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Abstract 

GLS is a new distributed location service which tracks mobile node 
locations. GLS combined with geographic forwarding allows the 
construction of ad hoc mobile networks that scale to a larger num- 
ber of nodes than possible with previous work. GLS is decentral- 
ized and runs on the mobile nodes themselves, requiring no fixed 
infrastructure. Each mobile node periodically updates a small set of 
other nodes (its location servers) with its current location. A node 
sends its position updates to its location servers without knowing 
their actual identities, assisted by a predefined ordering of node 
identifiers and a predefined geographic hierarchy. Queries for a 
mobile node's location also use the predefined identifier ordering 
and spatial hierarchy to find a location server for that node. 

Experiments using the ns simulator for up to 600 mobile nodes 
show that the storage and bandwidth requirements of GLS grow 
slowly with the size of the network. Furthermore, GLS tolerates 
node failures well: each failure has only a limited effect and query 
performance degrades gracefully as nodes fail and restart. The 
query performance of GLS is also relatively insensitive to node 
speeds, Simple geographic forwarding combined with GLS com- 
pares favorably with Dynamic Source Routing (DSR): in larger net- 
works (over 200 nodes) our approach delivers more packets, but 
consumes fewer network resources. 

1. Introduction 

This paper considers the problem of routing in large ad hoc net- 
works of mobile hosts. Such networks are of interest because they 
do not require any prior investment in fixed infrastructure. Instead, 
the network nodes agree to relay each other's packets toward their 
ultimate destinations, and the nodes automatically form their own 
cooperative infrastructure. We describe a system, Grid, that com- 
bines a cooperative infrastructure with location information to im- 
plement routing in a large ad hoc network. We analyze Grid's loca- 
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tion service (GLS), show that it is correct and efficient, and present 
simulation results supporting our analysis. 

It is possible to construct large networks of fixed nodes today. Promi- 
nent examples include the telephone system and the Internet. The 
cellular telephone network shows how these wired networks can be 
extended to include large numbers of mobile nodes. However, these 
networks require a large up-front investment in fixed infrastructure 
before they are useful---central offices, trunks, and local loops in 
the case of the telephone system, radio towers for the cellular net- 
work. Furthermore, upgrading these networks to meet increasing 
bandwidth requirements has proven expensive and slow. 

The fact that large fixed communication infrastructures already ex- 
ist might seem to limit the usefulness of any competing approach. 
There are, however, a number of situations in which ad hoc net- 
works are desirable. Users may be so sparse or dense that the ap- 
propriate level of fixed infrastructure is not an economical invest- 
ment. Sometimes fixed infrastructure exists but cannot be relied 
upon, such as during disaster recovery. Finally, existing services 
may not provide adequate service, or may be too expensive. 

Though ad hoc networks are attractive, they are more difficult to 
implement than fixed networks. Fixed networks take advantage of 
their static nature in two ways. First, they proactively distribute 
network topology information among the nodes, and each node 
pre-computes routes through that topology using relatively inex- 
pensive algorithms. Second, fxed networks embed routing hints in 
node addresses because the complete topology of a large network 
is too unwieldy to process or distribute globally. Neither of these 
techniques works well for networks with mobile nodes because 
movement invalidates topology information and permanent node 
addresses cannot include dynamic location information. However, 
there is a topological assumption that works well for radio-based 
ad hoc networks: nodes that are physically close are likely to be 
close in the network topology; that is, they will be connected by a 
small number of radio hops. 

Grid uses geographical forwarding to take advantage of the similar- 
ity between physical and network proximity. A source must know 
the geographical positions of any destination to which it wishes to 
send, and must label packets for that destination with its position. 
An intermediate node only needs to know its own position and the 
positions of nearby nodes; that is enough information to relay each 
packet through the neighbor that is geographically closest to the ul- 
timate destination. Although Grid forwards packets based purely 
upon local geographic information, it is highly likely that packets 
are also approaching their destination as measured by the number 
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of remaining hops to the destination. Because nodes only need lo- 
cal information, regardless of the total network size, geographic 
forwarding is attractive for large-scale networks. 

However, to be useful in a larger context, a system based on geo- 
graphic forwarding must also provide a mechanism for sources to 
learn the positions of destinations. To preserve scalability, this loca- 
tion service must allow queries and updates to be performed using 
only a handful of messages. Of course, the location service itself 
must operate using only geographic forwarding. It should also be 
scalable in the following senses: 

1. No node should be a bottleneck--the work of maintaining 
the location service should be spread evenly over the nodes. 

2. The failure of a node should not affect the reachability of 
many other nodes. 

3. Queries for the locations of nearby hosts should be satisfied 
with correspondingly local communication. This would also 
allow operation in the face of network partitions. 

4. The per-node storage and commnnication cost of the location 
service should grow as a small function of the total number 
of nodes. 

The Grid location service (GLS) presented in this paper satisfies all 
of these requirements. 

The rest of the paper describes the design and simulated perfor- 
mance of Grid. Section 2 reviews existing work in scalable ad hoc 
networking. Section 3 describes the characteristics of geographic 
forwarding. Section 4 describes Grid's distributed location service 
algorithm. Section 5 describes our implementation of geographic 
forwarding and the GLS in detail. Section 6 analyzes Grid's routing 
performance and scalability using simulations. Section 7 suggests 
areas for future improvements. Section 8 summarizes the paper's 
contributions. 

2. Related Work 

Most existing ad hoe routing systems distribute either topology in- 
formation or queries to all nodes in the network. Some, such as 
DSDV [16], are proactive; they continuously maintain route entries 
for all destinations. Other techniques are reactive, and construct 
routes to destinations as they are required. This includes systems 
such as DSR [10], AODV [15], and TORA[14]. Bfoch et al. [4] and 
Johansson et al. [9] each provide overviews of these ad hoc rout- 
ing techniques, along with comparative measurements using small 
(30-50 node) simulations. Grid's main contribution compared to 
these works is increased scalability. 

