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ABSTRACT 
All too often a seemingly insurmountable divide between 
theory and practice can be witnessed. In this paper we try 
to contribute to narrowing this gap in the field of ad-hoc 
routing. In particular we consider two aspects: We propose 
a new geometric routing algorithm which is outstandingly 
efficient on practical average-case networks, however is also 
in theory asymptotically worst-case optimal. On the other 
hand we are able to drop the formerly necessary assump- 
tion that  the distance between network nodes may not fall 
below a constant value, an assumption that cannot be main- 
tained for practical networks. Abandoning this assumption 
we identify from a theoretical point of view two fundamen- 
tamentally different classes of cost metrics for routing in 
ad-hoc networks. 
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1. INTRODUCTION 
An ad-hoc network consists of mobile nodes equipped with 
radio devices. If the source and the destination of a mes- 
sage are not within mutual transmission range, the message 
can be relayed by intermediate nodes, a process known as 
ad-hoc routing. In this paper we study geometric routing, 
which assumes a) that  each network node is informed about 
its own and about its neighbors' positions and b) that  the 
source of a message knows the position of the destination. 
The employment of position information becomes more and 
more realistic with increasing availability of inexpensive po- 
sitioning systems. The same goal could also be achieved by 
local information exchange with fixed beacon nodes. Simi- 
larly the location of the destination could be learned via an 
overlay (e.g. peer-to-peer [21, 27]) information system. But 
also a scenario is conceivable, where a message needs to be 
sent to any node in a given area (also called "geocasting" 
[16, 22]). Since none of the intermediate nodes is required to 
maintain routing lists, geometric routing can be considered 
a lean version of source routing [14]. 

Our geometric routing algorithm GOAFR + (pronounced as 
"gopher-plus") combines--similarly to earlier proposals [4, 
6, 15, 20J--two concepts called greedy routing and face rout- 
ing. In greedy routing mode the algorithm forwards the 
routed message at each network node to the neighbor clos- 
est to the destination. Already in simple configurations, the 
message can however reach a "dead end", a node without 
any "better" neighbor. Such cases are overcome by the em- 
ployment of face routing, which explores the boundaries of 
faces of the planarized network graph. GOAFR + uses an 
"early fallback" technique to return to greedy routing as 
soon as possible. Our simulations show that--addi t ional ly  
restricting its search to an adaptively resized area-- the algo- 
rithm is even more efficient than similar algorithms analyzed 
earlier on average (random) graphs. On the other hand our 
theoretical analysis proves that GOAFR + is asymptotically 
optimal in the worst case. 

Theoretical analysis of routing algorithms often has to make 
irritating or far-fetched assumptions, which would hardly 
ever hold in practice. In this paper we are able to drop one 
such assumption, the ~(1)-model introduced in [19], which 
assumes that the distance between network nodes cannot 
fall beneath a constant minimum bound. Graphs with this 
restriction have also been called civilized [7] or A-precision 
[13] graphs in the literature. We introduce a general notion 
of a cost metric, defined as a nondecreasing function of the 
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length of the edge over which a message is sent. We show 
that the behavior of cost functions for edge length approach- 
ing zero proves crucial for the cost of routing. We observe 
that in theory cost metrics fall into two classes: Linearly 
bounded cost functions are bounded from below by a linear 
function; for super-linear functions such a bounding linear 
function does not exist. With cost metrics from the for- 
mer class, a clustering technique allows the construction of 
a routing backbone, which extends GOAFR+'s  asymptotic 
optimality to networks with nodes of arbitrarily small dis- 
tance. With cost functions from the latter class on the other 
hand an example graph can be constructed for which there 
exists no geometric routing algorithm whose execution cost 
is competitive with the cost of the optimal path. 

After giving an overview of related work in the following 
section, we state the model used in this paper in Section 3. 
In Section 4 we introduce our routing algorithm GOAFR +, 
prove its asymptotic optimality, and present simulation re- 
sults. Section 5 introduces a definition of general cost met- 
rics for routing, identifies two classes of metrics, linearly 
bounded and super-linear, and describes the consequences of 
this classification on the cost of routing. Section 6 finally 
summarizes the paper. 

