
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 14

GPUS

DANIEL SANCHEZ AND JOEL EMER

[INCORPORATES MATERIAL FROM KOZYRAKIS (EE382A),
NVIDIA KEPLER WHITEPAPER, HENNESY&PATTERSON]

Today’s Menu
2

 Review of vector processors

 Basic GPU architecture

 Paper discussions

6.888 Spring 2013 - Sanchez and Emer - L14

Vector Processors

 Scalar processors operate on single numbers (scalars)

 Vector processors operate on linear sequences of
numbers (vectors)

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

vadd.vv v3, v1, v2

VECTOR

(N operations)

3

6.888 Spring 2013 - Sanchez and Emer - L14

What’s in a Vector Processor?

 A scalar processor (e.g. a MIPS processor)

 Scalar register file (32 registers)

 Scalar functional units (arithmetic, load/store, etc)

 A vector register file (a 2D register array)

 Each register is an array of elements

 E.g. 32 registers with 32 64-bit elements per register

 MVL = maximum vector length = max # of elements per register

 A set of vector functional units

 Integer, FP, load/store, etc

 Some times vector and scalar units are combined (share ALUs)

4

6.888 Spring 2013 - Sanchez and Emer - L14

Example of Simple

Vector Processor 5

6.888 Spring 2013 - Sanchez and Emer - L14

Basic Vector ISA

Instr. Operands Operation Comment

VADD.VV V1,V2,V3 V1=V2+V3 vector + vector

VADD.SV V1,R0,V2 V1=R0+V2 scalar + vector

VMUL.VV V1,V2,V3 V1=V2*V3 vector x vector

VMUL.SV V1,R0,V2 V1=R0*V2 scalar x vector

VLD V1,R1 V1=M[R1...R1+63] load, stride=1

VLDS V1,R1,R2 V1=M[R1…R1+63*R2] load, stride=R2

VLDX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed("gather")

VST V1,R1 M[R1...R1+63]=V1 store, stride=1

VSTS V1,R1,R2 V1=M[R1...R1+63*R2] store, stride=R2

VSTX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed(“scatter")

+ regular scalar instructions…

6

6.888 Spring 2013 - Sanchez and Emer - L14

Advantages of Vector ISAs

 Compact: single instruction defines N operations

 Amortizes the cost of instruction fetch/decode/issue

 Also reduces the frequency of branches

 Parallel: N operations are (data) parallel

 No dependencies

 No need for complex hardware to detect parallelism (similar to VLIW)

 Can execute in parallel assuming N parallel datapaths

 Expressive: memory operations describe patterns

 Continuous or regular memory access pattern

 Can prefetch or accelerate using wide/multi-banked memory

 Can amortize high latency for 1st element over large sequential pattern

7

6.888 Spring 2013 - Sanchez and Emer - L14

Vector Length (VL)
8

 Basic: Fixed vector length (typical in narrow SIMD)

 Is this efficient for wide SIMD (e.g., 32-wide vectors)?

 Vector-length (VL) register: Control the length of any vector operation,

including vector loads and stores

 e.g. vadd.vv with VL=10  for (i=0; i<10; i++) V1[i]=V2[i]+V3[i]

 VL can be set up to MVL (e.g., 32)

 How to do vectors > MVL?

 What if VL is unknown at compile time?

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 1: Chaining

 Suppose the following code with VL=32:

vmul.vv V1,V2,V3

vadd.vv V4,V1,V5 # very long RAW hazard

 Chaining

 V1 is not a single entity but a group of individual elements

 Pipeline forwarding can work on an element basis

 Flexible chaining: allow vector to chain to any other active vector

operation => more read/write ports

vadd

vmul vadd

vmul

Unchained

Chained

9

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 2: Multiple Lanes

 Modular, scalable design

 Elements for each vector register interleaved across the lanes

 Each lane receives identical control

 Multiple element operations executed per cycle

 No need for inter-lane communication for most vector instructions

To/From Memory System

Pipelined

Datapath

Functional

Unit

Lane

Vector Reg.

Partition
Elements Elements Elements Elements

10

6.888 Spring 2013 - Sanchez and Emer - L14

Chaining & Multi-lane Example

VL=16, 4 lanes,

2 FUs, 1 LSU

chaining -> 12
ops/cycle

Just 1 new

instruction

issued per cycle

!!!!

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1 Scalar

Time

Element Operations: Instr. Issue:

11

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 3: Conditional Execution

 Suppose you want to vectorize this:

for (i=0; i<N; i++) if (A[i]!= B[i]) A[i] -= B[i];

 Solution: Vector conditional execution (predication)

 Add vector flag registers with single-bit elements (masks)

 Use a vector compare to set the a flag register

 Use flag register as mask control for the vector sub

 Add executed only for vector elements with corresponding flag element set

 Vector code

 vld V1, Ra

 vld V2, Rb

 vcmp.neq.vv M0, V1, V2 # vector compare

 vsub.vv V3, V2, V1, M0 # conditional vadd

 vst V3, Ra

12

6.888 Spring 2013 - Sanchez and Emer - L14

Example: Intel Xeon Phi (Knights Corner)

 A multi-core chip with x86-based vector processors

 Ring interconnect, private L2 caches, coherent

 Targeting the HPC market

 Goal: high GFLOPS, GFLOPS/Watt

PCIe

Client

Logic

Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD

Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD
GDDR MC

GDDR MC

GDDR MC

GDDR MC

13

6.888 Spring 2013 - Sanchez and Emer - L14

Xeon Phi Core Design

 4-way threaded + vector processing

 In-order (why?), short pipeline

 Vector ISA: 32 vector registers (512b), 8 mask registers,
scatter/gather

L2 Ctl

L1 TLB

and 32KB

Code Cache

T0 IP

4 Threads

In-Order

TLB Miss

Code Cache Miss

Decode uCode

16B/Cycle (2 IPC)

Pipe 0

X87 RF Scalar RF

X87 ALU 0 ALU 1

VPU RF

VPU

512b SIMD

Pipe 1

TLB Miss

Handler

L2 TLB

T1 IP

T2 IP

T3 IP

L1 TLB and 32KB Data Cache
DCache Miss

TLB Miss

To On-Die Interconnect

HWP

Core

512KB

L2 Cache

PPF PF D0 D1 D2 E WB

14

6.888 Spring 2013 - Sanchez and Emer - L14

Graphics Processors Timeline

 Till mid 90s

 VGA controllers used to accelerate some display functions

 Mid 90s to mid 00s

 Fixed-function graphics accelerators for the OpenGL and DirectX APIs

 Some GP-GPU capabilities by on top of the interfaces

 3D graphics: triangle setup & rasterization, texture mapping & shading

 Modern GPUs

 Programmable multiprocessors optimized for data-parallel ops

 OpenGL/DirectX and general purpose languages (CUDA, OpenCL, …)

 Some fixed-function hardware (texture, raster ops, …)

 Either a PCIe accelerator (discrete), or in same die as CPU (integrated)

 Tradeoffs?

15

6.888 Spring 2013 - Sanchez and Emer - L14

Our Focus

 GPU hardware architecture

 Good high-level mental model

 GPU = Multicore chip, with highly-threaded vector cores

 Not 100% accurate, but helpful as a SW developer

16

6.888 Spring 2013 - Sanchez and Emer - L14

Refresh: Software GPU Thread Model (CUDA)

 Single-program multiple data

(SPMD) model

 Each thread has local memory

 Parallel threads packed in blocks

 Access to per-block shared memory

 Can synchronize with barrier

 Grids include independent groups

 May execute concurrently

17

6.888 Spring 2013 - Sanchez and Emer - L14

Code Example: SAXPY

 CUDA code launches 256 threads per block

 Thread = 1 iteration of scalar loop (1 element in vector loop)

 Block = body of vectorized loop (with VL=256 in this example)

 Grid = vectorizable loop

C Code CUDA Code

18

6.888 Spring 2013 - Sanchez and Emer - L14

Example: Nvidia Kepler GK110

 15 SMX processors, shared L2, 6 memory controllers

 1TFLOP DP

 HW thread scheduling

19

6.888 Spring 2013 - Sanchez and Emer - L14

Streaming Multiprocessor (SMX)

 Cores are

 Multithreded

 Data parallel

 Capabilities

 64K registers

 192 simple cores

 Int and SP FPU

 64 DP FPUs

 32 LSUs, 32 SFUs

 Scheduling

 4 warp schedulers

 2 inst dispatch per warp

20

6.888 Spring 2013 - Sanchez and Emer - L14

Instruction & Thread Scheduling: Thread + Data Parallelism

 In theory, all threads can be independent

 HW implements zero-overhead switching

 For efficiency, 32 threads are packed in warps

 Warp: set of parallel threads the execute same instruction

 Wrap = a thread of vector instructions

 Warps introduce data parallelism

 1 warp instruction keeps cores busy for multiple cycles

 Individual threads may be inactive

 Because they branched differently

 This is the equivalent of conditional execution (but implicit)

 Loss of efficiency if not data parallel

 SW thread blocks mapped to warps

 When HW resources are available

21

6.888 Spring 2013 - Sanchez and Emer - L14

Warp Scheduling

 64 warps per SMX

 32 threads per warp

 64K registers/SMX

 Up to 255 registers per thread (8 warps)

 Scheduling

 4 schedulers select 1 warp per cycle

 2 independent instructions issued per
warp (double-pumped FUs)

 Total bandwidth = 4 * 2 * 32 = 256 ops
per cycle

 Register scoreboarding

 To track ready instructions

 Simplified using static latencies

 Binary incompatibility?

22

6.888 Spring 2013 - Sanchez and Emer - L14

Hardware Scheduling

 HW unit schedules grids on SMX

 Priority based scheduling

 32 active grids

 More queued/paused

 Grids launched by CPU or GPU

 Work from multiple CPU cores

23

6.888 Spring 2013 - Sanchez and Emer - L14

Memory Hierarchy

 Each SMX has 64KB of memory

 Split between shared mem and L1 cache

 16/48, 32/32, 48/16

 256B per access

 48KB read-only data cache

 1.5MB shared L2

 Supports synchronization operations
(atomicCAS, atomicADD, …)

 Throughput-oriented main memory

 Memory scheduling? TCM-like?

 GDDRx standards

24

6.888 Spring 2013 - Sanchez and Emer - L14

Paper Discussions
25

 DWF, Fung et al., MICRO’07

 RF/WS, Gebhart et al., ISCA’11

6.888 Spring 2013 - Sanchez and Emer - L14

Lost in Translation: Vector vs GPU
26

6.888 Spring 2013 - Sanchez and Emer - L14

Lost in Translation: Vector vs GPU

 From Computer

Architecture, 4th

edition by J.

Hennessy and D.

Patterson

27

6.888 Spring 2013 - Sanchez and Emer - L14

