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LECTURE 1 

INTRODUCTION AND COURSE OVERVIEW 

DANIEL SANCHEZ AND JOEL EMER 



Why 6.888? 

 The current revolution: Parallel computing 

 

 

 

 

 

 

 

 

 

 

 

 The impending revolution: Heterogeneous computing 
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Classic CMOS Scaling 

 Moore’s law + Denard scaling: Each generation 
(e.g., 9065nm), 
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Current CMOS Scaling 
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 2.0x transistors, same frequency, 1.4x power  power-constrained 

 Frequency and supply voltage scaling are mostly exhausted 
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Parallelism and Heterogeneity Trade-offs 

 Good news: Plenty of efficiency improvements 

 Simple cores have ~10x lower energy/instruction than 

complex uniprocessors  can scale to about ~1000 simple 

cores within power constraints 

 Specialized compute units have ~10-1000x perf/energy 

savings over general-purpose cores 

 

 Bad news: Harder to build and use, less general 

 

 Trillion-dollar question: What is the right balance 

between efficiency, generality, and ease of use? 
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6.888 Goals 

 Learn about the state of the art, both hardware and 

software aspects 

 Architectures and programming models 

 Hardware changes no longer transparent to software stack  

must consider both to be successful! 

 

 Improve on the state of the art 

 Lots of open problems! 
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6.888 Team 

 Instructors: Daniel Sanchez and Joel Emer 

 

 TA: Mieszko Lis 

 

 Administrative support: Sally Lee 
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Class Basics 

 Lectures: Mon & Wed, 1-2:30pm, room 1-135 

 Format: Short presentation + paper-based discussions 

 Need to read papers beforehand and contribute to discussion 

 

 

 Webpage: http://courses.csail.mit.edu/6.888/spring13/ 

 Includes course info, calendar, readings, contact info, and 

office hours 
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Class Topics 

 Structured in four parts (~1 month each): 

1. Parallel architectures and programming models 

 How current multicores are built, how to program and 
evaluate them 

2. Communication, synchronization, and the memory 
hierarchy 

 Advanced parallel systems, including techniques to ease 
parallel programming (e.g., TM, TLS) 

3. Specialized and heterogeneous computing 

 GPUs, vector, FPGAs, reconfigurable, and beyond 

4. Cross-cutting issues 
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Prerequisites 

 Prerequisites: 6.004 or equivalent 

 Simple pipelined cores, caches, virtual memory, basic OS 

 

 6.823 (or similar) useful but not required 

 Today’s lecture reviews 6.823 aspects needed in 6.888 

 

 Parallel/performance-oriented programming (e.g., 

6.172) useful but not required 
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Class Participation & Papers 

 We expect you to participate regularly in class, and part 
of your grade depends on it 

 

 Syllabus lists readings for each lecture, plus a list of 
optional, additional readings 

 

 Tips for reading papers: 

 Read abstract, intro, and conclusions first 

 Skim the paper first, then do a detailed reading 

 Read critically, keep notes on questions and potential issues 

 Look up references that seem important or missing 
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Assignments 

 Project: Research-oriented, should address an open 

question in the field 

 Propose your own topic or ask us for one 

We’ll give you access to infrastructure (simulators, 

benchmarks, compute resources) 

Milestones: Initial proposal (Mar 18), progress report (Apr 

17), presentations (May 13), final report (May 15) 

 Seminar: After the first month, select a topic from one of 

the upcoming lectures, develop a short presentation and 

lead the class discussion 

 Homework: Single assignment during the first month 

 

12 

6.888 Spring 2013 - Sanchez and Emer - L01 



Grading & Rules 

 Grading breakdown: 

 Project: 60% 

 Seminar: 15% 

 Class participation: 15% 

 Homework: 10% 

 

 Two late days for assignments 

 Tip: reserve for project 

 

 Collaboration policy: All collaboration OK, but 

Must list all sources of external help 

 Follow MIT academic integrity rules 

 

13 

6.888 Spring 2013 - Sanchez and Emer - L01 



We Want Your Feedback! 

