
6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE

SPRING 2013

LECTURE 1

INTRODUCTION AND COURSE OVERVIEW

DANIEL SANCHEZ AND JOEL EMER

Why 6.888?

 The current revolution: Parallel computing

 The impending revolution: Heterogeneous computing

2

6.888 Spring 2013 - Sanchez and Emer - L01

[Produced with CPUDB, cpudb.stanford.edu]

Classic CMOS Scaling

 Moore’s law + Denard scaling: Each generation
(e.g., 9065nm),

3.0

2.0

1.0
1.0 2.0 3.0

C
hi

p
 p

o
w

e
r

Chip capability
2.7

Moore: 2x transistors/chip

same area & cost

1.4x faster

transistors
0.7x

transistor

capacitance

 2x transistors, 1.4x frequency, same power  area-constrained

0.7x

supply

voltage

P = Pdyn +Pleak

Pdyn =
1

2
CV 2 f

Pleak =V × Ileak << Pdyn

3

6.888 Spring 2013 - Sanchez and Emer - L01

[Adapted from “Advacing SystemsWithout

Technology Progress” outbrief of

DARPA/ISAT Workshop, 2012]

Current CMOS Scaling

3.0

2.0

1.0
1.0 2.0 3.0

C
hi

p
 p

o
w

e
r

Chip capability

1.4

2x transistors/chip

same area & cost

0.7x

transistor

capacitance

 2.0x transistors, same frequency, 1.4x power  power-constrained

 Frequency and supply voltage scaling are mostly exhausted

4

6.888 Spring 2013 - Sanchez and Emer - L01

Parallelism and Heterogeneity Trade-offs

 Good news: Plenty of efficiency improvements

 Simple cores have ~10x lower energy/instruction than

complex uniprocessors  can scale to about ~1000 simple

cores within power constraints

 Specialized compute units have ~10-1000x perf/energy

savings over general-purpose cores

 Bad news: Harder to build and use, less general

 Trillion-dollar question: What is the right balance

between efficiency, generality, and ease of use?

5

6.888 Spring 2013 - Sanchez and Emer - L01

6.888 Goals

 Learn about the state of the art, both hardware and

software aspects

 Architectures and programming models

 Hardware changes no longer transparent to software stack 

must consider both to be successful!

 Improve on the state of the art

 Lots of open problems!

6

6.888 Spring 2013 - Sanchez and Emer - L01

6.888 Team

 Instructors: Daniel Sanchez and Joel Emer

 TA: Mieszko Lis

 Administrative support: Sally Lee

7

6.888 Spring 2013 - Sanchez and Emer - L01

Class Basics

 Lectures: Mon & Wed, 1-2:30pm, room 1-135

 Format: Short presentation + paper-based discussions

 Need to read papers beforehand and contribute to discussion

 Webpage: http://courses.csail.mit.edu/6.888/spring13/

 Includes course info, calendar, readings, contact info, and

office hours

8

6.888 Spring 2013 - Sanchez and Emer - L01

http://courses.csail.mit.edu/6.888/spring13/

Class Topics

 Structured in four parts (~1 month each):

1. Parallel architectures and programming models

 How current multicores are built, how to program and
evaluate them

2. Communication, synchronization, and the memory
hierarchy

 Advanced parallel systems, including techniques to ease
parallel programming (e.g., TM, TLS)

3. Specialized and heterogeneous computing

 GPUs, vector, FPGAs, reconfigurable, and beyond

4. Cross-cutting issues

9

6.888 Spring 2013 - Sanchez and Emer - L01

Prerequisites

 Prerequisites: 6.004 or equivalent

 Simple pipelined cores, caches, virtual memory, basic OS

 6.823 (or similar) useful but not required

 Today’s lecture reviews 6.823 aspects needed in 6.888

 Parallel/performance-oriented programming (e.g.,

6.172) useful but not required

10

6.888 Spring 2013 - Sanchez and Emer - L01

Class Participation & Papers

 We expect you to participate regularly in class, and part
of your grade depends on it