2. RELATED WORK 
The early proposals of geometric routing--suggested over a 
decade ago--were of purely greedy nature: At each interme- 
diate network node the message to be routed is forwarded to 
the neighbor closest to the destination [8, 12, 23]. This can 
however fail if the message reaches a local minimum with 
respect to the distance to the destination, that  is a node 
without any "better" neighbors. Also a "least deviation an- 
gle" approach (Compass Routing in [17]) cannot guarantee 
message delivery in all cases. 

The first geometric routing algorithm that  does guarantee 
delivery was Face Routing introduced in [17] (called Com- 
pass Routing II  there). Face Routing reaches the destina- 
tion after O(n) steps, n being the number of network nodes. 
There have been later suggestions for algorithms with guar- 
anteed message delivery [4, 6]; at least in the worst case, 
however, none of them outperforms original Face Routing. 
Yet other geometric routing algorithms have been shown to 
reach the destination on special planar graphs without any 
runtime guarantees [2]. [3] proposed an algorithm competi- 
tive with the shortest path between source and destination 
on Delaunay triangulations; this is however not applicable to 
ad-hoc networks, since Delaunay triangulations may contain 
arbitrarily long edges, whereas transmission ranges are lim- 
ited. Accordingly [10] proposed local approximation of the 
Delaunay Graph, however without improving performance 
bounds for routing. A more detailed overview of geometric 
routing can be found in [24]. 

In [19] we proposed Adaptive Face Routing AFR. The execu- 
tion cost of this algorithm--basically enhancing Face Rout- 
ing by the employment of an ellipse restricting the search- 
able area--is  bounded by the cost of the optimal route. In 
particular, the cost of AFR is not greater than the squared 
cost of the optimal route. We also showed that this is the 
worst-case optimal result any geometric routing algorithm 
can achieve. 

Face Routing and also AFR are not applicable for practical 
purposes due to their strict employment of face traversal. 
There have been proposals for practical purposes to combine 
greedy routing with face routing [4, 6, 15], however without 
competitive worst-case guarantees. In [20] we suggested, to 
the best of our knowledge, the first algorithm to combine 
greedy and face routing in a worst-case optimal way; in or- 
der to remain asymptotically optimal, this algorithm could 
however not include falling back as soon as possible from 
face to greedy routing, an obvious improvement for the av- 
erage case performance. 

In this paper we use a clustering technique in order to drop 
the ~(1)-model assumption from [19]. Clustering for the 
means of ad-hoc routing has been proposed by various re- 
searchers [5, 18]. A closely related approach is the construc- 
tion of connected dominating sets as routing backbones [11, 
26]. 

3. MODEL AND PRELIMINARIES 
In this paper we assume that  network nodes are placed in 
the Euclidean plane R 2. In order to represent ad-hoc net- 
works we adopt the widely used model, where every node 
has the same transmission range, without loss of generality 
normalized to 1. The resulting graph, having an edge be- 
tween two nodes u and v iff the Euclidean distance I~ [  _< 1, 
is a unit disk graph. 

To measure the quality of a routing algorithm, we attr ibute 
to each edge e a cost which is a function of the Euclidean 
length of e. 

DEFINITION 3.1. (Cos t  F u n c t i o n )  A cost function c: 
]0, 1] ~ R + is a nondecreasing function, which maps any 
possible edge length d (0 < d < 1) to a positive real value 
c(d) such that d' > d ~ c(d') > c(d). For the cost of  an 
edge e E E we also use the shorter form c(e) := e(d(e)). 

Note that ]0, 1] really is the domain of a cost function c(-), 
i.e. c(.) has to be defined for all values in this interval and 
in particular, c(1) < oo. The cost model defined by such 
cost functions includes all popular cost measures such as 
the link distance metric (c(d) :~ 1), the Euclidean distance 
metric (c(d) := d), energy (c(d):= d ° for a _> 2), as well as 
hybrid measures which are positive linear combinations of 
the above metrics. 

For convenience we also define the cost of paths, a sequence 
of contiguous edges, and algorithms. The cost c(p) of a path 
p is defined as the sum of the costs of its edges. Analogously, 
the cost c(.A) of an algorithm .,4 is defined as the sum of the 
costs of all edges which are traversed during the execution 
of an algorithm on a particular graph. 