 Aside from class participation… 

 

 Small course, first time it’s taught  your feedback is 

really important 

 Should be challenging, but useful and fun 

 

 We’re open to comments, suggestions, and willing to be 

dynamic 
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Rest of Today: Parallelism in Modern 

Multicores (ILP, TLP, and DLP) 

 Goals: 

 Understand how general-purpose multicores exploit 
parallelism 

 Understand bottlenecks & insights into solving them 

 

 Today: Focus on Instruction-Level Parallelism 

Wide & superscalar pipelines 

 Prediction, renaming & out-of-order execution  

 Challenges and limitations of advanced processors 

 

 Next week: Thread and Data-level parallelism, memory 
hierarchy 

15 

6.888 Spring 2013 - Sanchez and Emer - L01 



The Big Picture 
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Microprocessor Performance 

 Iron Law of Performance: 

 

 

 

 CPI = CPIideal + CPIstall 

 CPIideal: cycles per instruction if no stall 

 

 CPIstall contributors 

 Data dependences: RAW, WAR, WAW 

 Structural hazards 

 Control hazards: branches, exceptions 

 Memory latency: cache misses 
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5-stage Pipelined Processors 

(MIPS R3000 circa 1985) 
 Advantages 

 CPIideal is 1 (pipelining) 

 No WAW or WAR hazards 

 Simple, elegant 

 Still used in ARM & MIPS processors 
 

 Shortcomings 

 Upper performance bound is CPI=1 

 High latency instructions not handled well 

 1 stage for accesses to large caches or multiplier 

 Clock cycle is high  

 Unnecessary stalls due to rigid pipeline 

 If one instruction stalls anything behind it stalls 

Fetch

Decode

Read Registers

ALU

Memory

Write Registers
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Improving 5-stage Pipeline Performance 

 Higher clock frequency (lower CCT): deeper pipelines 

 Overlap more instructions 

 Higher CPIideal: wider pipelines 

 Insert multiple instruction in parallel in the pipeline 

 Lower CPIstall:  

 Diversified pipelines for different functional units 

 Out-of-order execution 

 Balance conflicting goals 

 Deeper & wider pipelines  more control hazards 

 Branch prediction  
 

 It all works because of instruction-level parallelism (ILP) 

19 

6.888 Spring 2013 - Sanchez and Emer - L01 



Instruction Level Parallelism (ILP) 

 Sequential execution order 

ld a 

ld b 

sub a-b 

mul 3(a-b) 

ld c 

mul ac 

mul 7ac 

add 3(a-b)+7ac 

st d 

 Data-flow execution order 
acbaD 7)(3 

ld a ld b ld c 

+ 

* - 

* * 

st d 
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Deeper Pipelines 

 Idea: break up instruction into N pipeline 
stages 

 Ideal CCT = 1/N compared to non-pipelined 

 So let’s use a large N! 

 

 Other motivation for deep pipelines 

 Not all basic operations have the same latency 
 Integer ALU, FP ALU, cache access 

 Difficult to fit them in one pipeline stage 
 CCT must be large enough to fit the longest one 

 Break some of them into multiple pipeline stages 
 e.g., data cache access in 2 stages, FP add in 2 

stage, FP mul in 3 stage…  

 

Fetch 1

Decode

ALU

Memory 1

Write Registers

Fetch 2

Read Registers

Memory 2
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Limits to Pipeline Depth 

 Each pipeline stage introduces some overhead (O) 

 Delay of pipeline registers 

 Inequalities in work per stage 

 Cannot break up work into stages at arbitrary points 

 Clock skew 

 Clocks to different registers may not be 
perfectly aligned 

 

 If original CCT was T,  with N stages CCT is T/N+O 

 If N→, speedup = T / (T/N+O) → T/O 

 Assuming that IC and CPI stay constant 

 Eventually overhead dominates and deeper pipelines have 
diminishing returns 

T 

T/N O T/N O 

22 

6.888 Spring 2013 - Sanchez and Emer - L01 



Pipelining Limits? 
23 
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Deeper Pipelines Review 

 Advantages: higher clock frequency 

 The workhorse behind multi-GHz processors 

 Opteron: 11, UltraSparc: 14, Power5: 17, Pentium4: 22/34; 
Nehalem: 16 

 

 Cost 

 Complexity: more forwarding & stall cases 
 

 Disadvantages 

 More overlapping  more dependencies  more stalls 

 CPIstall grows due to data and control hazards 

 Clock overhead becomes increasingly important 

 Power consumption  
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Wider or Superscalar Pipelines 

 Idea: operate on N instructions each clock 
cycle 

 Known as wide or superscalar pipelines 

 CPIideal = 1/N 

 

 Options (from simpler to harder) 

 One integer and one floating-point instruction 

 Any N=2 instructions 

 Any N=4 instructions 

 Any N=? Instructions 

 What are the limits here? 

Fetch

Decode

Read Registers

ALU

Memory

Write Registers
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Superscalar Pipelines Review 

 Advantages: lower CPIideal (1/N) 

Opteron: 3, UltraSparc: 4, Power5: 8, Pentium4: 3; Core 2: 4; 
Nehalem: 4 

 

 Cost 

 Need wider path to instruction cache 

 Need more ALUs, register file ports, …  

 Complexity: more forwarding & stall cases to check 
 

 Disadvantages 

 Parallel execution  more dependencies  more stalls 

 CPIstall grows due to data and control hazards 
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Diversified Pipelines 

 Idea: decouple the execution portion of the 

pipeline for different instructions 

 Common approach: 

 Separate pipelines for simple integer, integer 

multiply, FP, load/store 

 

 Advantage:  

   Avoid unnecessary stalls 

 E.g. slow FP instruction does not block 

independent integer instructions 

 

 Disadvantages 

 WAW hazards 

 Imprecise (out-of-order) exceptions 
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Putting it All Together: A Modern 

Superscalar Out-of-Order Processor 
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Branch Penalty 
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 >3 cycles to resolve a branch/jump 

 Latency of I-cache 

 Decode & execute latency 

 Buffering 

 

 Cost of branch latency? 

 Assume 5 cycles to resolve & 4-way 

superscalar 

 Cost of branch = 5*4 instructions 

 

 Typical programs: 

 1 branch every 4 to 8 instructions 
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Branch Prediction 

 Goal: eliminate stalls due to taken branches 

 Gets more critical as pipeline gets longer & wider 

 

 Idea: dynamically predict the outcome of control-flow 
instructions 

 Predict both the branch condition and the target 

 Works well because several branches have repeated behavior 
 E.g. branches for loops are usually taken 

 E.g. termination/limit/error tests are usually not taken 

 

 Why predict dynamically? 

 Branch behavior often difficult to analyze statically 

 Branch behavior may change during program execution 
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Predicting the Branch Condition: 

Simple Branch History Table (BHT) 

 Basic idea:  

 Next branch outcome likely 

to be same as last one 

 

 A 2m x 1bit table 
 

 Algorithm: 

 Use m least significant bits to access predictor 

 If Bit == 0 predict not-taken 

 If Bit == 1 predict taken 

 When prediction verified, update table if 

wrong 

 

PC 

m 

2m bits 

1 
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Predicting the Target Address: 

Branch Target Buffer (BTB) 

 BTB: a cache for branch targets 

 Stores targets for taken branches, jr, function calls 

 Reduce size: don’t store prediction for not taken branches 

 Algorithm: access in parallel with I-cache 

 If hit, use predicted target 

 If miss, use PC+ 16 (assuming 4-way fetch) 

 Must update when prediction verified 

TAG Branch Target

PC

=
Predicted target

Use Prediction?
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Review of Advanced Branch Prediction 

 Basic ideas 

 Use >1b per BHT entry to add hysteresis 

 Use PC & global branch history to address BHT 

 Detect global and local correlation between branches 

 e.g. nested if-then-else statements 

 e.g. short loops 

 Use multiple predictors and select most likely to be correct 

 Capture different patterns with each predictor 

 Measure and use confidence in prediction  

 Avoid executing instructions after difficult to predict branch 

 Neural-nets, filtering, separate taken/non-taken streams, …  

 What happens on mispredictions 

 Update prediction tables 

 Flush pipeline & restart from mispredicted target (expensive) 
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Dealing with WAR & WAW: 

Register Renaming 

 WAR and WAW hazards do not represent real data communication 

1. R1 = R2 + R3 

2. R4 = R1 + R5 

3. R1 = R6 + R7 

 If we had more registers, we could avoid them completely! 

 

 Register renaming: use more registers than the 32 in the ISA 

 Architectural registers mapped to large pool of physical registers 

 Give each new “value” produced its own physical register 

 Before & after renaming 

 R1 = R2 + R3   R1 = R2 + R3 

 R4 = R1 + R5   R4 = R1 + R5 

 R1 = R6 + R7   R8 = R6 + R7 

 R6 = R1 + R3   R9 = R8 + R3  
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Dealing with Unnecessary Ordering: 

Out-of-Order Dispatch  

 In-order execution: instruction dispatched to a functional unit 
when 
 All older instructions have been dispatched 
 All operands are available & FU available 

 

 Out-of-order execution: instruction dispatched when 
 All operands are available & FU available 

 

 Out-of-order execution recreates the data-flow order 

 

 Implementation 
 Reservation stations or instruction window 
 Keep track when operands become available 
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Dealing with Memory Ordering 

 When can a load read from the cache? 

 Option 1: when its address is available & all older stores done 

 Option 2: when its address is available, all older stores have 
address available, and no RAW dependency 

 Option 3: when its address is available 
 Speculate no dependency with older stores, must check later 

 When can a store write to the cache?  

 It must have its address & data 

 All previous instructions must be exception-free 

 It must be exception-free 

 All previous loads have executed or have address 
 No dependency 

 Implementation with ld/st buffers with associative search 

 

36 

6.888 Spring 2013 - Sanchez and Emer - L01 



Dealing with Precise Exceptions: 

Reorder Buffer 

 Precise exceptions: Exceptions must occur in same order as in 

unpipelined, single-cycle processor 

 Older instruction first, no partial execution of younger instructions 

 

 Reorder buffer: A FIFO buffer for recapturing order   

 Space allocated during instruction decode: in-order 

 Result updated when execution completes: out-of-order 

 Result written to registers or write-buffer: in-order 

 Older instruction first 

 If older instruction not done, stall 

 If older instruction has exception, flush buffer to eliminate results of 

incorrectly executed instructions 
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Putting it All Together: A Modern 

Superscalar Out-of-Order Processor 
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Memory Hierarchy in Modern Processors 

 Instruction cache: 

 8 to 64KB, 2 to 4 way associative, 16 to 64B blocks, wide access 

 Data cache 

 8 to 64KB, 2 to 8 way associative, 16 to 64B blocks, multiported 

 2nd level unified cache 

 256KB to 4MB, >4-way associative, multi-banked 

 Prefetch engines 

 Sequential prefetching for instructions/data 
 When a cache line is accessed, fetch the next few consecutive lines 

 Strided prefetching for data 
 Detect a[i*k] type of accesses and prefetch proper cache lines 

 TLBs 
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The Challenges of Superscalar Processors 

 Clock frequency: getting close to pipelining limits 

 Clocking overheads, CPI degradation 

 Branch prediction & memory latency limit the practical 
benefits of out-of-order execution 

 Power grows superlinearly with higher clock & more 
OOO logic 

 Design complexity grows exponentially with issue width 

 

 Limited ILP  Must exploit TLP and DLP 

 Thead-Level Parallelism: Multithreading and multicore 

 Data-Level Parallelism: SIMD instructions 
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Putting it all together: Intel Core i7 

(Nehalem) 

 4 cores/chip, 2 threads/core 

 16 pipeline stages, ~3GHz 

 4-wide superscalar 

 Out of order, 128-entry 
reorder buffer 

 2-level branch predictors 

 Caches: 

 L1: 32KB I + 32KB D 

 L2: 256KB 

 L3: 8MB, shared 

 Huge overheads vs simple, 
energy-optimized cores! 

 

Core 1 Core 2 Core 3 

L3 Cache 

Memory controller 

I/
O

s
 I/O

s
 

Core 0 

Execution 
Units 

Out-of-Order 
Scheduling & 
Retirement 

L2 Cache 
& Interrupt 
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& L1 Cache 

Branch Prediction 
Instruction 
Decode & 
Microcode 

Paging 

L1 Data Cache 

Memory Ordering 
& Execution 
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Summary 

 Modern processors rely on a handful of important techniques 

 Caching 

 Instruction, data, page table 

 Prediction 

 Branches, memory dependencies, values 

 Indirection 

 Renaming, page tables 

 Dependence-based reordering 

 Out-of-order execution 

 Modern processors: Main objective is high ILP 

 High frequency, high power consumption 

 Requires high memory bandwidth and low latency 

 High price to pay for performance, but simple to use 
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Readings for Next Monday 

 3 short (~6 page) papers 

1. The Task of a Referee 

2. Roofline 

3. Niagara 
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