LECTURE 14

GPUS

DANIEL SANCHEZ AND JOEL EMER

[INCORPORATES MATERIAL FROM KOZYRAKIS (EE382A),
NVIDIA KEPLER WHITEPAPER, HENNESY &PATTERSON]

6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE
SPRING 2013

I I I I Massachusetts Institute of Technology |

CSAIL

Today’s Menu

Review of vector processors
Basic GPU architecture

Paper discussions

6.888 Spring 2013 - Sanchez and Emer - L14

Vector Processors

SCALAR VECTOR

(1 operation) (N operations)

rl| |r2
A4

?

r3

add r3, rl, r2 vadd.vv v3, vl, v2

Scalar processors operate on single numbers (scalars)

Vector processors operate on linear sequences of
numbers (vectors)

6.888 Spring 2013 - Sanchez and Emer - L14

What's in a Vector Processor?

A scalar processor (e.g. a MIPS processor)
Scalar register file (32 registers)

Scalar functional units (arithmetic, load /store, etc)

A vector register file (a 2D register array)

Each register is an array of elements

E.g. 32 registers with 32 64-bit elements per register

MVL = maximum vector length = max # of elements per register

A set of vector functional units
Integer, FP, load/store, etc

Some times vector and scalar units are combined (share ALUs)

6.888 Spring 2013 - Sanchez and Emer - L14

Example of Simple
Vector Processor

Main memary

Vector _ | FP addrsubtract
load-store
| FP multiply '_-
- | FP divide I——
EE—
- [
Vector | o
registers - magel
e
- | Logical .—'-

Scalar
registers

6.888 Spring 2013 - Sanchez and Emer - L14

Basic Vector ISA

Instr.
VADD

VADD.
VMUL.
VMUL.

VLD
VLDS
VLDX
VST
VSTS
VSTX

.VV

SV
VV
SV

Operands

v1,v2,V3
v1,R0, V2
v1,V2,V3
v1,R0, V2
V1, R1

v1,R1,R2
v1,R1,V2
v1,R1

v1,R1,R2
v1,R1,V2

Operation
V1=V2+V3
V1=RO+V2
V1=V2*V3
V1=R0O*V2

V1=M[R1...R1+63]
V1=M[R]1...R14+63*R2]
VI1=M[R1+V2,i=0..63]
M[R1..R1+63]=V1
V1=M[R1..R1+63*R2]
V1=M[R1+V2,i=0..63]

+ regular scalar instructions...

Comment

vector + vector
scalar + vector
vector x vector
scalar x vector
load, stride=1
load, stride=R2
indexed("gather")
store, stride=1
store, stride=R2

indexed(“scatter")

6.888 Spring 2013 - Sanchez and Emer - L14

Advantages of Vector ISAs

Compact: single instruction defines N operations
Amortizes the cost of instruction fetch /decode /issue

Also reduces the frequency of branches

Parallel: N operations are (data) parallel
No dependencies
No need for complex hardware to detect parallelism (similar to VLIW)

Can execute in parallel assuming N parallel datapaths

Expressive: memory operations describe patterns
Continuous or regular memory access pattern
Can prefetch or accelerate using wide /multi-banked memory

Can amortize high latency for 1st element over large sequential pattern

Vector Length (VL)

Basic: Fixed vector length (typical in narrow SIMD)
s this efficient for wide SIMD (e.g., 32-wide vectors)?

Vector-length (VL) register: Control the length of any vector operation,
including vector loads and stores

e.g. vadd.vv with VL=10 < for (i=0; i<10; i++) V1[i]=V2[i]+V3]i]

VL can be set up to MVL (e.g., 32)

How to do vectors > MVL?

What if VL is unknown at compile time?