For our routing algorithm the network graph is required to 
be planar, that  is without intersecting edges. For this pur- 
pose we employ the Gabriel Graph. A Gabriel Graph (on a 
given node set in the Euclidean plane) is defined to contain 
an edge between two nodes u and v iff the circle having ~ as 
a diameter does not contain a witness node w. This graph 
features two important properties: a) I t  can be computed lo- 
cally (each node merely inspecting its neighbors' positions) 
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and b) its construction on G preserves an energy-minimal 
path between any pair of network nodes, which--by equiv- 
alence of cost metrics (Section 5.I)---entails that the con- 
struction of the Gabriel Graph on G's nodes also preserves 
G's distance properties up to constants. 

In our analysis we use the concept of a unit  disk graph whose 
nodes do not have more than a constant number of neigh- 
bors. A unit  disk graph G is a bounded degree unit disk graph 
with parameter k if none of its nodes has degree greater than 
k. 

We consider geometric routing algorithms [19]. The aim of 
the algorithm is to forward a message from a given source s 
to a given destination t over the edges of the network graph 
while complying with the following rules: 

- Each node knows its own and its neighbors' positions. 

- The source s is informed about the destination t's po- 
sition. 

- A node is allowed to store only local information or 
temporarily present packets in transit. 

- A packet may contain control information about at 
most O(1) nodes. 

According to these rules geometric routing algorithms are 
inherently of local nature. 

Finally we assume routing to take place much faster than 
node movement: A routing algorithm executes on temporar- 
ily stationary nodes. 

4. G O A F R  ÷ 
In this section we introduce the GOAFR + (pronounced as 
"gopher-plus') algorithm. We prove that the algorithm is 
asymptotically optimal if the network graph is a bounded 
degree unit  disk graph. The construction of a bounded de- 
gree unit disk graph from a general unit  disk graph will be 
discussed in Section 5.2.1. Our simulation results show that 
GOAFR + is also efficient on average case graphs. 

4.1 The G O A F R  + Algorithm 
The GOAFR + algorithm is a combination of greedy routing 
and face routing. Whenever possible the algorithm tries to 
route greedily, that  is by forwarding the message at each in- 
termediate node to the neighbor located closest to the desti- 
nation t. Doing so, however, the algorithm can reach a local 
minimum with respect to the distance from t, that is a node 
um none of whose neighbors is located closer to t than um 
itself'. 

In order to overcome such a local minimum, GOAFR + ap- 
plies a face routing technique, borrowing from the Face Rout- 
ing algorithm originally introduced in [17]. Face Routing 
proceeds towards the destination by exploring the bound- 
aries of the faces of a planarized network graph, employing 
the local right hand rule (in analogy to following the right 
hand wall in a maze). Additionally the algorithm restricts 
itself to a searchable area occasionally being resized during 

algorithm execution. With this approach the algorithm be- 
comes asymptotically optimal with respect to its execution 
cost compared with the cost of the optimal path. A similar 
concept was introduced in [19]. 

Having escaped the local minimum, the algorithm continues 
in greedy mode. Since greedy forwarding is--above all in 
dense networks--more efficient than face routing in the av- 
erage case, the algorithm should for practical purposes fall 
back to greedy mode as soon as possible. In [20] we studied 
a family of similar algorithms combining greedy and face 
routing. We observed that algorithm variants with heuris- 
tics employed for early fallback to greedy mode (such as the 
"First Closer" heuristic having the algorithm resume greedy 
routing as soon as meeting a node closer to the destination 
than where the current face routing phase started) lose their 
asymptotic optimality with respect to the shortest path. It 
appeared that, once in face routing mode, an algorithm is 
required to explore the complete boundary of the current 
face in order to be asymptotically optimal. 

Contrarily to this conjecture, the GOAFR + algorithm does 
not necessarily explore the complete face boundary in face 
routing mode and yet does conserve asymptotic optimality. 
For this purpose the algorithm employs two counters p and 
q to keep track of how many of the nodes visited during the 
current face routing phase are located closer (p) and how 
many are not closer (q) to the destination than the starting 
point of the current face routing phase; as soon as a cer- 
tain fallback condition holds, GOAFR + directly falls back to 
greedy mode. Besides being asymptotically optimal, how- 
ever, simulations show that in the average case GOAFR + 
even outperforms the best (not asymptotically optimal!) al- 
gorithms considered in [20]. 

