers
¤ Design language independent

¨  Goal:

Make FPGA-based reconfigurable computers
easy to use

6.888 Spring 2013 - Sanchez and Emer – L16

7

6.888 Spring 2013 - Sanchez and Emer – L16

Conventional View of FPGA Systems

User Process
(SW)

OS Kernel

User Process
(SW)

User Process
(SW)

User Library

Hardware Platform
(Network, UART, HD…)

	

file IPC

Device Driver

So
ftw

ar
e

H
ar

dw
ar

e

socket pipe

FPGA “coprocessor”

Master-Slave
Relationship

6.888 Spring 2013 - Sanchez and Emer – L16

8

6.888 Spring 2013 - Sanchez and Emer – L16

BORPH Layers
User Process

(SW)
User Process

(SW)
User Process

(SW)

Hardware Platform
(Network, UART, HD…)

Device Driver

User Process
(HW)

User Process
(HW)

Hardware User Library

BORPH Kernel

So
ftw

ar
e

H
ar

dw
ar

e

User Library

file
IPC socket pipe

ioreg
virtual

file

Peer-to-Peer
Relationship

6.888 Spring 2013 - Sanchez and Emer – L16

9

Overview of BORPH Concepts

¨  Hardware process
¨  Hardware syscall interface

¨  Interacting with an FPGA
¤  ioreg virtual file interface
¤  Hardware file I/O

SW SW SW

Hardware Platform
(Network, UART, HD…)

Device Driver

HW HW

Hardware User Library

BORPH Kernel So
ftw

ar
e

H
ar

dw
ar

e

User Library
file IPC socket pipe

ioreg

6.888 Spring 2013 - Sanchez and Emer – L16

Hardware Process (1)

¨  An executing instance of a
hardware design
¤  SW: An executing instance of a

program

¨  Normal UNIX process
¤  Has pid, check status with ps,
kill, etc

¨  Unit of management
¨  Created when a BORPH Object

File (BOF) file is
exec-ed
¤  Kernel selects and configure

hardware region automatically

6.888 Spring 2013 - Sanchez and Emer – L16	

SW SW SW

Hardware Platform
(Network, UART, HD…)

Device Driver

HW HW

Hardware User Library

BORPH Kernel So
ftw

ar
e

H
ar

dw
ar

e

User Library
file IPC socket pipe

ioreg

11	

Benefits of UNIX Process Model

¨  Very easy for user to reason about
¨  Enable FPGA designs to become active component of the

system
¤  e.g. an FIR filter:
¤ Conventional: a passive entity where software sends/receives data
¤  BORPH: an active entity that pulls/pushes data as needed

¨  Enable multiple instances of the same FPGA design running
in the system
¤ No more fixed accelerator concept
¤ Works well in true reconfigurable computing systems

6.888 Spring 2013 - Sanchez and Emer – L16	

12

SW SW SW

Hardware Platform
(Network, UART, HD…)

Device Driver

HW HW

Hardware User Library

BORPH Kernel So
ftw

ar
e

H
ar

dw
ar

e

User Library
file IPC socket pipe

ioreg

HW Processes I/O
¨  I/O managed by kernel

¤  Similar to SW

¨  Hide details from users
¤  e.g. HW-SW, HW-HW UNIX

file pipe

¨  Standard UNIX I/O
mechanism
¤  File I/O, pipe, signal

¨  HW specific service
¤  ioreg virtual file system

Don’t ask “How do I … in HW”.
Think: “What if it were SW?”

6.888 Spring 2013 - Sanchez and Emer – L16	 13	

ioreg Virtual File System
¨  Maps user defined hardware constructs as virtual files under the process’s /

proc/<pid>/hw/ioreg/ directory
¤  Single word register
¤  Memory: On-chip + Off-chip
¤  FIFO

¨  Example:
¤  /proc/123/hw/ioreg/COUNTERVAL

¨  ioreg information embedded in the executing BOF file
¨  read and write system calls translated to message packet by the kernel

¤  Any UNIX program can communicate with hardware processes
n  Shell: echo 1 > /proc/123/hw/ioreg/enable
n  C: MEM_FILE =
n  fopen(“/proc/123/hw/ioreg/MyMemory”, “r”);
n  fread(swbuf, 1, MEM_SIZE, MEM_FILE);
n  Python, Java, etc…

6.888 Spring 2013 - Sanchez and Emer – L16

14

Hardware File I/O
¨  Access to the general file system from hardware processes
¨  Debug by printing

¤  printf
¨  Read test vectors, record output

¨  SW/HW processes chained by file pipe

Baseband
Process A/D Analog

Frontend
Upper
Layer

Decode Resize
Edge

Detect Encode

video.in video.out

bash$ decode video.in | resize | edgdet.bof | encode > video.out

bash$ receiver.bof < file.in > file.out

6.888 Spring 2013 - Sanchez and Emer – L16

15

Latency-Insensitive Design: A Higher Semantic

¨  Inter-module communication by latency insensitive channels
¤  Changing the timing behavior of a module does not affect functional correctness of

the program

¨  Many HW designs use this methodology
¤  Improved modularity
¤  Simplified design-space exploration

¨  Implemented with guarded FIFOs in current RTLs

Control	

Timing Partition

Exe	 Decode	 Fetch	

FPGA

Functional Partition

Exe	 Decode	 Fetch	

Control Partition

16

FPGA

FPGA1

FPGA0

Latency-Insensitive Design: A Higher Semantic

Timing Partition

Exe	 Decode	 Fetch	

Functional Partition

Exe	 Decode	 Fetch	

Control	

Control Partition

17 Behavior of LI channels does not affect functional correctness.

Latency-Insensitive Design: A Higher Semantic

¨  There are many FIFOs in the design
¤  It may not be safe to modify some of them

¨  Compilers see only wires and registers
¤  Reasoning about cycle accuracy is difficult

Control	

Timing Partition

Exe	 Decode	 Fetch	

FPGA

Functional Partition

Exe	 Decode	 Fetch	

Control Partition

18 But the programmer knows about the LI property…

A Syntax for LI Design

¨  Programmer needs to
differentiate LI channels from
normal FIFOs

¨  Latency-Insensitive Send/Recv
endpoints
¤  Implementation chosen by

compiler
¤  FIFO order
¤  Guaranteed delivery

¨  Explicit programmer contract
¤  Unspecified buffering &

unspecified latency
¤  Programmer responsible for

correct annotation

module mkTimeP;
 Send#(Inst) send <- mkSend(“Decode”);
endmodule

module mkFuncP;
 Recv#(Inst) recv <- mkRecv(“Decode”);
endmodule

mkFuncP
RTL

mkTimeP
RTL

19 Easy to use – often a textual substitution!

Pla8orm_1	

Pla8orm_1	
Comms	

Pla8orm_0	

Pla8orm_0	
Comms	

Connected User Application

mkApplicaAon	

mkB_Stub

mkC

mkA_Stub

mkApplicaAon_Stub	

mkB

mkC_Stub

mkA

Library Generated User Key: 6.888 Spring 2013 - Sanchez and Emer – L16

20