 Syllabus lists readings for each lecture, plus a list of
optional, additional readings

 Tips for reading papers:

 Read abstract, intro, and conclusions first

 Skim the paper first, then do a detailed reading

 Read critically, keep notes on questions and potential issues

 Look up references that seem important or missing

11

6.888 Spring 2013 - Sanchez and Emer - L01

Assignments

 Project: Research-oriented, should address an open

question in the field

 Propose your own topic or ask us for one

We’ll give you access to infrastructure (simulators,

benchmarks, compute resources)

Milestones: Initial proposal (Mar 18), progress report (Apr

17), presentations (May 13), final report (May 15)

 Seminar: After the first month, select a topic from one of

the upcoming lectures, develop a short presentation and

lead the class discussion

 Homework: Single assignment during the first month

12

6.888 Spring 2013 - Sanchez and Emer - L01

Grading & Rules

 Grading breakdown:

 Project: 60%

 Seminar: 15%

 Class participation: 15%

 Homework: 10%

 Two late days for assignments

 Tip: reserve for project

 Collaboration policy: All collaboration OK, but

Must list all sources of external help

 Follow MIT academic integrity rules

13

6.888 Spring 2013 - Sanchez and Emer - L01

We Want Your Feedback!

 Aside from class participation…

 Small course, first time it’s taught  your feedback is

really important

 Should be challenging, but useful and fun

 We’re open to comments, suggestions, and willing to be

dynamic

14

6.888 Spring 2013 - Sanchez and Emer - L01

Rest of Today: Parallelism in Modern

Multicores (ILP, TLP, and DLP)

 Goals:

 Understand how general-purpose multicores exploit
parallelism

 Understand bottlenecks & insights into solving them

 Today: Focus on Instruction-Level Parallelism

Wide & superscalar pipelines

 Prediction, renaming & out-of-order execution

 Challenges and limitations of advanced processors

 Next week: Thread and Data-level parallelism, memory
hierarchy

15

6.888 Spring 2013 - Sanchez and Emer - L01

The Big Picture

L3 Cache

GPU C
o
re

Mem

ctrl/

IOs
C

o
re

C
o
re

C
o
re

IOs

16

6.888 Spring 2013 - Sanchez and Emer - L01

[Slides 16-42 based on

material from Sanchez &

Kozyrakis]

Microprocessor Performance

 Iron Law of Performance:

 CPI = CPIideal + CPIstall

 CPIideal: cycles per instruction if no stall

 CPIstall contributors

 Data dependences: RAW, WAR, WAW

 Structural hazards

 Control hazards: branches, exceptions

 Memory latency: cache misses

Cycle

Time

nInstructio

Cycles

Program

nsInstructio

Program

Time


Time

1
Perf 

17

6.888 Spring 2013 - Sanchez and Emer - L01

5-stage Pipelined Processors

(MIPS R3000 circa 1985)
 Advantages

 CPIideal is 1 (pipelining)

 No WAW or WAR hazards

 Simple, elegant

 Still used in ARM & MIPS processors

 Shortcomings

 Upper performance bound is CPI=1

 High latency instructions not handled well

 1 stage for accesses to large caches or multiplier

 Clock cycle is high

 Unnecessary stalls due to rigid pipeline

 If one instruction stalls anything behind it stalls

Fetch

Decode

Read Registers

ALU

Memory

Write Registers

18

6.888 Spring 2013 - Sanchez and Emer - L01

Improving 5-stage Pipeline Performance

 Higher clock frequency (lower CCT): deeper pipelines

 Overlap more instructions

 Higher CPIideal: wider pipelines

 Insert multiple instruction in parallel in the pipeline

 Lower CPIstall:

 Diversified pipelines for different functional units

 Out-of-order execution

 Balance conflicting goals

 Deeper & wider pipelines  more control hazards

 Branch prediction

 It all works because of instruction-level parallelism (ILP)

19

6.888 Spring 2013 - Sanchez and Emer - L01

Instruction Level Parallelism (ILP)

 Sequential execution order

ld a

ld b

sub a-b

mul 3(a-b)

ld c

mul ac

mul 7ac

add 3(a-b)+7ac

st d

 Data-flow execution order
acbaD 7)(3 

ld a ld b ld c

+

* -

* *

st d

20

6.888 Spring 2013 - Sanchez and Emer - L01

Deeper Pipelines

 Idea: break up instruction into N pipeline
stages

 Ideal CCT = 1/N compared to non-pipelined

 So let’s use a large N!