In particular GOAFR + consists of the following steps: 

G O A F R  + 

The algorithm parameters p0, p, and a are chosen prior to 
algorithm start and remain constant throughout 'the exe- 
cution. For the algorithm to work correctly, they have to 
comply with the conditions 1 _< po < p and 0 < a. 1 

0. Begin at s. Initialize C to be the circle centered at t 
with radius re := po I~1. 

1. ( G r e e d y  R o u t i n g  M o d e )  Repeat taking greedy steps 
until  either reaching t or a local minimum. In the for- 
mer case the algorithm terminates, in the latter case 
continue with step 2. Whenever possible, reduce C's 
radius (re  := re~p) as long as the currently visited 
node stays within C. 

2. (Face R o u t i n g  M o d e )  Let u~ be the currently vis- 
ited local minimum. Start exploring the boundary of 
Fi, the face containing the connecting line ~/ t  in the 
immediate environment of u~. When completing Fi 's  
exploration and returning to ul, advance to the node 
visited so far closest to t and continue with step 1. 
If no visited node is closer to t than u~, report graph 

1In our simulations po = 1.4, p = x/2, and a = i~6 proved 
to be good choices for practical purposes. 
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F i g u r e  1: T h e  G O A F R  + a l g o r i t h m  s t a r t s  f rom s in 
g r e e d y  m o d e .  A t  n o d e  u it r eaches  a loca l  m i n i m u m ,  
a n o d e  w i t h o u t  any  n e i g h b o r s  c loser  to  t. G O A F R  + 
s w i t c h e s  to  face r o u t i n g  m o d e  and  beg ins  to  e x p l o r e  t h e  
b o u n d a r y  of  face F ( in c lockwise  d i rec t ion) .  A t  node  v 
t h e  a l g o r i t h m  h i t s  t h e  b o u n d i n g  c i rc le  C and  t u r n s  back 
to  c o n t i n u e  t h e  e x p l o r a t i o n  of  FF's b o u n d a r y  in t h e  op-  
p o s i t e  d i rec t ion .  A f t e r  each  s tep  t h e  c o u n t e r s  p and  q 
a re  u p d a t e d .  A t  n o d e  w t h e  fa l lback c o n d i t i o n  p > o" q 
h o l d s  (p -~- 2, q = 4 w i t h  t h e  a s s u m p t i o n  1 / 4  ~ a < 1 /2 ) ;  
G O A F R  + falls back  t o  g r e e d y  m o d e  and  con t inues  to  
f inal ly r each  t. ( G r a d u a l  r e d u c t i o n  of  C ' s  size d u r i n g  
G O A F R + ' s  e x e c u t i o n  is no t  shown.)  

d isconnect ion to s (using G O A F R + ) .  During the ex- 
p lora t ion  of F i ' s  boundary  use two counters  p and q 
to keep t rack of the  number  of nodes visi ted on F~'s 
boundary:  p counts  the  nodes closer to t t han  u~ and 
q the  nodes not  located closer to t t han  u~. Take a 
special  act ion if one of the  following condit ions holds: 

2a. Hi t t ing  C for the  first t ime, tu rn  back and con- 
t inue explor ing F i ' s  boundary  in the  opposi te  di- 
rection. 

2b. C is hit  for the  second t ime: If none of the visi ted 
nodes is closer to t t han  ui, enlarge C ( r e  :=  
p r o )  and cont inue wi th  s tep 2 as if s ta r ted  from 
u~. Otherwise  advance to the  node visi ted so far 
closest to t and cont inue with  step 1. 

2c. If  p > a q, tha t  is, we have visited (up to a 
cons tant  factor ~r) more  nodes on Fi ' s  boundary  
closer to t t han  nodes not  closer to t, advance to 
the  node seen so far closest to t (if this is not  the  
current ly  vis i ted  node) and continue wi th  step 1. 

4.2 GOAFR + is Asymptotically Optimal 
In the  following we prove tha t  G O A F R  + is asymptot ica l ly  
op t imal  on bounded degree unit disk graphs. In Section 5.1 
we will prove tha t  on bounded  degree unit  disk graphs all 
cost metr ics  (defined according to Definit ion 3.1) are equiv- 
alent up to constants .  In Sect ion 5.2 we will show tha t  such 
a graph  can be cons t ruc ted  from a general  uni t  disk graph 
( that  is of unbounded  degree). By these means  G O A F R  + 
can be ex tended  to perform asymptot ica l ly  opt imal ly  on 
general  uni t  disk graphs for a cer ta in  class of cost metrics.  

