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Today’s Menu 
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 Review of vector processors 

 Basic GPU architecture 

 Paper discussions 
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Vector Processors 

 Scalar processors operate on single numbers (scalars) 

 Vector processors operate on linear sequences of 
numbers (vectors) 

+ 

r1 r2 

r3 

add r3, r1, r2 

SCALAR 

(1 operation) 

v1 v2 

v3 

+ 

vector 

length 

vadd.vv v3, v1, v2 

VECTOR 

(N operations) 

3 

6.888 Spring 2013 - Sanchez and Emer - L14 



What’s in a Vector Processor? 

 A scalar processor (e.g. a MIPS processor) 

 Scalar register file (32 registers) 

 Scalar functional units (arithmetic, load/store, etc) 

 

 A vector register file (a 2D register array) 

 Each register is an array of elements 

 E.g. 32 registers with 32 64-bit elements per register 

 MVL = maximum vector length = max # of elements per register 

 

 A set of vector functional units 

 Integer, FP, load/store, etc 

 Some times vector and scalar units are combined (share ALUs) 
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Example of Simple  

Vector Processor 5 
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Basic Vector ISA 

Instr.      Operands    Operation  Comment 

VADD.VV  V1,V2,V3    V1=V2+V3      vector + vector 

VADD.SV  V1,R0,V2    V1=R0+V2      scalar + vector 

VMUL.VV  V1,V2,V3    V1=V2*V3      vector x vector 

VMUL.SV  V1,R0,V2    V1=R0*V2      scalar x vector 

VLD    V1,R1    V1=M[R1...R1+63]       load, stride=1 

VLDS    V1,R1,R2    V1=M[R1…R1+63*R2]      load, stride=R2 

VLDX    V1,R1,V2    V1=M[R1+V2i,i=0..63]      indexed("gather") 

VST    V1,R1    M[R1...R1+63]=V1       store, stride=1 

VSTS    V1,R1,R2    V1=M[R1...R1+63*R2]      store, stride=R2 

VSTX    V1,R1,V2    V1=M[R1+V2i,i=0..63]      indexed(“scatter") 

 

+ regular scalar instructions… 
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Advantages of Vector ISAs 

 Compact: single instruction defines N operations 

 Amortizes the cost of instruction fetch/decode/issue 

 Also reduces the frequency of branches 

 

 Parallel: N operations are (data) parallel 

 No dependencies   

 No need for complex hardware to detect parallelism (similar to VLIW) 

 Can execute in parallel assuming N parallel datapaths 

 

 Expressive: memory operations describe patterns 

 Continuous or regular memory access pattern 

 Can prefetch or accelerate using wide/multi-banked memory 

 Can amortize high latency for 1st element over large sequential pattern 
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Vector Length (VL) 
8 

 Basic: Fixed vector length (typical in narrow SIMD) 

 Is this efficient for wide SIMD (e.g., 32-wide vectors)? 

 

 Vector-length (VL) register: Control the length of any vector operation, 

including vector loads and stores 

 e.g. vadd.vv with VL=10  for (i=0; i<10; i++) V1[i]=V2[i]+V3[i] 

 VL can be set up to MVL (e.g., 32) 

 How to do vectors > MVL? 

 What if VL is unknown at compile time? 
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Optimization 1: Chaining 

 Suppose the following code with VL=32: 

vmul.vv V1,V2,V3 

vadd.vv V4,V1,V5 # very long RAW hazard 

 Chaining 

 V1 is not a single entity but a group of individual elements 

 Pipeline forwarding can work on an element basis 

 Flexible chaining: allow vector to chain to any other active vector 

operation => more read/write ports 

vadd 

vmul vadd 

vmul 

Unchained 

Chained 
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Optimization 2: Multiple Lanes 

 Modular, scalable design  

 Elements for each vector register interleaved across the lanes 

 Each lane receives identical control 

 Multiple element operations executed per cycle 

 No need for inter-lane communication for most vector instructions 

To/From Memory System 

Pipelined 

Datapath 

Functional 

Unit 

Lane 

Vector Reg. 

Partition 
Elements Elements Elements Elements 
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Chaining & Multi-lane Example 

VL=16, 4 lanes, 

2 FUs, 1 LSU 

 

chaining -> 12 
ops/cycle 
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Optimization 3: Conditional Execution 

 Suppose you want to vectorize this:  

for (i=0; i<N; i++) if (A[i]!= B[i]) A[i] -= B[i]; 

 Solution: Vector conditional execution (predication) 

 Add vector flag registers with single-bit elements (masks) 

 Use a vector compare to set the a flag register 

 Use flag register as mask control for the vector sub 

 Add executed only for vector elements with corresponding flag element set 

 

 Vector code 

 vld   V1, Ra   

 vld  V2, Rb 

 vcmp.neq.vv   M0, V1, V2    # vector compare 

 vsub.vv    V3, V2, V1, M0  # conditional vadd 

 vst  V3, Ra 

 

12 

6.888 Spring 2013 - Sanchez and Emer - L14 



Example: Intel Xeon Phi (Knights Corner) 

 A multi-core chip with x86-based vector processors 

 Ring interconnect, private L2 caches, coherent 

 Targeting the HPC market 

 Goal: high GFLOPS, GFLOPS/Watt 

PCIe 

Client 

Logic 

Core 

L2 

Core 

L2 

Core 

L2 

Core 

L2 

TD TD TD TD 

Core 

L2 

Core 

L2 

Core 

L2 

Core 

L2 

TD TD TD TD 
GDDR MC 

GDDR MC 

GDDR MC 

GDDR MC 

    