 Other motivation for deep pipelines

 Not all basic operations have the same latency
 Integer ALU, FP ALU, cache access

 Difficult to fit them in one pipeline stage
 CCT must be large enough to fit the longest one

 Break some of them into multiple pipeline stages
 e.g., data cache access in 2 stages, FP add in 2

stage, FP mul in 3 stage…

Fetch 1

Decode

ALU

Memory 1

Write Registers

Fetch 2

Read Registers

Memory 2

21

6.888 Spring 2013 - Sanchez and Emer - L01

Limits to Pipeline Depth

 Each pipeline stage introduces some overhead (O)

 Delay of pipeline registers

 Inequalities in work per stage

 Cannot break up work into stages at arbitrary points

 Clock skew

 Clocks to different registers may not be
perfectly aligned

 If original CCT was T, with N stages CCT is T/N+O

 If N→, speedup = T / (T/N+O) → T/O

 Assuming that IC and CPI stay constant

 Eventually overhead dominates and deeper pipelines have
diminishing returns

T

T/N O T/N O

22

6.888 Spring 2013 - Sanchez and Emer - L01

Pipelining Limits?
23

6.888 Spring 2013 - Sanchez and Emer - L01

Deeper Pipelines Review

 Advantages: higher clock frequency

 The workhorse behind multi-GHz processors

 Opteron: 11, UltraSparc: 14, Power5: 17, Pentium4: 22/34;
Nehalem: 16

 Cost

 Complexity: more forwarding & stall cases

 Disadvantages

 More overlapping  more dependencies  more stalls

 CPIstall grows due to data and control hazards

 Clock overhead becomes increasingly important

 Power consumption

24

6.888 Spring 2013 - Sanchez and Emer - L01

Wider or Superscalar Pipelines

 Idea: operate on N instructions each clock
cycle

 Known as wide or superscalar pipelines

 CPIideal = 1/N

 Options (from simpler to harder)

 One integer and one floating-point instruction

 Any N=2 instructions

 Any N=4 instructions

 Any N=? Instructions

 What are the limits here?

Fetch

Decode

Read Registers

ALU

Memory

Write Registers

25

6.888 Spring 2013 - Sanchez and Emer - L01

Superscalar Pipelines Review

 Advantages: lower CPIideal (1/N)

Opteron: 3, UltraSparc: 4, Power5: 8, Pentium4: 3; Core 2: 4;
Nehalem: 4

 Cost

 Need wider path to instruction cache

 Need more ALUs, register file ports, …

 Complexity: more forwarding & stall cases to check

 Disadvantages

 Parallel execution  more dependencies  more stalls

 CPIstall grows due to data and control hazards

26

6.888 Spring 2013 - Sanchez and Emer - L01

Diversified Pipelines

 Idea: decouple the execution portion of the

pipeline for different instructions

 Common approach:

 Separate pipelines for simple integer, integer

multiply, FP, load/store

 Advantage:

 Avoid unnecessary stalls

 E.g. slow FP instruction does not block

independent integer instructions

 Disadvantages

 WAW hazards

 Imprecise (out-of-order) exceptions

Fetch

Decode

Read Registers

IntAdd

Write Registers

IntMult MemoryFPU

IntMult FPU Memory

FPU

FPU

Memory

27

6.888 Spring 2013 - Sanchez and Emer -

L01

Putting it All Together: A Modern

Superscalar Out-of-Order Processor

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Reorder Buffer

28

6.888 Spring 2013 - Sanchez and Emer - L01

Branch Penalty

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

 >3 cycles to resolve a branch/jump

 Latency of I-cache

 Decode & execute latency

 Buffering

 Cost of branch latency?