The  G O A F R  + a lgor i thm runs on a planar graph. As men- 
t ioned in Sect ion 3 we employ the  Gabriel  Graph  for this 

purpose. In our analysis we therefore assume G O A F R  + to 
run on GcG,  the  intersection of the  bounded  degree unit  
disk graph G and the  corresponding Gabriel  Graph.  

We begin the  analysis of G O A F R  + by s ta t ing  a fact on the  
number  of nodes in a given two-dimensional  region: 

LEMMA 4.1. Let R C R 2 be a two-dimensional convex 
region with area A(R)  and perimeter p(R).  Further, let V C 
R be a set of points inside R. I f  the unit disk graph of V is a 
bounded degree unit disk graph with parameter k (all degrees 
are at most k), the number of points in V is bounded by 

lYl < (k + 1) -8 (A(R)  +B(R)  + 7r). 
7r 

PROOF. In order to prove L e m m a  4.1, we first consider  
the disks wi th  d iameter  1. All nodes inside such a disk 
are less t han  1 apar t  and are therefore ad jacent  in the  uni t  
disk graph. Since the  number  of neighbors of each node is 
bounded  by k, each disk wi th  d iamete r  1 contains  at most  
k + 1 nodes. In order to give a bound  on the  number  of 
nodes inside the  region R,  we therefore have to find an up- 
per bound  on the  number  of disks wi th  d iamete r  1 needed 
to complete ly  cover R. We can cover the  whole plane wi th  
disks of d iameter  1 by placing the  disks on an or thogonal  
grid such tha t  the horizontal  and the  ver t ical  dis tances  be- 
tween the centers of two neighboring disks are l / v / 2  (see 
Figure  2). By count ing the  number  of disks intersect ing R,  
we get a bound  on the  number  of disks needed to cover R. 
We see tha t  all disks intersect ing R are comple te ly  inside 
the  region R ~, where R ~ is defined as the  locus of all points  
whose dis tances from R are at most  1, i.e. we add a border  of 
width  1 to R. Let  A' be the  area covered by R'.  T h e  number  
of disjoint disks wi th  d iameter  1 which can be placed inside 
R ~ is bounded  by 4A' /~-  (the area  of a disk wi th  d iameter  1 
is ~r/4) and since in the above defined grid of disks no point  
in R2 is covered by more than  2 disks, the  number  of disks 
needed to cover R can be bounded  by 8A'/Tr. Thus,  the  
number  of nodes in V is at  most  (k + 1)8A'/~'. 

In order to get the  area  A/, it is sufficient to consider the  
case where R is a convex polygon. The  general  case then  
follows by l imit  considerations.  We get A'  by adding A(R)  
(the area of R) and the  area  of the  border  around R. As 
i l lustrated in Figure  2, the  border  can be  broken down into 
rectangles and sectors of circles. For each side of the  polygon 
R we obtain  a rectangle of wid th  1, and since all the  angles 
of the  sectors add up to 27r, the  sectors add up to a disk 
of radius 1. For A' we therefore get A' = A(R)  + p(R) + 7r 
where p(R) denotes the  per imeter  of R.  This  concludes the  
proof. [ ]  

A smaller  cons tant  than  8/~r could be  obta ined  by placing 
the  disks on a hexagonal  grid and consider ing the  por t ion  of 
the area which is only covered by a single disk. 

G O A F R  + uses a circle C centered at t to restr ic t  i tself to a 
searchable area. Dur ing the  a lgor i thm execut ion the  radius 
r e  is adapted  in predefined steps according to the  current  
dis tance from t. In par t icular ,  the  values potent ia l ly  as- 
sumed by r c  form a geometr ic  sequence rc~ --- rmax (~)i ,  i = 
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Figure 2: Covering a convex region with a grid of 
equally sized disks 

0...k, where rma~ depends on the length and the shape of 
the optimal path from s to t (cf. proof of Theorem 4.5) and 
p is one of GOAFR+'s  predefined constant algorithm pa- 
rameters. Since r e  can both increase and decrease during 
algorithm execution, the steps taken in a circle C~ with ra- 
dius rc~ need not occur consecutively. In the following we 
consider the steps taken by the algorithm in a fixed circle 
C~. 

LEMMA 4.2. I f  S and t are connected within the circle C~, 
GOAFR + reaches t. I f  s and t are not connected, GOAFR + 
reports so. 