More closely related to Grid are protocols that use geographic po- 
sitions. Finn's Cartesian routing [7] addresses each node with a ge- 
ographic location as well as a unique identifier. Packets are routed 
by sending them to the neighbor closest to the packet's ultimate 
destination. Dead ends are handled by scoped flooding. However, 
Finn gives no detailed explanation of how node locations are found 
or how mobility is handled. 

More recent work on geographic approaches to routing includes 
the DREAM [2] and LAR [13] systems. Both systems route pack- 
ets geographically, in a manner similar to Finn's Cartesian system. 

They differ in how a node acquires the geographic position of a des- 
tination. DREAM nodes proactively flood position updates over 
the whole network, allowing other nodes to build complete posi- 
tion databases. LAR nodes reactively flood position queries over 
the entire network when they wish to find the position of a desti- 
nation. Because they both involve global flooding, neither system 
seems suited to large networks. 

The Landmark system [17, 18] actively maintains a hierarchy to 
provide routing in a changing network. Nodes in a Landmark net- 
work have unique permanent IDs that are not directly useful for 
routing. Each node also has a changeable Landmark address, which 
consists of a list of IDs of nodes along the path from a well-known 
root to the node's current location. A Landmark address can be 
used directly for routing, since it is similar to a source route. The 
Landmark system provides a location service that maps IDs to cur- 
rent addresses. Each node X sends updates containing its current 
Landmark address to a node that acts as its address server, chosen 
by hashing X's ID to produce a Landmark address A. If a node Y 
exists with that address, Y acts as X's location server. Otherwise 
the node with Landmark address closest to A is used. Anyone look- 
ing for X can use the same algorithm to find X's location server, 
which can be queried to find X's current Landmark address. This 
combination of location servers and addresses that encode routing 
information is similar to the architecture described in this paper. 
Grid, however, avoids building hierarchies, as they are vulnerable 
to the movement of nodes near the top of the hierarchy. 

3. Geographic Forwarding 
We use a simple scheme for geographic forwarding that is similar 
to Cartesian routing [7]. Each node determines its own geographic 
position using a mechanism such as GPS [1]; positions consist of 
latitude and longitude. A node announces its presence, position, 
and velocity to its neighbors (other nodes within radio range) by 
broadcasting periodic HELLO packets. Each node maintains a ta- 
ble of its current neighbors' identities and geographic positions. 
The header of a packet destined for a particular node contains the 
destinatinn's identity as well as its geographic position. When node 
needs to forward a packet toward location P, the node consults its 
neighbor table and chooses the neighbor closest to P. It then for- 
wards the packet to that neighbor, which itself applies the same 
forwarding algorithm. The packet stops when it reaches the desti- 
nation. 

A packet may also reach a node that does not know about any nodes 
closer than itself to the ultimate destination. This dead-end indi- 
cates that there is a "hole" in the geographic distribution of nodes. 
In that case, the implementation described in this paper gives up 
and sends an error message to the packet's source node. 

Recovering from dead-ends is possible using the same neighbor 
position table used in geographic forwarding. Karp and Kung pro- 
pose GPSR [12], a geographic routing system that uses a planar 
subgraph of the wireless network's graph to route around holes. 
They simulate GPSR on mobile networks with 50-200 nodes, and 
show that it delivers more packets successfully with lower routing 
protocol overhead than DSR on networks with more than 50 nodes. 
Bose et al. independently demonstrate a loop-free method for rout- 
ing packets around holes using only information local to each node. 
The method works only for unit graphs, in which two nodes can 
communicate directly in exactly the cases in which they are within 
some fixed distance of each other. 
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Figure 1: Fraction of data packets unable to be delivered us- 
ing geographic forwarding with a perfect location service, as a 
function of node density. The simulation area is 1 km 2. 

3.1 Effect of Density 
Geographic forwarding works best when nodes are dense enough 
that dead ends are not common. We present a simple evaluation of 
the effects of  node density using the ns [6] network simulator. The 
simulated nodes have 2 Megabit per second IEEE 802.11 radios [5] 
with ranges of about 250 meters; each node transmits HELLO mes- 
sages at 2 second intervals, and routing table entries expire after 4 
seconds. Nodes move continuously at 10 m/s; each node moves 
by selecting a random destination, moving toward it, and selecting 
a new destination when it reaches the old one. Each node sends 
packets to three destination nodes selected at random; each conver- 
sation starts at a time selected randomly over the 300 second life of 
the simulation. A conversation involves sending 6 packets of 128 
bytes each at quarter second intervals. Senders know the correct 
geographic positions of destinations. 

Figure 1 is the result of simulations over a range of node densi- 
ties. In each simulation, the nodes are placed at random in a 1 
km 2 square. The graph reports the fraction of packets that were 
not delivered for each node density. In this scenario, geographic 
forwarding works well for more than 50 nodes per square kilome- 
ter. If  50 nodes are evenly placed in a 1 km 2 square, the inter-node 
spacing is 141 = 1000/x/50 meters, which is within radio range. 
More generally, the simulation results agree with a mathematical 
analysis of random nodes distributed throughout the unit square: 
one can prove that i f  the communication radius is r and the num- 
ber of points exceeds ( 6 / r  2) l n ( 6 / r  2 ) per km 2, then dead ends are 
extremely unlikely to occur. 

4. The Grid Location Service 
Combining geographic forwarding with a mechanism for determin- 
ing the location of a node implements the traditional network layer: 
any node can send packets to any other node. A trivial location ser- 
vice might consist of  a statically positioned location server. Nodes 
would periodically update this server (using geographic forwarding 
to the server's well-known coordinates) with their current location. 
For a node A to contact node B, A queries the location server for 
B's  current location before using geographic forwarding to contact 
B. 

Using a single location server has a number of  problems. The cen- 
tralized server is a single point of failure; it is unlikely to scale 

to a large number of mobile nodes; it can not allow multiple net- 
work partitions to each function normally in their own partition; 
and nodes near to each other gain no advantages--they must con- 
tact a potentially distant location server in order to communicate 
locally. 

We introduce a distributed location service (GLS) that is designed 
to address these problems. GLS is fault-tolerant; there is no depen- 
dence on specially designated nodes. GLS scales to large numbers 
of nodes; our goal is to provide a service that scales to at least the 
size of a large metropolitan area. Finally, GLS operates effectively 
even for isolated pockets of nodes. A node should be able to de- 
termine the location of any node that it can reach with geographic 
forwarding. That is, a location lookup should not involve nodes 
that are too far "out of the way" of a straight line trip from the node 
performing the lookup to the node being looked up. 

GLS is based on the idea that a node maintains its current location 
in a number of location servers distributed throughout the network. 
These location servers are not specially designated; each node acts 
as a location server on behalf of  some other nodes. The location 
servers for a node are relatively dense near the node but sparse far- 
ther from node; this ensures that anyone near a destination can use 
a nearby location server to find the destination, while also limiting 
the number of location servers for each node. On the other hand 
long distance queries are not disproportionally penalized: query 
path lengths are proportional to data path lengths. 

In order to spread uniformly the work of acting as location servers, 
GLS avoids techniques such as leader election or hierarchy to de- 
termine location server responsibility. These schemes place undue 
stress on the nodes unlucky enough to be elected as a leader or 
placed at higher levels in the hierarchy. Instead GLS allows a node 
X to select a set of location servers that, probabilistically, is unlike 
the set of servers selected by other nodes and does not change dras- 
tically as nodes enter or leave the network. Nodes searching for X 
are able to find X's  location servers using no prior knowledge be- 
yond node X's  ID. This is accomplished by carrying out much the 
same protocol that X used to select its servers in the first place. 

Our approach draws its intuition from Consistent Hashing, a tech- 
nique developed to support hierarchical caching of web pages [11]. 
To avoid making a single node into the bottleneck of the hierar- 
chical cache, that paper used a hash function to build a distinct 
hierarchy for each page, much as we use a distinct location ser- 
vice hierarchy for each target. Also like our paper, that paper used 
nested query radii to ensure that queries for a given page did not go 
to caches much farther away than the page itself. 

GLS balances the location server work evenly across all the nodes 
if  there is a random distribution of node IDs across the network. 
GLS ensures that nodes are allocated unique, random IDs by using 
a strong hash function to obtain an ID from a node's unique name. 
The name could be any uniquely allocated name, such as Internet 
host names, IP addresses, or MAC addresses. For purposes of dis- 
cussing the GLS, a node's ID is more interesting than its original 
name, therefore when we refer to a node A, we are referring to the 
node whose name hashes to A. 

4.1 Selecting and Querying Location Servers 

GLS provides for distributed location lookups by replicating the 
knowledge of a node's current location at a small subset of the net- 
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Figure  2: A piece of the global part i t ioning of the world. A 
few example squares of various orders are shown with dark 
shading. The lightly shaded square is shown as an example 
of a 2x2 square which is not an order-2 square because of its 
location. An order-n square's lower left corner's coordinates 
must  be of the form (a2 n-x ,  b2 n - l )  for integers a,b. 

work's nodes. This set of  nodes is referred to as the node's location 
servers. A node A hoping to contact node B can query one of a 
number of  other nodes that know B's location. Of  course, A must 
be able to contact the nodes that know B's location. This means 
that A 's  search for B's  location servers and B's original recruit- 
ment of  location servers ought to lead to the same servers. When 
B recruits location servers it uses the same information that A will 
have when searching for B's location servers: B's name and certain 
information that all nodes have at startup. 

Figure 3: The inset squares are regions in which B will seek a 
location server. The nodes that  become B's location servers are 
circled and shown in bold. 

If we consider the tree corresponding to the grid decomposition, a 
node selects location servers in each sibling of a square that con- 
tains the node. The exact details of  the selection are best under- 
stood with an example (see Figure 3). A node chooses three loca- 
tion servers for each level of  the grid hierarchy. For example, in 
the figure, B recruits three servers in order-1 squares, three servers 
in order-2 squares, and three servers in order-3 squares. In each of 
the three order-1 squares that, along with B's  own order-1 square, 
make up an order-2 square, B chooses the node closest to itself in 
ID space as a server. The same location server selection process 
occurs in higher order squares. In the three order-2 squares that 
combine with B's order-2 square to make an order-3 square, B se- 
lects 26, 31, and 43 as location servers. 

At startup, all nodes know the same global partitioning of the world 
into a hierarchy of  grids with squares of increasing size, as shown 
in Figure 2. The smallest square is referred to as an order-1 square. 
Four order-1 squares make up an order-2 square, and so on. It is 
important that not every square made up of four order-n squares is 
also an order-(n + 1) square. Rather, to avoid overlap, a particular 
order-n square is part of  only one order-(n + 1) square, not four. 
This maintains an important invariant: a node is located in exactly 
one square of each size. This system of increasing square sizes 
provides a context in which a node selects fewer and fewer location 
servers at greater distances. Our choice of  a grid-based partition is 
somewhat arbitrary; any other balanced hierarchical partition of the 
space can be used instead. 

Figure 4 shows the state of a Grid network once all nodes have 
provided their coordinates to the nodes that will act as their loca- 
tion servers. With the complete network state as reference, we can 
return to the problem of how A finds the location of B. 

To perform a location query, A sends a request (using geographic 
forwarding) to the least node greater than or equal to B for which A 
has location information. That node forwards the query in the same 
way, and so on. Eventually, the query will reach a location server of 
B which will foward the query to B itself. Since the query contains 
A's  location, B can respond directly using geographic forwarding. 
The location query is forwarded all the way to B so that B can 
respond with its latest location. 

Consider how B determines which nodes to update with its chang- 
ing location, using its ID and the predetermined grid hierarchy. B 
knows that other nodes will want to locate it, but that they will have 
little knowledge beyond B's ID. B's  strategy is to recruit nodes with 
IDs "close" to its own ID to serve as its location servers. We define 
the node closest to B in ID space to be the node with the least ID 
greater than B. The ID space is considered to be circular, 2 is closer 
to 17 than 7 is  to 17. 

For illustrative purposes we have ignored an important bootstrap- 
ping issue. We have assumed that nodes select their location servers 
appropriately and send their coordinates to them. This appears to 
assume that a node can scan an entire square (of arbitrary size) and 
choose the appropriate node to act as its server. In fact, nodes route 
update packets to their location servers without knowing their iden- 
tities. Assume that a node B wishes to recruit a location server in 
some order-n square. B sends a packet, using geographic forward- 

123 



~72.76.8! ] ',5,6,'0,'2 [ i 
is2,84,s7 i ,4,3?,62.70 
i  :9o + ' i 3 : i ~  381 

63,~o,ff/ i n.~.~, sLs2 

701 I 37 50 i 
1,62'?0,90 il,5,,6,37,39 1,2,16,37,62[ [35,39,45,50 

i 41,43,45,50 70,90,91 i i 
[ $ 1"35,6,.91 I 

911 62 5 + _ _ i  51 
162 9,.98 i ,9.20 21 23 

] i 26.2s.3t,32 
I i51,2 

i 1 i ! 35 
,4.,7.19.20 i 2,,?.23.63 2,,7.~ 1.26 28.31,32.35 i .... 

2"23'2~"7 i26 i 23 i3',32'3,5537,39 1 6 1 , 6 2  63 4 ! 

H.23.3 L32 ! 2'12'26.8"/ [ ,.,7.23,63.8i 2.1Z 1~.16 ~6 102021 
g43,35'61'631,82+84 ,[98 87,98 [ 23,63~,.~ +t 23'2~'41'72 ?6,84 

87+ 14 2[ B : I T [ ~  2 8 +  28 
31.81.98 i3,.32~].87 12,43.,15.50 i 12"43,55 1.2.5.2,.76 i6.1~.2~"- 

!9091 5',6' i 184 87.90,9' i - -  

3++ 98 ++! 61+ + ,++ h l  
ii3£;i+'3i++2,12.,+ii+ .. m,~ l? .~  12.5.6.10,43 [ .......................... + ' ~ . 4 i  ..... 
51,63.'/0,72 [23.26.28-.32 26.3,.32.35 i55,6,,63.8' i72 l 
1698 18198 37,39,41,.55 87.98 

81! 31 6, 43!,,, 12 + A:76 

19.35"37A5 i 
50,5,.82 i 

391 
39.41.43 i 

45[ 
i193539.45 
i5o~,,55~1 
16z63.7o.72 
i 76'm 11 

t.2,5.6.to.t 21 
t4.16A?.82 i 
u.sT.~o.91 1 
n 191 
10.20.21.28 1 
41.43.45.5o i 
51,55.61,62 ! 
63.7o 721 
6.72,76,84 

10! 
!6,10 12,14 ~ 19,84 

i 20 
• iii;iiNii..- i 
72"76,8LS2 i i 

84! 

Figure 4: An entire network's  location server organization. 
Each node is shown with the list of nodes for which it has up 
to date location information; B's location servers are shown in 
bold. Two possible queries by A for B's location are shown. 

ing, to that square. The first node L in the square that receives the 
packet begins a location update process that closely resembles a 
query for B's location; but this update will actually carry the cur- 
rent location of B along with it. As we will demonstrate below, the 
update will arrive at the least node greater than B before leaving the 
order-n square containing L. This is exactly the appropriate desti- 
nation for the location update to go to; the final destination node 
simply records B's current location and becomes a location server 
for B. 

The only requirement for B to distribute its location to the appro- 
priate server in an order-n square is that the nodes contained in 
the square have already distributed their locations throughout that 
square. If we imagine an entire Grid system being turned on at the 
same time, order-1 squares would exchange information using the 
local routing protocol, then nodes could recruit their order-2 loca- 
tion servers, then order-3, etc. Once the order-n location servers are 
operating, there is sufficient routing capability to set up the order- 
(n + 1) location servers. 

4.2 Ef f i c i ency  A n a l y s i s  
When nodes are not moving, the number of steps taken by a lo- 
cation query from A to B is no more than the order of the smallest 
square in which A and B are colocated. A location query step is dis- 
tinct from a single hop in the geographic forwarding layer; indeed, 
each location query step is likely to require several geographic for- 
warding hops. In Figure 4, the entire diagram is an order-4 square. 
Therefore all queries can be performed in no more than four loca- 
tion query steps. 

At each step, a query makes its way to the best (closest in ID space 
to the destination) node at successively higher levels in the grid hi- 
erarchy. At the start, the query is forwarded to the best node in 
the local order-1 square using the local routing protocol. From this 

point on, each step moves the query to the best node in the next 
larger containing square; when that next larger square contains the 
destination node, the best node (closest to the destination ID) must 
be the destination itself. Thus the query's next step is to the desti- 
nation. This behavior not only limits the number of steps needed 
to satisfy a query, it also bounds the geographic region in which 
the query will propagate. Because the query proceeds into larger 
and larger squares that still contain the source, the query will stay 
inside the smallest square containing the source and the destination. 

To understand why each step brings the query to the best node in a 
larger square, we will first consider the query from node A (76) for 
the address of B (17), shown starting in the lower right of Figure 4. 
Our abbreviated topology has no more than one node per square, 
so the query trivially begins at the best node, itself, in its order- 
1 square. The query moves to the best node (21) in A's order-2 
square, because 76 happens to know the positions for all the nodes 
in its order-2 square. This is an artifact of our sparse layout, so the 
next step tells the important story: why 21 knows the location of 
the best node in the next higher order square. 

Recall that 21 is the best node in its order-2 square. This guarantees 
that no nodes in that square have IDs between 17 and 21. Now, 
consider a node X somewhere in node 21's order-3 square, but not 
in 21's order-2 square. Recall that X had to choose a location server 
in node 21's order-2 square. If X's ID is between 17 and 21 then 
X must have chosen node 21 as a location server since there are 
no better nodes in node 21's order-2 square. Thus, node 21 knows 
about all nodes in its order-3 square that lie between 17 and itself, 
including the minimum such node. In this case, that node is 20. 
At the next step, node 20 must know about all nodes in the order- 
4 square between 17 and itself. Since nodes 20 and 17 share the 
same order-4 square (the entire figure), node 20 knows about node 
17, and the query is finished. 

The above example demonstrates why node 21 knew node 20's lo- 
cation and was therefore able to move the query from the best node 
in its order-2 square to the best node in its order-3 square. One may 
wonder, however, why node 21 does not know about some other 
node whose ID is between 17 and 20, and which lies at a distant lo- 
cation. This would be undesirable as node 21 would then forward 
the packet far away simply because, for example, it might know the 
location of node 19. But this cannot happen because node 20 acts 
as a shield for node 21 during location server selection. That is, 
for any node outside of the lower right quadrant of figure 4, node 
21 is guaranteed not to be the best choice for location server; node 
20 will always be preferable. In addition, because every location 
query is labelled with its source, intermediate query steps know 
what level of the hierarchy the query is currently in, and can refrain 
from sending queries too far away. 

Having built an intuition, we now give an inductive proof that a 
query needs no more than n location query steps to reach its desti- 
nation when the source and destination are colocated in an order-n 
square. Furthermore, the query never leaves the order-n square in 
which it starts. We assume, without loss of generality, that the des- 
tination node's ID is 0. We then proceed inductively to prove the 
following equivalent claim: in n or fewer location query steps, a 
query reaches the node with the lowest ID (i.e closest to 0) in the 
order-n square containing the source. Since the destination is node 
0, when the query reaches the order-n square that contains both the 
source and the destination nodes, it must reach the destination. 
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Base case (order-1 square): The query begins at a node X. Node 
X may or may not be the node with the lowest ID in its order-1 
square. If so, the query trivially reaches the lowest node in the 
order-1 square after zero location query steps. I fX is not the node 
with the lowest ID, then X will know the location of the node with 
the lowest ID in the order-1 square, Y, through the local routing 
protocol. Node X will not know of any other nodes with IDs lower 
than Y. Any such node would not have selected X as a location 
server as Y would always have been the better choice. Therefore 
the lowest node that X is aware of is Y and the query will be for- 
warded there in one location query step. 

Inductive step (order-(n + 1) square): We claim that ifa query is 
at the node X with the lowest ID in its order-n square, then X will 
route the query to the node Y with the lowest ID in its order-(n + 1) 
square with one or zero location query steps. If X has the lowest 
node ID in the order-(n + 1) square, then our claim is trivially 
true. If not, X will know the coordinates of Y and will not know 
the coordinates of any node lower than Y outside the order-(n + 1) 
square. Node X will know the coordinates of Y because Y will 
have selected X as a location server. Node Y must have selected a 
location server in X's order-n square because Y's order-n square is 
a part of the same order-(n + 1) square as X's. Node Y must have 
selected X because X is the lowest node in its square that is greater 
than Y. Node X will not know the location of any node lower than 
Y outside of its order-(n + 1) square because when any such node 
sought a location server in X's order-(n + 1) square, Node Y was 
the better choice. Therefore the lowest node that X is aware of is Y 
and the query will be forwarded there in one location query step. [2 

It is important to remember however, that this proof applies only 
to a static network. Additional techniques, described in Section 5, 
help Grid to deal with the problems cereated by mobility. These 
sections describe Grid's approach to keeping location servers up 
to date in the face of node motion and Grid's recovery techniques 
when, despite updates, location information is found to be out of 
date. 

5. Implementation 
This section describes the details of the geographic forwarding and 
GLS protocols. 

5.1 Geographic Forwarding 
The geographic forwarding layer uses a two hop distance vector 
protocol. This helps alleviate holes in the topology and ensures 
that each node knows the location of all nodes in its order-1 square. 
Each node maintains a table of immediate neighbors as well as 
each neighbor's neighbors. Each entry in the table includes the 
node's ID, location, speed, and a timestamp. Each node period- 
ically broadcasts a list of all neighbors it can reach in one hop, 
using a HELLO message. When a node receives a HELLO mes- 
sage, it updates its local routing table with the HELLO message 
information. Using this protocol nodes may learn about two hop 
neighbors--nodes that cannot be reached directly, but can be reached 
in two hops via the neighbor that sent the HELLO message. The 
routing table is also updated every time a node receives a packet, 
using the packet's last hop information. 

Each entry in the neighbor table expires after a fixed timeout. How- 
ever, when an entry expires, the node estimates the neighbor's cur- 
rent position using its recorded speed. If it would likely still be 
in range, the entry may still be used for forwarding, but it is not 

HELLO 
Source ID 
Source location 
Source speed 
Neighbor list: IDs and locations 
Forwarding pointers 

Figure 5: HELLO packet fields. 

reported as a neighbor in further HELLO messages. This special 
treatment is justified by two properties of the 802. I 1 MAC layer. 
First, broadcast packets are more likely to be lost in the face of con- 
gestion than unicast packets. Thus it is not unusual to miss HELLO 
messages from a node that is still nearby. Second, unicast transmis- 
sions are acknowledged. If the neighbor has actually moved away, 
the transmitting node will be notified when it attempts to forward 
packets through the missing node. The invalid neighbor entry is 
then removed immediately and a new forwarding path is chosen. 

To select a next hop, nodes first choose a set of nodes from all nodes 
in their neighbor table. This set consists of the best nodes to move 
the packet to, as defined by the shortest distance to the destination 
from the candidate nodes. All nodes whose distances to the desti- 
nation are nearly equal are considered in this set. Call this set B. 
If B contains any single-hop neighbors, remove double-hop neigh- 
bors from B. A node, X, is then chosen at random from B. If X 
is a single-hop neighbor, the packet is forwarded to X, otherwise, 
since X may be reachable from any number of single hop neigh- 
bors, the best such neighbor is chosen and the packet is forwarded 
to that node. If the transmission fails, the chosen node is removed 
from consideration and the packet is reprocessed, starting with the 
original B (with X removed if it was a single-hop neighbor). 

5.2 Updating Location Information 

GLS maintains two tables in each node. The location table holds 
the node's portion of the distributed location database; each entry 
consists of a node ID and that node's geographic location. The 
location cache holds location information that the node learns by 
looking at update packets it forwards. A node only uses the cache 
when originating data packets. Because each node uses the neigh- 
bor table maintained by the geographic forwarding layer to learn 
about other nodes in its order-1 square, the node does not need to 
send normal GLS updates within its order-1 square. 

As a node moves, it must update its location servers. Nodes avoid 
generating excessive amounts of update traffic by linking their lo- 
cation update rates to their distance traveled. A node updates its 
order-2 location servers every time it moves a particular threshold 
distance d since sending the last update; the node updates its order- 
3 servers after each movement of 2d. In general, a node updates its 
order-i servers after each movement of 2~-2d. This means that a 
node sends out updates at a rate proportional to its speed and that 
updates are sent to distant servers less often than to local servers. 
In addition, nodes send location updates at a low rate even when 
stationary. 

Location update packets (see Figure 6) include a timeout value that 
corresponds to the periodic update interval, allowing the servers to 
invalidate entries shortly after a new entry is expected. The time 
at which the location update packet is generated is also included 
in the update packet so that the freshness of location information 
obtained from different nodes for the same destination can be corn- 
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LOCATION UPDATE 
Source ID 
Source location 
Source timestamp 
Update destination square 
Update timeout 
Next location server's ID 
Next location server's location 

Figure 6: GLS update packet fields. 

LOCATION QUERY 
Source ID 
Source location 
Ultimate target ID 
Next location server's ID 
Next location server's location 
Timestamp from previous server's database 

Figure 7: GLS query packet fields. 

pared. GPS receivers can provide every node in the network with 
closely synchronized time. 

When forwarding an update, a node adds the update's contents to 
its location cache. The node associates a relatively short timeout 
value with the cached entries regardless of the recommended time- 
out value carried in the update packet. 

Nodes piggyback their location information on data packets, so that 
two nodes who are communicating always know how to reach each 
other. In the case of one-way communication, nodes also peri- 
odically send their position information directly to nodes who are 
sending them data. 

5.3 Performing Queries 
When a node S originates a data packet for destination D, it first 
checks its location cache and location table to find D's location. If 
it finds an entry for D, it sends the packet to D's recorded loca- 
tion using geographic forwarding. Otherwise, S initiates a location 
query for D using the GLS. GLS will eventually deliver the query 
packet (Figure 7) to D, which will geographically route a response 
to S that includes D's current location. 

If S had to initiate a GLS query, it stores the data packet in a send 
buffer while it waits for the reply from D. Node S reinitiates the 
query periodically if it gets no reply, using binary exponential back- 
off to increase the timeout intervals. 

5.4 Location Query Failures 
A location query may fail for two reasons. First, a node may receive 
a query packet for D, and not know the location of any node with an 
ID closer to D than itself. This type of failure is relatively uncom- 
mon. It occurs when a location server has not recently received a 
location update for a node it should know about. Because the server 
has timed out the node's previous update, it has no way to forward 
the query packet. There are ways to alleviate these failures, such 
as using stale location data in a last ditch effort to forward a query 
packet if the query would otherwise fail. The second type of query 
failure occurs when a location server forwards a packet to the next 
closest node's square, but the node is no longer in that square (that 

is, the location information at the previous location server is out of 
date). Because this failure mode is more common, Grid contains a 
specialized mechanism to alleviate the problem. 

Consider a node D that has recently moved from the order-1 square 
st to the order-1 square s2. Node D's location servers, particu- 
larly those that are far away, will think that D is in st until D's 
next updates reach them. To cope with this, D leaves a "forwarding 
pointer" in st indicating that it has moved to s~. When a packet 
arrives in st for D, it can be correctly sent on by following the for- 
warding pointer. D broadcasts its forwarding pointer to all nodes 
in st when leaving. Conceptually, we can think of the forwarding 
pointers as being located in the s q u a r e  s t  rather than at any partic- 
ular node. Therefore, all nodes that move into st should pick up 
the forwarding pointers associated with st, and when nodes leave 
Sl, they should forget the corresponding forwarding pointers. To 
propagate forwarding pointers to all nodes in the order-1 square 
and keep all newcomers to the square updated, a randomly chosen 
subset of the forwarding pointers stored at a node (up to five in our 
simulation implementation) is piggybacked on the node's periodic 
HELLO messages. Upon hearing a HELLO message, a node adds 
each forwarding pointer in that message to its own collection of 
forwarding pointers, but only if the pointer's original broadcaster 
was in the same square as the node. In this way, forwarding pointer 
information is effectively and efficiently spread to every node in the 
square. With this propagation mechanism, even if all the nodes that 
originally received D's forwarding pointer were to leave the square 
themselves, the information would still be available in the square. 

6. Performance Analysis 
This section presents simulation results for GLS that show how 
well it scales. Good scaling means that the amount of work each 
node performs does not rise quickly as a function of the total num- 
ber of nodes. We use two metrics for work: the number of location 
database entries each node must store, and the number of proto- 
col packets each node must originate or forward in order to route a 
given workload. The simulations show that these costs scale well 
with the number of nodes. 

Mobility increases the work required in two ways. First, a node 
that moves must update its location servers. Second, if a node has 
moved recently, some nodes may retain out-of-date location infor- 
mation for it; this will cause queries for the moved node to travel 
farther than necessary, or to fail and need to be resent. Handling 
mobility requires a tradeoff between the bandwidth used by loca- 
tion updates and the bandwidth available for data. If a moving node 
sends updates aggressively, other nodes are more likely to be able 
to find it. However, the updates consume bandwidth in competi- 
tion with data. Worse, a very aggressive update policy may cause 
enough congestion that updates themselves are dropped. At the 
other extreme, a node could send updates infrequently even when 
moving quickly, increasing the amount of bandwidth available to 
data. However, that bandwidth is not useful if the success rate of 
location query becomes low because of inaccurate location infor- 
mation. The simulations show that Grid can achieve a reasonable 
tradeoff for the choice of update rate. 

6.1 Simulation Scenario 
The simulations use CMU's wireless extensions [8] for the n s  [6] 
simulator. The nodes use the IEEE 802.11 radio and MAC model 
provided by the CMU extensions; each radio's range is approxi- 
mately a disc with a 250 meter radius. The simulations without 
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Figure 8: GLS query success rate as a function of the total num- 
ber of nodes. The nodes move at speeds up to 10 m/s (about 22 
miles per hour). Each line corresponds to a different movement 
update threshold. 

data traffÉc use 1 Megabit per second radios; the simulations with 
data traffic use 2 Megabits per second radios. Each simulation runs 
for 300 simulated seconds. Each data point presented is an average 
of five simulation runs. 

The nodes are placed at uniformly random locations in a square uni- 
verse. The size of each simulation's universe is chosen to maintain 
an average node density of around 100 nodes per square kilometer. 
One reason for this choice is that we intend the system to be used 
over relatively large areas such as a campus or city, rather than in 
concentrated locations such as a conference hall. Another reason 
is that we expect any deployed system to use radios that allow the 
power level to be decreased in areas with high node density. The 
GLS order-1 square is 250 meters on a side. For a network of 600 
nodes, which is the biggest simulation we have done, the grid hier- 
archy goes up to order-5 in a square universe 2900m on a side. 

Figure 9: Average number of Grid protocol packets forwarded 
and originated per second by each node as a function of the 
total number of nodes. Nodes move at speeds up to 10 m/s. 
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Figure 10: Average query path length (in hops) as a function of 
the query reply path length, for 300 nodes moving up to 10 m/s. 

Each node moves using a "random waypoint" model [4]. The node 
chooses a random destination and moves toward it with a con- 
stant speed chosen uniformly between zero and a maximum speed 
(10 m/s unless noted otherwise). When the node reaches the des- 
tination, it chooses a new destination and begins moving toward it 
immediately. These simulations do not involve a pause time. 

6.2 G L S  Results  

The results in this section involve only GLS (and geographic for- 
warding), without any data traffic. The default simulation parame- 
ters for this section are an 802.11 radio bandwidth of 1 Megabit per 
second, and a communication model in which each node initiates 
an average of 15 location queries to random destinations over the 
course of the 300 second simulation, starting at 30 seconds. The 
location update threshold distance is an important parameter that 
may need to be tuned. For this reason we present results for three 
values of the threshold: 100, 150, and 200 meters. 

Figure 8 shows the success rate for GLS location queries, as a func- 
tion of the total number of nodes. Queries are not retransmitted, so 
a success means a success on the first try. As mentioned earlier, 
most failures are due to either location information invalidated by 
node motion or nodes not being correctly updated because of de- 
layed or lost location updates. The success rate for data sent after 

a successful query would be much higher than indicated here be- 
cause the endpoints of a connection directly inform each other of 
their movements. 

Figure 9 shows the average number of Grid protocol packets for- 
warded and originated per second per node as a function of the total 
number of nodes. Grid generates three types of protocol packets: 
HELLO packets that are generated every two seconds but not for- 
warded, location update packets that are also periodic but require 
forwarding, and location query and reply packets that also require 
forwarding. As location updates are generated by nodes as they 
move, the results depend on node speeds; the simulated nodes move 
at speeds uniformly distributed between 0 and 10 m/s. Figure 9 is 
generated from the same simulations that produced Figure 8. The 
graph shows that Grid imposes a modest protocol traffic load as the 
network size grows. 

Figure I0 shows how the distance that query packets travel com- 
pares with the actual distance in hops between the source and the 
destination. We record the total number of geographical forward- 
ing hops (for all query steps) that each query takes, as well as how 
many hops the reply takes. Since query replies are sent directly 
to the query source using geographic forwarding, the reply return 
path indicates the geographical forwarding hop distance between 
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Figure 11: Average and maximum per-node location database 
size (number of entries) as a function of the total number of 
nodes. The nodes move at speeds up to 10 m/s. 

the source and destination. We averaged the query hop lengths for 
all queries with a given response hop length. The graph shows that 
on average, query packets only travel about 6 hops more than the 
geographical forwarding route between nodes. Also, the distance 
traveled by a query between two nodes is proportional to the actual 
distance between those nodes. Our simulation agrees with a the- 
oretical analysis that proves that with a sufficiently dense uniform 
distribution, the number of hops traveled by the query is propor- 
tional to the distance to the destination. The simulation involves 
300 nodes moving at speeds up to 10 m/s, with a location update 
threshold of 200 meters. 

Figure 11 shows the effect of the total  number of nodes on the size 
of each node's GLS location table. The plots include both the av- 
erage and maximum location table size over all nodes. The spikes 
at 150 and 400 nodes occur because the simulated area does not 
exactly fill a hierarchy, causing the database load to be distributed 
unevenly. At these points, the maximum database size is larger be- 
cause the squares that extend across the edge of the simulated area 
contain relatively few nodes; these nodes must store more than their 
fair share of location database entries. On the other hand, the aver- 
age table size grows very slowly with the network size. 

This highlights a problem that may arise in practice when nodes 
are not uniformly distributed. A small number of nodes in a high- 
level square may end up responsible for tracking the locations of a 
large number of nodes in sibling squares. This would require large 
amounts of space in these few nodes. 

Figure 12 shows the effect of node movement speed on the GLS 
query success rate, for 100 nodes. As nodes move faster, their lo- 
cation servers are more likely to be out of date. On the other hand, 
the nodes also generate updates faster. The net effect is that the 
query success rate is relatively insensitive to node speed, however, 
the update traffic grows as nodes move faster. 

Figure 13 shows the effect of nodes turning on and off. Some nodes 
are always on, while the rest alternate being on and off for intervals 
uniformly distributed from 0 to 120 and 0 to 60 seconds, respec- 
tively. As we are simulating node crashes, nodes do not do any- 
thing special before turning off; they simply lose all their location 
table data. In practice, if a node was manually turned off, it would 
be appropriate to first redistribute its location table to get better per- 

Figure 12: GLS query success rate as a function of maximum 
node speed in a network of 100 nodes. 50 m/s is about 110 mph. 
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Figure 13: The effect of turning off nodes on the query success 
rate. The X axis indicates the fraction of nodes that are always 
on; the remaining nodes cycle on and off for random periods up 
to 120 and 60 seconds, respectively. The simulations all involve 
100 nodes moving at speeds up to 10 m/s. 

formance. Each point in the graph represents a simulation in which 
a different fraction of nodes are always on. The simulations involve 
100 nodes, each moving with a maximum speed of 10 m/s. The 
statistics are limited to queries addressed to nodes that are turned 
on; no queries are generated to nodes that are off as these queries 
will always fail. When a node turns off, a part of the distributed 
location database is lost; when a node turns on, it will not be able 
to participate correctly in the update and query protocol for a while. 
The graph shows that even a great deal of instability does not have 
a disastrous effect, and that the query success rate degrades grace- 
fully as nodes turn on and off. 

6 .3  D a t a  T r a f f i c  

The simulations in this section measure Grid's behavior when for- 
warding data traffic. The 802.11 radio bandwidth is 2 Megabits per 
second, and the location update threshold distance is 200 meters. 
The data traffic is generated by a number of constant bit rate con- 
nections equal to half the number of nodes. No node is a source in 
more than one connection and no node is a destination in more than 
three connections. For each connection four 128-byte data packets 
are sent per second for 20 seconds. Connections are initiated at 
random times between 30 and 280 seconds into the simulation. For 
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Figure 14: The fraction of data packets that are successfully 
delivered in simulations for increasing numbers of nodes. The 
nodes move with a maximum speed of 10 m/s. 

Figure 15: The number of all protocol packets forwarded per 
node per second as a function of the total number of nodes. No 
data packets are included. The nodes move with a maximum 
speed of 10 m/s. 

purposes of comparison we include results for the DSR [10] proto- 
col. This may not be a fair comparison since DSR is optimized for 
relatively small networks [3]. 

Figure 14 shows the fraction of data packets successfully delivered. 
Most of the data packets that Grid fails to deliver are due to GLS 
query failures; these packets never leave the source. Once Grid 
finds the location of a destination, data losses are unlikely, since 
geographic forwarding adapts well to the motion of intermediate 
nodes. Below 400 nodes, most of the DSR losses are due to broken 
source routes; at 400 nodes and above, losses are mainly due to 
flooding-induced congestion. Grid does a better job than DSR over 
the whole range of numbers of nodes, especially for large networks. 

Figure 15 shows the message overhead of the Grid and DSR pro- 
tocols. Only protocol packets are included. In the case of Grid, 
these are HELLO, GLS update, and GLS query and reply pack- 
ets. In the case of DSR, these are route request, reply, cached reply 
packets etc. DSR produces less protocol overhead for small net- 
works, while Grid produces less overhead for large networks. At 
400 nodes and above, DSR suffers from network congestion. Al- 
most half of the route reply and cache reply messages are dropped 
due to congestion which causes DSR to inject even more route re- 
quests into the network. Also, as the network grows larger and 
congestion builds up, the source route is more vulnerable to fail- 
ure which will also induce DSR source nodes to send more route 
request packets. DSR's overhead drops at 600 nodes because it 
could not send much more packets in the presence of congestion. 
We present overhead in terms of packets rather than bytes because 
medium acquisition overhead dominates actual packet transmission 
in 802.11, particularly for the small packets used by Grid. 

7. Future Work 

One area of the GLS protocol that could be improved is the han- 
ding of node mobility. Accurate movement models may allow us 
to integrate movement prediction into the GLS protocol. Our cur- 
rent system makes little effort to predict the movement of nodes 
over long time periods because our movement model is random- 
ized, but in the real world a node may not need to update a location 
server as often if its velocity is constant or predictable. 

Currently the GLS protocol makes little effort to proactively cor- 

rect out-of-date information when, for instance, a node crosses a 
grid boundary line. Proactive updates may reduce the incidence 
of query failures. However, the tradeoff is obvious---care must be 
taken not to consume too much bandwidth with the updates. An al- 
ternate strategy to address the same problem is to place less trust in 
locations obtained from distant location servers. Rather than trust 
a distant location server to pinpoint the order-1 square in which a 
node is located, a query could be moved to, for instance, the sur- 
rounding order-3 square. There the query can be restarted with the 
fresher information available in that square 

Another potential area of improvement is adapting to node density. 
If an order-1 square becomes too crowded, each node will get less 
bandwidth from the shared radio spectrum, and each node will have 
to work harder to keep its neighbor table up to date. Radios with 
variable power levels would help alleviate this problem by chang- 
ing the effective density of nodes within radio range. In addition, 
each square in the GLS may make a local decision about how finely 
to sub-divide itself; distant areas need not agree on the size of the 
order-1 square. 

Finally, as we noted earlier, the choice of a grid based system is 
somewhat arbitrary. In fact, certain partitioning schemes offer the 
possibility of better scaling. The number of location servers that 
a node must recruit is equal to the number of neighbors per level 
in the geographic hierarchy multiplied by the number of levels in 
the hierarchy. For a grid based system, this means that a node must 
maintain 3 log 4 n servers in a network that is n times the size of the 
coverage area of a single radio. It is possible, however, to split the 
world in half at each level, rather than in fourths, by using rectan- 
gles with an aspect ratio of 1/x/2. At successive levels, each such 
rectangle may be divided into two such rectangles. This leads to a 
network in which nodes must recruit only log s n location servers, 
or 2/3 the number of servers needed in a grid based approach. 

8. Conclusions 

Wireless technology has the potential to dramatically simplify the 
deployment of data networks. For the most part this potential has 
not been fulfilled: most wireless networks use costly wired infras- 
tructure for all but the final hop. Ad hoe networks can fulfill this po- 
tential because they are easy to deploy: they require no infrastruc- 
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ture and configure themselves automatically. But previous ad hoc 
techniques do not usually scale well to large networks. 

We have presented a mobile ad hoc networking protocol with sig- 
nificantly better scaling properties than previous protocols. Al- 
though somewhat complicated to understand, our protocol is very 
simple to implement. In many ways the two facets of our system, 
geographic forwarding and the GLS, operate in fundamentally sim- 
ilar ways. Geographic forwarding moves packets along paths that 
bring them closer to the destination in physical space, only reason- 
ing about nodes with nearby locations at each step along the path. 
GLS moves packets along paths that bring them closer to the desti- 
nation in ID space, using only information about nodes with nearby 
IDs at each step along the path. Both mechanisms are scalable be- 
cause they only need local information in their respective spaces. 
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