 Assume 5 cycles to resolve & 4-way

superscalar

 Cost of branch = 5*4 instructions

 Typical programs:

 1 branch every 4 to 8 instructions

29

6.888 Spring 2013 - Sanchez and Emer -

L01

Branch Prediction

 Goal: eliminate stalls due to taken branches

 Gets more critical as pipeline gets longer & wider

 Idea: dynamically predict the outcome of control-flow
instructions

 Predict both the branch condition and the target

 Works well because several branches have repeated behavior
 E.g. branches for loops are usually taken

 E.g. termination/limit/error tests are usually not taken

 Why predict dynamically?

 Branch behavior often difficult to analyze statically

 Branch behavior may change during program execution

30

6.888 Spring 2013 - Sanchez and Emer - L01

Predicting the Branch Condition:

Simple Branch History Table (BHT)

 Basic idea:

 Next branch outcome likely

to be same as last one

 A 2m x 1bit table

 Algorithm:

 Use m least significant bits to access predictor

 If Bit == 0 predict not-taken

 If Bit == 1 predict taken

 When prediction verified, update table if

wrong

PC

m

2m bits

1

31

6.888 Spring 2013 - Sanchez and Emer - L01

Predicting the Target Address:

Branch Target Buffer (BTB)

 BTB: a cache for branch targets

 Stores targets for taken branches, jr, function calls

 Reduce size: don’t store prediction for not taken branches

 Algorithm: access in parallel with I-cache

 If hit, use predicted target

 If miss, use PC+ 16 (assuming 4-way fetch)

 Must update when prediction verified

TAG Branch Target

PC

=
Predicted target

Use Prediction?

32

6.888 Spring 2013 - Sanchez and Emer - L01

Review of Advanced Branch Prediction

 Basic ideas

 Use >1b per BHT entry to add hysteresis

 Use PC & global branch history to address BHT

 Detect global and local correlation between branches

 e.g. nested if-then-else statements

 e.g. short loops

 Use multiple predictors and select most likely to be correct

 Capture different patterns with each predictor

 Measure and use confidence in prediction

 Avoid executing instructions after difficult to predict branch

 Neural-nets, filtering, separate taken/non-taken streams, …

 What happens on mispredictions

 Update prediction tables

 Flush pipeline & restart from mispredicted target (expensive)

33

6.888 Spring 2013 - Sanchez and Emer - L01

Dealing with WAR & WAW:

Register Renaming

 WAR and WAW hazards do not represent real data communication

1. R1 = R2 + R3

2. R4 = R1 + R5

3. R1 = R6 + R7

 If we had more registers, we could avoid them completely!

 Register renaming: use more registers than the 32 in the ISA

 Architectural registers mapped to large pool of physical registers

 Give each new “value” produced its own physical register

 Before & after renaming

 R1 = R2 + R3 R1 = R2 + R3

 R4 = R1 + R5 R4 = R1 + R5

 R1 = R6 + R7 R8 = R6 + R7

 R6 = R1 + R3 R9 = R8 + R3

34

6.888 Spring 2013 - Sanchez and Emer - L01

Dealing with Unnecessary Ordering:

Out-of-Order Dispatch

 In-order execution: instruction dispatched to a functional unit
when
 All older instructions have been dispatched
 All operands are available & FU available

 Out-of-order execution: instruction dispatched when
 All operands are available & FU available

 Out-of-order execution recreates the data-flow order

 Implementation
 Reservation stations or instruction window
 Keep track when operands become available

35

6.888 Spring 2013 - Sanchez and Emer - L01

Dealing with Memory Ordering

 When can a load read from the cache?

 Option 1: when its address is available & all older stores done

 Option 2: when its address is available, all older stores have
address available, and no RAW dependency

 Option 3: when its address is available
 Speculate no dependency with older stores, must check later

 When can a store write to the cache?

 It must have its address & data

 All previous instructions must be exception-free

 It must be exception-free

 All previous loads have executed or have address
 No dependency

 Implementation with ld/st buffers with associative search

36

6.888 Spring 2013 - Sanchez and Emer - L01

Dealing with Precise Exceptions:

Reorder Buffer

 Precise exceptions: Exceptions must occur in same order as in

unpipelined, single-cycle processor

 Older instruction first, no partial execution of younger instructions

 Reorder buffer: A FIFO buffer for recapturing order

 Space allocated during instruction decode: in-order

 Result updated when execution completes: out-of-order

 Result written to registers or write-buffer: in-order

 Older instruction first

 If older instruction not done, stall

 If older instruction has exception, flush buffer to eliminate results of

incorrectly executed instructions

37

6.888 Spring 2013 - Sanchez and Emer - L01

Putting it All Together: A Modern

Superscalar Out-of-Order Processor

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch

Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
e

r
In

 O
rd

e
r

O
u

t
O

f
O

rd
e

r

Reorder Buffer

38

6.888 Spring 2013 - Sanchez and Emer - L01

Memory Hierarchy in Modern Processors

 Instruction cache:

 8 to 64KB, 2 to 4 way associative, 16 to 64B blocks, wide access

 Data cache

 8 to 64KB, 2 to 8 way associative, 16 to 64B blocks, multiported

 2nd level unified cache

 256KB to 4MB, >4-way associative, multi-banked

 Prefetch engines

 Sequential prefetching for instructions/data
 When a cache line is accessed, fetch the next few consecutive lines

 Strided prefetching for data
 Detect a[i*k] type of accesses and prefetch proper cache lines

 TLBs

39

6.888 Spring 2013 - Sanchez and Emer - L01

The Challenges of Superscalar Processors

 Clock frequency: getting close to pipelining limits

 Clocking overheads, CPI degradation

 Branch prediction & memory latency limit the practical
benefits of out-of-order execution

 Power grows superlinearly with higher clock & more
OOO logic

 Design complexity grows exponentially with issue width

 Limited ILP  Must exploit TLP and DLP

 Thead-Level Parallelism: Multithreading and multicore

 Data-Level Parallelism: SIMD instructions

40

6.888 Spring 2013 - Sanchez and Emer - L01

Putting it all together: Intel Core i7

(Nehalem)

 4 cores/chip, 2 threads/core

 16 pipeline stages, ~3GHz

 4-wide superscalar

 Out of order, 128-entry
reorder buffer

 2-level branch predictors

 Caches:

 L1: 32KB I + 32KB D

 L2: 256KB

 L3: 8MB, shared

 Huge overheads vs simple,
energy-optimized cores!

Core 1 Core 2 Core 3

L3 Cache

Memory controller

I/
O

s
 I/O

s

Core 0

Execution
Units

Out-of-Order
Scheduling &
Retirement

L2 Cache
& Interrupt
Servicing

Instruction Fetch
& L1 Cache

Branch Prediction
Instruction
Decode &
Microcode

Paging

L1 Data Cache

Memory Ordering
& Execution

41

6.888 Spring 2013 - Sanchez and Emer - L01

Summary

 Modern processors rely on a handful of important techniques

 Caching

 Instruction, data, page table

 Prediction

 Branches, memory dependencies, values

 Indirection

 Renaming, page tables

 Dependence-based reordering

 Out-of-order execution

 Modern processors: Main objective is high ILP

 High frequency, high power consumption

 Requires high memory bandwidth and low latency

 High price to pay for performance, but simple to use

42

6.888 Spring 2013 - Sanchez and Emer - L01

Readings for Next Monday

 3 short (~6 page) papers

1. The Task of a Referee

2. Roofline

3. Niagara

43

6.888 Spring 2013 - Sanchez and Emer - L01