PROOF. We first assume there is a connection from s to 
t within C~. For the definition of a round we distinguish 
three cases: According to the current algorithm execution, a 
round can be either a) a greedy step, b) a face routing phase 
terminated by early fallback, or c) a face routing phase ter- 
minated after exploration of the complete boundary of the 
current face and advancing to the node closest to t. We show 
that after every round the algorithm is closer to t than before 
that round: This holds in case a), since a greedy step can 
only reduce the distance to t, and in case b), as the fallback 
condition can only hold immediately after incrementing the 
counter p (that is after visiting at least one closer node) and 
since the algorithm then advances to the node seen so far 
closest to t; in case c) the algorithm approaches t, since the 
boundary of the currently explored face---this face contains 
points closer to t than where this round started--contains 
a point closer to t i f f  there is a connection to t. (Note that 
graphs can be constructed, where a face F ' s  boundary con- 
tains points but  not nodes that are closer to t than a given 
boundary node, in which case the algorithm could fail. Since 
we employ the Gabriel Graph, such cases can however not 
occur: The algorithm can forward to the a face boundary's 
node closest to t.) Since the algorithm reduces the distance 
to the destination with each round, it finally reaches t. 

If s and t are not connected within C/, G O A F R + - - i n  face 
routing mode--ei ther hits Ci twice without finding a node 
closer to t (in which case the algorithm will continue on a 
bigger circle, which is beyond the scope of this lemma), or 
it explores the complete boundary of the current face (cf. 

above case c)) without finding a node closer to t, which is 
the case iff S and t are not connected at all. [] 

LEMMA 4.3. Let c~( GOAFR +) be the cost of  all face rout- 
ing steps taken when exploring the boundary of face F within 
the circle Ci. c~( GOAFR + ) is less than ~ CF for  a constant 

and CF being the total cost of  traversing F ' s  boundary 
o n c e .  

PROOF. We first show that the lemma holds for the link 
distance metric, c(e) ~ 1 for any edge e: The total number 
of edges traversed by GOAFR + when exploring F is less 
than 7ces, where c~s is the number of edges traversed when 
traveling around F once. 

We assume that the boundary of face F is involved in k 
face routing rounds, and that for 1 < j < k, sj is the node 
where round j is started. Let pj (qj) be the final value 
of the counter p (q) in round j .  According to the fallback 
condition in step 2c of the algorithm we have pj > a qj. 
Let Pj (Q j) be the set of nodes visited in round j closer 
(not closer) to t than sj. Since a node can be counted for a 
second time after hitting Ci, we have IPj[ < p~ _< 2 IPj[ and 
IQJ] <- qJ -< 2 [Qj[. Furthermore we define Nj to be the set 
of nodes newly visited in round j .  Since after each round- -  
a greedy step or the exploration of a face--the algorithm is 
strictly closer to t than before that  round, all nodes closer to 
t must be newly visited ones, that  is P~ C Nj. Since we also 
have to account for the steps taken by the algorithm, when 
proceeding---once the fallback criterion holds-- to the node 
seen so far closest to t, the number of steps taken in round 
j is not greater than 2 (pj + qj). In summary we obtain for 
the total cost of the algorithm on F: 

k k k 

1 1 IP~I E2(P.~+q.~) < ~2(1--I.-;)p~ _< E 4 ( 1 + ; )  
j = l  3=1 j = l  

k 

_< ~4(1+;)1N~1 _< 4(1+ )ceF, 
j = l  

k the last step following from ~ j = l  [N¢I -< ces. 

If the fallback criterion never holds during F ' s  exploration 
(which is only possible in the final round for F) ,  the al- 
gorithm traverses F ' s  complete boundary and advances to 
the node closest to t, which incurs additional cost less than 
2 C£ f . 

The lemma holds for the link distance metric. Since the 
algorithm is assumed to run on a bounded degree unit  disk 
graph, the lemma also holds for any other cost metric (cf. 
Section 5.1). [] 

LEMMA 4.4. The total cost of the steps taken by GOAFR + 
within the circle Ci with radius roe is in 0 ( r ~ ) .  

PROOF. According to the previous lemma we have 
c~(GOAFR +) _< ~ cF for all steps performed in face routing 
mode. Summing up over all faces in Ci we obtain 

E CF(GOAFR+) < " Y ' E  CF < ~ . 2  E c(e), 
FEC~ F E C i  e E C i  
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the last step following from the fact that  each edge e is ad- 
jacent to at most two faces. To account for the greedy steps 
we add another ~eEc~ c(e), since any edge can be traversed 
at most once in greedy mode (each round- -a  greedy step 
or the exploration of a face--taking the algorithm strictly 
closer to t). Since we employ a planar graph, with the fact 
that (in a graph with more than three edges) each face is 
adjacent to at least three edges and using the Euler polyhe- 
dral formula we obtain that lEd e O(l~D, where IE~] is the 
number  of edges and IVil the number of nodes in Ci. The 
lemma finally follows with ~ e e o ,  c(e) E O([E~l)--resulting 
from the equivalence of the link distance metric with any 
other metric on bounded degree unit  disk graphs (cf. Sec- 
tion 5.1)--and Lemma 4.1. [] 

As described above, GOAFR + employs a set of bounding 
circles whose radii form a geometric sequence. This together 
with the fact that the maximum radius is bounded by the 
Euclidean length of an optimal path from s to t, leads to 
the following theorem. 

THEOREM 4.5. Let p* be an optimal path from s to t. On 
a bounded degree unit disk graph GOAFR + reaches t with 
cost O(c2(p*)), i f  s and t are connected, which is asymp- 
totically optimal. I f  s and t are not connected, GOAFR + 
reports so to the source. 

PROOF. Let ce(p*) be the Euclidean length of a shortest 
path from s to t. If s and t are connected, the circle cen- 
tered at t and with radius ce(p*) completely contains p*. 
Since GOAFR + only enlarges the bounding circle if it does 
not contain a path from s to t, and according to GOAFR+'s  
radius update policy with the constant factor p, the max- 
imum radius reached is smaller than pce(p*). In order to 
compute the total cost of the algorithm we add up the cost 
expended in each used circle. According to Lemma 4.4 and 
Lemma 4.1 it is sufficient to consider the areas of all em- 
ployed circles. Let rm~= be the radius of the largest used 
circle. For some k _> 0 the areas of all used circles sum up 
to 

- 

i = O  " 

7r(pce(p*)) 2 < 
1l(~) 2 

c 

With the equivalence of cost metrics--including the Eu- 
clidean metr ic--on bounded degree unit disk graphs, this 
holds for any metric. Asymptotic optimality follows from 
the lower-bound example in [19, Figure 8]. 

If s and t are not connected, GOAFR + detects so (case c) 
in proof of Lemma 4.2) and reports back to the source using 
the same algorithm. [] 

4.3 Average-Case Effi dency 
The GOAFR + algorithm includes greedy routing and an ear- 
ly fallback mechanism intended to reduce the algorithm cost 
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F i g u r e  3: P e r f o r m a n c e  of rou t ing  algori thms in cr i t -  
ical  network densi ty range a round 4.5 nodes per  uni t  
disk. Mean performance values for G O A F R  + (solid line), 
G O A F R F c  (dashed), G O A F R  (dash-dotted) ,  and  G P S R  
(dotted) plotted against  the left y axis. The network 
connect ivi ty  and  greedy success ra te  are  plot ted for ref- 
erence ( in  g r a y  a g a i n s t  right y axis). 

on average case graphs. In order to assess the algorithm's 
average case performance we employed the custom simula- 
tion environment introduced in [20]. The simulations were 
carried out on graphs generated by randomly and uniformly 
placing nodes on a square field of side length 20 units and 
by randomly choosing a source-destination pair. In [20] 
we identified a critical network density range around 4.71 
(~ 1.5~r) nodes per unit  disk. Situated between low densi- 
ties, where only in trivial cases s and t are connected at all, 
and high densities, where in most cases greedy routing will 
succeed in finding a good path, this density range forms a 
challenge to routing algorithms: Generally the length of the 
shortest path from the source to the destination is signifi- 
cantly longer than their (Euclidean) distance. 

Figure 3 depicts the measured performance values of four 
routing algorithms around this critical network density. For 
each simulated network density the plotted performance val- 
ue is the mean of the ratios between the algorithm cost and 
the cost of the shortest path (with respect to the link dis- 
tance metric) measured on 2000 generated (network, source, 
destination) triples: Low performance values are rated good. 
The network connectivity rate--showing in how many of the 
generated networks s and t are connected--and the greedy 
success rate--representing how often the algorithm reaches 
t by employment of greedy routing alone--are depicted for 
reference and identification of the critical density range. 