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 1: Chaining

Suppose the following code with VL=32:
vmul . vv v1i,v2,V3
vadd.vv v4,v1,V5 # very long RAW hazard

Chaining
V1 is not a single entity but a group of individual elements

Pipeline forwarding can work on an element basis

Flexible chaining: allow vector to chain to any other active vector
operation => more read/write ports

Unchained
vmul vadd
vmul
Chained
vadd

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 2: Multiple Lanes

10

* s

e e W D W eV
\ Datapath

L \ L \ L Vo7

Vector Reg.

Partifi Elements Elements Elements Elements
arfition T Y

To/From Memory System

Modular, scalable design
Elements for each vector register interleaved across the lanes
Each lane receives identical control
Multiple element operations executed per cycle

No need for inter-lane communication for most vector instructions

Chaining & Multi-lane Example

11

Scalar LSU FUO FUI1
VL=16, 4 lanes,

2 FUs, 1 LSU

vid =

vmul .

vadd. chaining -> 12

addu — ops/cycle
Time +1d ,:5 . :

3

3

Just 1 new

vmul.

vadd. ’ issued per cycle
addu ':> 11

>

instruction

>

Element Operq’riéns: | Instr. Issue: |:>.

Optimization 3: Conditional Execution

12

Suppose you want to vectorize this:
for (i=0; i<N; i++) if (A[i]'= B[i]) A[i] -= BI[i];
Solution: Vector conditional execution (predication)

Add vector flag registers with single-bit elements (masks)

Use a vector compare to set the a flag register

Use flag register as mask control for the vector sub

Add executed only for vector elements with corresponding flag element set

Vector code

vld V1l, Ra

vld V2, Rb

vcmp.neq.vv MO, V1, V2 # vector compare
vsub.vv v3, V2, Vl, MO # conditional wvadd

vst V3, Ra

Example: Intel Xeon Phi (Knights Corner)

Core Core Core Core
PCle
Client L2 L2 L2 L2
Logic

GDDR M¢ N o B TD? GDDR M¢
EDDR Mgt JaLl | jar|--jaLr| jar| EDDR Mgt
_),

A ¢l A A

310D 210D 210D 310D

A multi-core chip with x86-based vector processors
Ring interconnect, private L2 caches, coherent

Targeting the HPC market
Goal: high GFLOPS, GFLOPS /Watt

6.888 Spring 2013 - Sanchez and Emer - L14

Xeon Phi Core Design

) 2
3 3

w0 b et

X87 RF Scalar RF ‘ ‘
xs7 ALU 1 To On-Die Interconnect

1 4-way threaded + vector processing

—>

~ I l

7 In-order (why?), short pipeline

71 Vector ISA: 32 vector registers (512b), 8 mask registers,
scatter /gather

6.888 Spring 2013 - Sanchez and Emer - L14

Graphics Processors Timeline

15

Till mid 90s

VGA controllers used to accelerate some display functions

Mid 20s to mid OOs

Fixed-function graphics accelerators for the OpenGL and DirectX APIs
Some GP-GPU capabilities by on top of the interfaces

3D graphics: triangle setup & rasterization, texture mapping & shading

Modern GPUs

Programmable multiprocessors optimized for data-parallel ops
OpenGL/DirectX and general purpose languages (CUDA, OpenCL, ...)

Some fixed-function hardware (texture, raster ops, ...)

Either a PCle accelerator (discrete), or in same die as CPU (integrated)
Tradeoffs?

Our Focus

GPU hardware architecture

Good high-level mental model
GPU = Multicore chip, with highly-threaded vector cores
Not 100% accurate, but helpful as a SW developer

6.888 Spring 2013 - Sanchez and Emer - L14

16

Refresh: Software GPU Thread Model (CUDA)

Thread Block

Thread

per-Threa d Lo cal M emory

%%%% ety

> Em
&

> >
&

> >

Seq uence

Grid 1

— — — Inter-Grid S ynchronization — — —

!
|
|

>
&
&
>
&

>
&
<&
>
&

>
>
“e e

Y

A

Globa | Me mory

17

Single-program multiple data
(SPMD) model

Each thread has local memory

Parallel threads packed in blocks
Access to per-block shared memory

Can synchronize with barrier

Grids include independent groups

May execute concurrently

6.888 Spring 2013 - Sanchez and Emer - L14

Code Example: SAXPY

18
C Code CUDA Code
// Invoke DAXPY /l Invoke DAXPY with 256 threads per block
daxpy(n, 2.0, %, y): __host__
[DAXPY in C int nblocks = (n+ 255) / 256;
void daxpy(int n, double a, double ¥x, double *y) daxpy<<<nblocks, 256>>>(n, 2.0, X, y);
{ // DAXPY in CUDA
for (int1=0;1<mn; ++1) __device__
yli] = a*x[i] + y[il; void daxpy(int n. double a. double *x, double *y)
} {

int 1 = blockldx x*blockDim.x + threadldx.x;
if (1 < n) y[i] = a*x[i] + y[i];
}

CUDA code launches 256 threads per block

Thread = 1 iteration of scalar loop (1 element in vector loop)
Block = body of vectorized loop (with VL=256 in this example)

Grid = vectorizable loop

6.888 Spring 2013 - Sanchez and Emer - L14

19

Memory Controller Memory Controller Memory Controller

@
o
o
=
2
=
Pt
]
°
-
S
-
3
@
@
2
a
>
fit]
S
a

Nvidia Kepler GK110

Memory Controller Memory Controller Memory Controller

15 SMX processors, shared L2, 6 memory controllers

O

Example

1TFLOP DP
7 HW thread scheduling

-L14

6.888 Spring 2013 - Sanchez and Emer

Streaming Multiprocessor (SMX)

SMX

Warp Scheduler

Dispatch Dispatch
. 2 S 3

-
-
-

Instruction Cache
Warp Scheduler

Dispatch Dispatch
E 3 e 2

Dispatch
> 2

Warp Scheduler

Register File (65,536 x 32-bit)

I

LoisT SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

tercol

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

. jetwor
64 KB Shared Memory / L1 Cache

4+ 3 3+ 3 3

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

48 KB Read-Only Data Cache

Tex

Tex

Tex

Tex

Dispatch
s 8

Warp Scheduler

-
e
-

Dispatch
.

Dispatch
4

1 Cores are
Multithreded

Data parallel

1 Capabilities
64K registers

192 simple cores
@ Int and SP FPU

64 DP FPUs
32 LSUs, 32 SFUs

11 Scheduling
4 warp schedulers

2 inst dispatch per warp

6.888 Spring 2013 - Sanchez and Emer - L14

20

Instruction & Thread Scheduling: Thread + Data Parallelism

Photo: Judy Schoonmaker

SIMT multithreaded
instruction scheduler

time
[I I v |
warp 8 instruction 11

VYV VY Y yyyyyyvvey

W,

I I S S I) A |
warp 3 instruction 95 | O
YY Y Y Y Y Yy Yy YvvYOYTOYROY

[I I I) B |
warp 8 instruction 12
YYYYYYyyyyyyyvyvyy
[I S S I I I B |
warp 3 instruction 96
(BEEREEEEREEEEEEE

[
Y

In theory, all threads can be independent
HW implements zero-overhead switching
For efficiency, 32 threads are packed in warps

Warp: set of parallel threads the execute same instruction
" Wrap = a thread of vector instructions

® Woarps introduce data parallelism
1 warp instruction keeps cores busy for multiple cycles
Individual threads may be inactive
Because they branched differently
This is the equivalent of conditional execution (but implicit)
Loss of efficiency if not data parallel
SW thread blocks mapped to warps

When HW resources are available

6.888 Spring 2013 - Sanchez and Emer - L14

Woarp Scheduling

time

1 64 warps per SMX

1 32 threads per warp

0 64K registers/SMX
o Up to 255 registers per thread (8 warps)

71 Scheduling
o 4 schedulers select 1 warp per cycle

o 2 independent instructions issued per
warp (double-pumped FUs)

o Total bandwidth = 4 * 2 * 32 = 256 ops

per cycle

1 Register scoreboarding
o To track ready instructions

o Simplified using static latencies
® Binary incompatibility?

6.888 Spring 2013 - Sanchez and Emer - L14

22

Hardware Scheduling

23

Stream Queues
Ordered queues of grids

CUDA-Created
Work

Y

Grid Management Unit
Pending & suspended grids

/ Actively dispatching grids h
\\ | 32 Active Grids ‘)
\\H

H SMX SMX SMX SMX

Y

1000's of pending grids

y
' Two-way link allows
pausing dispatch
y

3

— B —
L Work Distributor T~

6.888 Spring 2013

HW unit schedules grids on SMX
Priority based scheduling

32 active grids
More queued /paused

Grids launched by CPU or GPU
Work from multiple CPU cores

- Sanchez and Emer - L14

Memory Hierarchy

Each SMX has 64KB of memory

Split between shared mem and L1 cache
16/48,32/32,48/16
256B per access

Shared J| o NRead_omyl 48KB read-only data cache

Cache Data Cache
2) 1.5MB shared L2

Supports synchronization operations
(atomicCAS, atomicADD, ...)

Memaory

Throughput-oriented main memory
Memory scheduling? TCM-like?
GDDRx standards

6.888 Spring 2013 - Sanchez and Emer - L14

Paper Discussions

DWEF, Fung et al., MICRO’07
RF/WS, Gebhart et al., ISCA'T1

6.888 Spring 2013 - Sanchez and Emer - L14

25

Lost in Translation: Vector vs GPU

I
SIMD Thread Scheduler|

Instruction |
cache | Dispatchunit |

Instruction
|PC cache

] ek | | e
Eﬂr rﬁﬂr@%@g‘? @ET“ @ETE @% ﬁﬂ %@EF

i]
B 1
g @
cn
B g
E oh
& &
== 60 &1 G2 63 1023 10&3 1023 1023
vt vt vt 4 vd vt vt vt
4{ Veclor load/store unit ‘ SIMD Load/store unit
¥ P T I T T
Addrass coalescing unit
r vt
Mnmz'n;ﬁtarlam Memaory interface unit
¥)

6.888 Spring 2013 - Sanchez and Emer - L14

Lost in Translation: Vector vs GPU

More descrip- Closestold term Official CUDA/
Type tive name outsideof GPUs NVIDIAGPU term Book definition

Vectorizable Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
@ Loop up of one or more Thread Blocks (bodies of
5 vectorized loop) that can execute in parallel.
g Body of Body of a Thread Block A vectorized loop executed on a multithreaded
5 Vectorized Loop (Strip-Mined) SIMD Processor, made up of one or more threads
2 Vectorized Loop of SIMD instructions. They can communicate via
E Local Memory.
E Sequence of One iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
g SIMD Lane a Scalar Loop corresponding to one element executed by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register.

E A Thread of Thread of Vector ~ Warp A traditional thread, but it contains just SIMD

"§ SIMD Instructions instructions that arc executed on a multithreaded
Instructions SIMD Processor. Results stored depending on a

g per-clement mask.

§ SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD

= Instruction Lanes.

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors.

g Thread Block Scalar Processor ~ Giga Thread Assigns multiple Thread Blocks (bodies of

-E Scheduler Engine vectorized loop) to multithreaded SIMD

5 Processors.

2 SIMD Thread Thread scheduler Warp Scheduler Hardware unit that schedules and issues threads
@ Scheduler in a Multithreaded of SIMD instructions when they are ready to

z CPU execute; includes a scoreboard to track SIMD
g Thread execution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

o SIMD Processors in a GPU.

E Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD
g Memory Local Storage (OS) Lane.

s Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD
E Processor, unavailable to other SIMD Processors.
§ SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across

Registers Registers Registers a full thread block (body of vectorized loop).

6.888 Spring 2013 - Sanchez and Emer - L14

27

From Computer
Architecture, 4™
edition by J.
Hennessy and D.
Patterson