    

    

    

13 

6.888 Spring 2013 - Sanchez and Emer - L14 



Xeon Phi Core Design 

 4-way threaded + vector processing 

 In-order (why?), short pipeline 

 Vector ISA: 32 vector registers (512b), 8 mask registers, 
scatter/gather 

 

L2 Ctl 

L1 TLB  

and 32KB 

Code Cache 

T0 IP 

4 Threads 

In-Order 

TLB Miss 

Code Cache Miss 

Decode uCode 

16B/Cycle (2 IPC) 

Pipe 0 

X87 RF Scalar RF 

X87 ALU 0 ALU 1 

VPU RF 

VPU  

512b SIMD 

Pipe 1 

TLB Miss  

Handler 

L2 TLB 

T1 IP 

T2 IP 

T3 IP 

L1 TLB and 32KB Data Cache 
DCache Miss 

TLB Miss 

To On-Die Interconnect 

HWP 

Core 

512KB  

L2 Cache 

PPF PF D0 D1 D2 E WB 

14 

6.888 Spring 2013 - Sanchez and Emer - L14 



Graphics Processors Timeline 

 Till mid 90s 

 VGA controllers  used to accelerate some display functions 
 

 Mid 90s to mid 00s 

 Fixed-function graphics accelerators for the OpenGL and DirectX APIs 

 Some GP-GPU capabilities by on top of the interfaces 

 3D graphics: triangle setup & rasterization, texture mapping & shading 
 

 Modern GPUs 

 Programmable multiprocessors optimized for data-parallel ops 

 OpenGL/DirectX and general purpose languages (CUDA, OpenCL, …) 

 Some fixed-function hardware (texture, raster ops, …) 

 Either a PCIe accelerator (discrete), or in same die as CPU (integrated) 

 Tradeoffs? 

15 
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Our Focus 

 GPU hardware architecture 

 

 Good high-level mental model 

 GPU = Multicore chip, with highly-threaded vector cores 

 Not 100% accurate, but helpful as a SW developer 

16 
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Refresh: Software GPU Thread Model (CUDA) 

 Single-program multiple data 

(SPMD) model  

 

 Each thread has local memory 

 

 Parallel threads packed in blocks 

 Access to per-block shared memory 

 Can synchronize with barrier 

 

 Grids include independent groups 

 May execute concurrently 
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Code Example: SAXPY 

 CUDA code launches 256 threads per block 

 Thread = 1 iteration of scalar loop (1 element in vector loop) 

 Block = body of vectorized loop (with VL=256 in this example) 

 Grid = vectorizable loop 

C Code CUDA Code 
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Example: Nvidia Kepler GK110 

 15 SMX processors, shared L2, 6 memory controllers 

 1TFLOP DP 

 HW thread scheduling 

19 
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Streaming Multiprocessor (SMX) 

 Cores are 

 Multithreded 

 Data parallel 
 

 Capabilities 

 64K registers 

 192 simple cores 

 Int and SP FPU 

 64 DP FPUs 

 32 LSUs, 32 SFUs 
 

 Scheduling 

 4 warp schedulers 

 2 inst dispatch per warp 
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Instruction & Thread Scheduling:  Thread + Data Parallelism 

 In theory, all threads can be independent 

 HW implements zero-overhead switching 

 For efficiency, 32 threads are packed in warps 

 Warp: set of parallel threads the execute same instruction 

 Wrap = a thread of vector instructions 

 Warps introduce data parallelism  

 1 warp instruction keeps cores busy for multiple cycles 

 Individual threads may be inactive 

 Because they branched differently 

 This is the equivalent of conditional execution (but implicit) 

 Loss of efficiency if not data parallel 

 SW thread blocks mapped to warps 

 When HW resources are available 

21 
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Warp Scheduling 

 64 warps per SMX 

 32 threads per warp 

 64K registers/SMX 

 Up to 255 registers per thread (8 warps) 

 

 Scheduling  

 4 schedulers select 1 warp per cycle 

 2 independent instructions issued per 
warp (double-pumped FUs) 

 Total bandwidth = 4 * 2 * 32 = 256 ops 
per cycle 

 

 Register scoreboarding 

 To track ready instructions 

 Simplified using static latencies 

 Binary incompatibility?  
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Hardware Scheduling 

 HW unit schedules grids on SMX  

 Priority based scheduling 

 

 32 active grids 

 More queued/paused 

 

 Grids launched by CPU or GPU 

 Work from multiple CPU cores 
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Memory Hierarchy 

 Each SMX has 64KB of memory 

 Split between shared mem and L1 cache 

 16/48, 32/32, 48/16 

 256B per access 

 48KB read-only data cache 

 

 1.5MB shared L2 

 Supports synchronization operations 
(atomicCAS, atomicADD, …) 

 

 Throughput-oriented main memory 

 Memory scheduling? TCM-like? 

 GDDRx standards 
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Paper Discussions 
25 

 DWF, Fung et al., MICRO’07 

 RF/WS, Gebhart et al., ISCA’11 
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Lost in Translation: Vector vs GPU 
26 
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Lost in Translation: Vector vs GPU  

 From Computer 

Architecture, 4th 

edition by J. 

Hennessy and D. 

Patterson 
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