Figure 3 contains the performance values for the GPSR al- 
gorithm [15], for GOAFR and GOAFRFc [20], as well as for 
GOAFR +. The GPSR algorithm combines greedy and face 
routing, including early fallback, does however not employ 
the concept of a bounding searchable area. Making use of 
this concept, the GOAFR algorithm becomes asymptotically 
worst-case optimal, yet is not efficient in practice, since--- 
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once in face routing mode---aiways complete face boundaries 
are explored. In order to avoid this effect, an early fallback 
heuristic is applied by the GOAFRFc algorithm. This al- 
gorithm showed best average-case performance in [20], is 
however not asymptotically worst-case optimal. GOAFR + 
in contrast shows clearly better performance values for the 
critical density range--exploiting successive reduction of the 
bounding area size--and at the same time is also asymptot- 
ically optimal in the worst case. 

5. COST METRIC 
In this section we discuss the properties of cost metrics de- 
fined according to Definition 3.1 in the context of geometric 
routing. We first show that  all possible such cost metrics are 
equivalent up to constant factors on bounded degree unit  
disk graphs. In a second part we prove that when consider- 
ing general unit  disk graphs (without bounded degree) the 
cost functions are divided into two classes, linearly bounded 
and super-linear. We show that  employing a backbone con- 
struction GOAFR +'s optimality can be extended to general 
unit disk graphs for linearly bounded cost functions. With 
super-linear cost metrics on the other hand, a lower bound 
graph proves that there exists no geometric routing algo- 
rithm whose cost is bounded with respect to the shortest 
path. 

5.1 Bounded Degree Unit Disk Graphs 
For the proof of GOAFR+'s  asymptotic optimality on 
bounded degree unit  disk graphs in Section 4.2 we employed 
the equivalence of all cost metrics on such graphs. This 
equivalence up to a constant factor is shown in the following 
lemma. 

LEMMA 5.1. Let 0 ( ' )  and c2(.) be cost functions as de- 
fined in Definition 3.1 and let G be a bounded degree unit 
disk graph with node set V and maximum node degree k. 
Further let p be a path from s E V to t E V on G such that 
no node occurs more than once in p, i.e. p is cycle-free. We 
then have 

ca(p) < ~c:~(p) + 

for two constants o~ and ~, i.e. el(p) E O(c2(p)). 

PROOF. Let Cd(X) := x be the cost function of the Eu- 
clidean distance metric. We show that for any cost function 
c there exist constants c~1, ~1, c~2, and j32 such that 

c(p) < Oqcd(p) -4-/31 and (1) 

c(p) _> o~2cd(p) + ~2. (2) 

This means that  all cost functions are in O(cd(p)) and partic- 
ularly cl (p) C e(cd(p))  and c2(p) C O(Cd(p)), which proves 
the lemma. 

We start with Inequality (1). Let ce(x) :_= 1 be the cost 
function of the link distance metric. Now pick a node u 
from the path p. Because u has at most k neighbors, we 
leave the disk with radius 1 around u after at most k + 1 
steps when starting at u and walking along p. Therefore, 
the total Euclidean distance of any k + 1 subsequent edges 
of p is at least 1. We then have 

ce(p) < (k + 1)led(P)1 < (k 4- 1)cd(p) "4- k + 1. 

Because cost functions are monotone increasing, we have 
c(e) <_ c(1) for any edge e and any cost function c(.). There- 
fore, we get 

c(p) < e(1)- ce(p) _< (k + 1)c(1) (cd(p) + k + 1), 

which proves Inequality (1). Note that as soon as the cost 
function c(.) is fixed, c(1) is a constant since we required c(x) 
to be defined for all xE ]0, 1]. In order to obtain Inequality 
(2), we observe that a path p' of length cd(p') > 1 has at 
least one edge e' of length Cd(e') > 1/(k  + 1): I fp '  consists 
of m < k + 1 edges, the longest edge of p' has at least length 
l / m ;  ifp ~ consists of k + l  or more edges, we use the fact that 
k -4- 1 subsequent edges of p have a total Euclidean length 
of at least 1. We now partition p into maximal consecutive 
subpaths of length smaller than 2. All but the last of these 

subpaths  have a Euclidean length which is at least 1 and 
therefore we have 

c 1 

e 1 > ( ~ - ~ - ~ )  - ( ~  - 1 ) ,  

which concludes the proof. [] 

As an application of Lemma 5.1 we obtain the following 
lemma. 

LEMMA 5.2. