LECTURE 1
INTRODUCTION AND COURSE OVERVIEW

DANIEL SANCHEZ AND JOEL EMER

6.888 PARALLEL AND HETEROGENEOUS COMPUTER ARCHITECTURE
SPRING 2013

I I I I Massachusetts Institute of Technology |

CSAIL

Why 6.8882

The current revolution: Parallel computing

107 ' ' 1 '. :
Transistors (thousands) f 1
108 | — Relative core performance |-~ R REREREEES R RREEERPPTs i
Frequency (MHz) ; |
105 .,L Power (W) _________ ___________________ __________________ ,.
10
103 b
10° ~
oo + ------------------ e — " RS LSS RRE ey H
1985 1990 1995 2000 2005 2010
Year [Produced with CPUDB, cpudb.stanford.edu]

The impending revolution: Heterogeneous computing

6.888 Spring 2013 - Sanchez and Emer - LO1

Classic CMOS Scaling

3
Moore’s law + Denard scaling: Each generation
(e.g., 20265nm),
3.0 .
i] A4x faster
' transistors
! 0.7x
1 — +
. E trpnsistor P de” Ple"k
q;) ! capacitance 1
S P A \ A P, ==CV%f
I yn
2 : 2
< 1
) : 0.7x _
i SUPPIY])leak - Vx{leak << })dyn
| voltage
Moore: 2x transistors/chip
same area: & cost . 4 [Adapted from “Advacing SystemsWithout
1.0 ' Technology Progress” outbrief of

1.0 2.0 2.7 3.0 DARPA /ISAT Workshop, 2012]
Chip capability

2x transistors, 1.4x frequency, same power = area-constrained
6.888 Spring 2013 - Sanchez and Emer - LO1

Current CMOS Scaling

Frequency and supply voltage scaling are mostly exhausted

3.0 :
o i
5 i
o 20t R R EEE T
o
= 2x transistors /chip 0.7x
O transistor

same area & cost
capacitance

1.4

1.0
1.0 2.0 3.0

Chip capability
2.0x transistors, same frequency, 1.4x power = power-constrained
6.888 Spring 2013 - Sanchez and Emer - LO1

Parallelism and Heterogeneity Trade-offs

Good news: Plenty of efficiency improvements

Simple cores have ~10x lower energy /instruction than
complex uniprocessors =2 can scale to about ~1000 simple
cores within power constraints

Specialized compute units have ~10-1000x perf/energy
savings over general-purpose cores

Bad news: Harder to build and use, less general

Trillion-dollar question: What is the right balance
between efficiency, generality, and ease of use?

6.888 Goals

Learn about the state of the art, both hardware and
software aspects

Architectures and programming models

Hardware changes no longer transparent to software stack =2
must consider both to be successfull

Improve on the state of the art

Lots of open problems!

6.888 Spring 2013 - Sanchez and Emer - LO1

6.888 Team

Instructors: Daniel Sanchez and Joel Emer
TA: Mieszko Lis

Administrative support: Sally Lee

6.888 Spring 2013 - Sanchez and Emer - LO1

Class Basics

Lectures: Mon & Wed, 1-2:30pm, room 1-135

Format: Short presentation + paper-based discussions

Need to read papers beforehand and contribute to discussion

Webpage:

Includes course info, calendar, readings, contact info, and
office hours

6.888 Spring 2013 - Sanchez and Emer - LO1

http://courses.csail.mit.edu/6.888/spring13/

Class Topics

Structured in four parts (~1 month each):

Parallel architectures and programming models

How current multicores are built, how to program and
evaluate them

Communication, synchronization, and the memory
hierarchy

Advanced parallel systems, including techniques to ease
parallel programming (e.g., TM, TLS)

Specialized and heterogeneous computing
GPUs, vector, FPGAs, reconfigurable, and beyond
Cross-cutting issues

Prerequisites

Prerequisites: 6.004 or equivalent

Simple pipelined cores, caches, virtual memory, basic OS

6.823 (or similar) useful but not required

Today’s lecture reviews 6.823 aspects needed in 6.888

Parallel /performance-oriented programming (e.g.,
6.172) useful but not required

6.888 Spring 2013 - Sanchez and Emer - LO1

10

Class Participation & Papers

11

We expect you to participate regularly in class, and part
of your grade depends on it

Syllabus lists readings for each lecture, plus a list of
optional, additional readings

Tips for reading papers:
Read abstract, intro, and conclusions first
Skim the paper first, then do a detailed reading
Read critically, keep notes on questions and potential issues

Look up references that seem important or missing

Assignments

Project: Research-oriented, should address an open
question in the field
Propose your own topic or ask us for one

We’'ll give you access to infrastructure (simulators,
benchmarks, compute resources)

Milestones: Initial proposal (Mar 18), progress report (Apr
17), presentations (May 13), final report (May 15)

Seminar: After the first month, select a topic from one of
the upcoming lectures, develop a short presentation and
lead the class discussion

Homework: Single assignment during the first month

12

Grading & Rules

Grading breakdown:
Project: 60%
Seminar: 15%
Class participation: 15%

Homework: 10%

Two late days for assignments

Tip: reserve for project

Collaboration policy: All collaboration OK, but
Must list all sources of external help

Follow MIT academic integrity rules

6.888 Spring 2013 - Sanchez and Emer - LO1

13

We Want Your Feedback!

Aside from class participation...

Small course, first time it’s taught =2 your feedback is
really important

Should be challenging, but useful and fun

We're open to comments, suggestions, and willing to be
dynamic

6.888 Spring 2013 - Sanchez and Emer - LO1

14

Rest of Today: Parallelism in Modern
Multicores (ILP, TLP, and DLP) s

Goals:

Understand how general-purpose multicores exploit
parallelism

Understand bottlenecks & insights into solving them

Today: Focus on Instruction-Level Parallelism
Wide & superscalar pipelines
Prediction, renaming & out-of-order execution

Challenges and limitations of advanced processors

Next week: Thread and Data-level parallelism, memory
hierarchy

The Big Picture

16

PCI Express* 2.0 Graphics 16 Lanes ~16 GB/Y

or

Intel® Core™ DDR3 1333 MHz
Processors?

PCl Express* 2.0 Graphics [ttt
. 8 Lanes - 8 GB/s
PCl Express* 2.0 Graphics s e ey
DMI
20 Gb/s

Digital display: HDMI*, DVI, Intel® High
DisplayPort* (including eDP), Definition Audio
Lossless digital audio®

5 Gb/s each x1

14 Hi-Speed USB 2.0 Ports; IRCULUUEIIE] Intel” Z68
Dual EHCI; USB Port Disable Express Chipset

8 PCl Express* 2.0

Up to 6 Gb/s® 6 Serial ATA Ports;
eSATA; Port Disable

Intel® Integrated
10/100/1000 MAC
pcie* x1] | sMBus Intel* Rapid

Intel® ME Firmware Storage Technology

Intel® Gigabit LAN Connect and BIOS Support

Intel® Smart
Response Technology

r3

%WHI T sl [Slides 16-42 based on
e 1 | " material from Sanchez &

Kozyrakis]

¥
q
)

6.888 Spring 2013 - Sanchez and Emer - LO1

Microprocessor Performance

lron Law of Performance:

Time Instructio ns Cycles Time
- Perf =

Program Program Instructio n Cycle Time

stall

CPI = CPI__, + CPI

CPl. . cycles per instruction if no stall

CPI,, , contributors
Data dependences: RAW, WAR, WAW
Structural hazards
Control hazards: branches, exceptions

Memory latency: cache misses

6.888 Spring 2013 - Sanchez and Emer - LO1

5-stage Pipelined Processors

(MIPS R3000 circa 1985) 15

Advantages
CPl .o is 1 (pipelining)
e No WAW or WAR hazards
DECaaE Simple, elegant

Read Registers

Still used in ARM & MIPS processors

Y

ALU .
Shortcomings
Y . _
Memory Upper performance bound is CPI=1
| High latency instructions not handled well
Write Registers 1 stage for accesses to large caches or multiplier

Clock cycle is high

Unnecessary stalls due to rigid pipeline

If one instruction stalls anything behind it stalls

Improving 5-stage Pipeline Performance

Higher clock frequency (lower CCT): deeper pipelines

Overlap more instructions

Higher CPI.,_.;: wider pipelines

Insert multiple instruction in parallel in the pipeline

Lower CPI_

Diversified pipelines for different functional units

Ovut-of-order execution

Balance conflicting goals

Deeper & wider pipelines = more control hazards
Branch prediction

It all works because of instruction-level parallelism (ILP)

19

Instruction Level Parallelism (ILP)

Data-flow execution order

D=3(a—-b)+7ac

Sequential execution order

Id a

Id b ’ e
sub a-b

mul 3(a-b)

Id ¢ e e
mul ac

mul 7ac °
add 3(a-b)+7ac
st d @

6.888 Spring 2013 - Sanchez and Emer - LO1

Deeper Pipelines

v

Read Registers

v

Memory 1

Memory 2

v

Write Registers

21

ldea: break up instruction into N pipeline
stages
ldeal CCT = 1/N compared to non-pipelined
So let’s use a large N!

Other motivation for deep pipelines
Not all basic operations have the same latency
Integer ALU, FP ALU, cache access
Difficult to fit them in one pipeline stage
CCT must be large enough to fit the longest one
Break some of them into multiple pipeline stages

e.g., data cache access in 2 stages, FP add in 2
stage, FP mul in 3 stage...

Limits to Pipeline Depth

Each pipeline stage introduces some overhead (O)
Delay of pipeline registers

Inequalities in work per stage

Cannot break up work into stages at arbitrary points

Clock skew
Clocks to different registers may not be] T
perfectly aligned
—{ T/NP{ O T/N

If original CCT was T, with N stages CCT is T/N+O
If N—oo, speedup =T / (T/N+O) — T/O
Assuming that IC and CPI stay constant

Eventually overhead dominates and deeper pipelines have

diminishing returns

Pipelining Limits®?

25

— Frequency

—CPI
20 —— Performance -

— Power

e — |

15 N Y A '5'?'.? """"""""""""""""""""""
10 g i
5 B P
O ITTTITTITTT T T T T T T I T T I T T I T T T T T T T T T T I T T T I T I T I T I I T T T T I T T I T T I T T T TIT T T I T TIT T TTIT TTTTTd

— oo ua o (=] o o o [~ =+ -— o0 Ly od 8}
— o o AP == uw o w [~ [~ oo o2 oo

Pipeline Depth [Ed Grochowski, 7/6/01]

6.888 Spring 2013 - Sanchez and Emer - LO1

Deeper Pipelines Review

Advantages: higher clock frequency

The workhorse behind multi-GHz processors

Opteron: 11, UltraSparc: 14, Power5: 17, Pentium4: 22 /34;
Nehalem: 16

Cost

Complexity: more forwarding & stall cases

Disadvantages

More overlapping = more dependencies = more stalls

CPl,; grows due to data and control hazards
Clock overhead becomes increasingly important

Power consumption

24

Wider or Superscalar Pipelines

25

ldea: operate on N instructions each clock

cycle
Fetch . . .
;s Known as wide or superscalar pipelines
C T [T]
Decvode CPIideC‘I -]/N

Read Registers

C T T 1T
oy Options (from simpler to harder)
v One integer and one floating-point instruction
C T[T
! Any N=2 instructions
Memory
1 Any N=4 instructions
C T T 1T

: Any N=¢ Instructions

Write Registers
What are the limits here?

Superscalar Pipelines Review
26
Advantages: lower CPL__ (1/N)

Opteron: 3, UltraSparc: 4, Powerb: 8, Pentium4: 3; Core 2: 4;
Nehalem: 4

Cost
Need wider path to instruction cache
Need more ALUs, register file ports, ...
Complexity: more forwarding & stall cases to check

Disadvantages

Parallel execution = more dependencies = more stalls

CPl,, grows due to data and control hazards

Diversified Pipelines

Decode
Read Registers

A J

Crr 17
A4
v v v v
IntAdd IntMult FPU Memory
IntMult FPU Memory
% Eij
FPU Memory
%
FPU
v v v v
:I:V:CI
A

Write Registers

27

|dea: decouple the execution portion of the
pipeline for different instructions

Common approach:

Separate pipelines for simple integer, integer
multiply, FP, load/store

Advantage:

Avoid unnecessary stalls

E.g. slow FP instruction does not block
independent integer instructions

Disadvantages
WAW hazards

Imprecise (out-of-order) exceptions

6.888 Spring 2013 - Sanchez and Emer -

LO1

Putting it All Together: A Modern
Superscalar Out-of-Order Processor

T > I-Cache
Branch +
- Prodict | Fetch Unit
2 Y v
2 T instruction Buffer
- Y
Decode/Rename
Dispatch
Y
_ szj: |:|:v:|:| :Cvj: Reservation Stations
= v Vv
O [m | [m |[[FP | | FP || US| | US|
e N e i s
: I
Uf A

\

-
-l
e B |

Reorder Buffer !

Retire

\
Write Buffer T 1T 1+—» D-Cache

In Order

B i
4‘

6.888 Spring 2013 - Sanchez and Emer - LO1

Branch Penalty

‘ | Instruction Buffer

Branch .
= Predict Fetch l]nlt
° A
o) ‘ A
= v
Decode/Reame

Dispat[h
|
1 Y | :Cvjj :Cvj: Resen
v v v v
Int | FP |

Out Of Order

-l
-

-

Retire

In Order

\
i Write Buffer C T 1

/
T F—»

D-Cache

>3 cycles to resolve a branch /jump
Latency of |-cache
Decode & execute latency

Buffering

Cost of branch latency?

Assume 5 cycles to resolve & 4-way
superscalar

Cost of branch = 5*4 instructions

Typical programs:

1 branch every 4 to 8 instructions

6.888 Spring 2013 - Sanchez and Emer -

LO1

29

Branch Prediction

Goal: eliminate stalls due to taken branches
Gets more critical as pipeline gets longer & wider

ldea: dynamically predict the outcome of control-flow
instructions

Predict both the branch condition and the target

Works well because several branches have repeated behavior
E.g. branches for loops are usually taken
E.g. termination/limit /error tests are usually not taken

Why predict dynamically?
Branch behavior often difficult to analyze statically
Branch behavior may change during program execution

30

Predicting the Branch Condition:
Simple Branch History Table (BHT)

Basic idea:

Next branch outcome likely
to be same as last one

2™ bits

A 2™ x 1bit table

PC

Algorithm:
Use m least significant bits to access predictor

If Bit == O predict not-taken

If Bit == 1 predict taken

When prediction verified, update table if
wrong

Predicting the Target Address:
Branch Target Buffer (BTB)

| B |

TAG Branch Target

) J

»(=
Predicted target

Use Prediction?

BTB: a cache for branch targets
Stores targets for taken branches, jr, function calls
Reduce size: don’t store prediction for not taken branches

Algorithm: access in parallel with I-cache
If hit, use predicted target
If miss, use PC+ 16 (assuming 4-way fetch)

Must update when prediction verified

6.888 Spring 2013 - Sanchez and Emer - LO1

Review of Advanced Branch Prediction

33

Basic ideas

Use >1b per BHT entry to add hysteresis
Use PC & global branch history to address BHT

Detect global and local correlation between branches
e.g. nested if-then-else statements

e.g. short loops

Use multiple predictors and select most likely to be correct

Capture different patterns with each predictor

Measure and use confidence in prediction

Avoid executing instructions after difficult to predict branch
Neural-nets, filtering, separate taken/non-taken streams, ...
What happens on mispredictions

Update prediction tables

Flush pipeline & restart from mispredicted target (expensive)

Dealing with WAR & WAW:

Register Renaming

WAR and WAW hazards do not represent real data communication

RT =R2 + R3
R4 =R1 + RS
R1 =Ré6 + R7

If we had more registers, we could avoid them completely!

Register renaming: use more registers than the 32 in the ISA
Architectural registers mapped to large pool of physical registers
Give each new “value” produced its own physical register

Before & after renaming

RT =R2 +R3 R1T = R2 +R3
R4 =R1 + RS R4 =R1 + RS
R1 =R6 + R7 R8 = R6 + R7
R6 =R1 + R3 R = R8 + R3

6.888 Spring 2013 - Sanchez and Emer - LO1

34

Dealing with Unnecessary Ordering:
Out-of-Order Dispatch s

In-order execution: instruction dispatched to a functional unit
when

All older instructions have been dispatched
All operands are available & FU available

Out-of-order execution: instruction dispatched when
All operands are available & FU available

Out-of-order execution recreates the data-flow order

Implementation

Reservation stations or instruction window
Keep track when operands become available

6.888 Spring 2013 - Sanchez and Emer - LO1

Dealing with Memory Ordering

36

When can a load read from the cache?
Option 1: when its address is available & all older stores done

Option 2: when its address is available, all older stores have
address available, and no RAW dependency

Option 3: when its address is available
Speculate no dependency with older stores, must check later

When can a store write to the cache?
It must have its address & data
All previous instructions must be exception-free
It must be exception-free

All previous loads have executed or have address
No dependency

Implementation with Id /st buffers with associative search

Dealing with Precise Exceptions:
Reorder Buffer -

Precise exceptions: Exceptions must occur in same order as in
unpipelined, single-cycle processor

Older instruction first, no partial execution of younger instructions

Reorder buffer: A FIFO buffer for recapturing order
Space allocated during instruction decode: in-order
Result updated when execution completes: out-of-order

Result written to registers or write-buffer: in-order
Older instruction first
If older instruction not done, stall

If older instruction has exception, flush buffer to eliminate results of
incorrectly executed instructions

Putting it All Together: A Modern
Superscalar Out-of-Order Processor

T > I-Cache
Branch +
- Prodict | Fetch Unit
2 Y v
2 T instruction Buffer
- Y
Decode/Rename
Dispatch
Y
_ szj: |:|:v:|:| :Cvj: Reservation Stations
= v Vv
O [m | [m |[[FP | | FP || US| | US|
e N e i s
: I
Uf A

\

-
-l
e B |

Reorder Buffer !

Retire

\
Write Buffer T 1T 1+—» D-Cache

In Order

B i
4‘

6.888 Spring 2013 - Sanchez and Emer - LO1

Memory Hierarchy in Modern Processors

39

Instruction cache:
8 to 64KB, 2 to 4 way associative, 16 to 64B blocks, wide access

Data cache
8 to 64KB, 2 to 8 way associative, 16 to 64B blocks, multiported

2"¢ level unified cache
256KB to 4MB, >4-way associative, multi-banked

Prefetch engines

Sequential prefetching for instructions /data
When a cache line is accessed, fetch the next few consecutive lines

Strided prefetching for data

Detect a[i*k] type of accesses and prefetch proper cache lines

TLBs

The Challenges of Superscalar Processors

40
Clock frequency: getting close to pipelining limits
Clocking overheads, CPl degradation

Branch prediction & memory latency limit the practical
benefits of out-of-order execution

Power grows superlinearly with higher clock & more

OO0 logic

Design complexity grows exponentially with issue width

Limited ILP = Must exploit TLP and DLP

Thead-Level Parallelism: Multithreading and multicore

Data-Level Parallelism: SIMD instructions

Putting it all together: Intel Core i7
(Nehalem) "

= 4 cores/chip, 2 threads/core B LEE s s
7 16 pipeline stages, ~3GHz [
11 4-wide superscalar
0

Out of order, 128-entry
reorder buffer

11 2-level branch predictors

o Caches:
L2 Cach
o L1: 32KB | + 32KB D . U oI | B ettt
ILE’xgcuhon Servicing
1 L2: 256KB s Memory Ordering
) & Execution Paging
= L3: 8MB, shared L= -
Ouf-of-Qrder Instruction Y ST
1 Huge overheads vs simple, [t ineeci oA Eaih

& L1 Cache

energy-optimized cores!

6.888 Spring 2013 - Sanchez and Emer - LO1

Summary

42

Modern processors rely on a handful of important techniques
Caching

Instruction, data, page table

Prediction

Branches, memory dependencies, values

Indirection

Renaming, page tables
Dependence-based reordering
Out-of-order execution
Modern processors: Main objective is high ILP
High frequency, high power consumption
Requires high memory bandwidth and low latency

High price to pay for performance, but simple to use

Readings for Next Monday

3 short (~6 page) papers
The Task of a Referee
Roofline

Niagara

6.888 Spring 2013 - Sanchez and Emer - LO1

43

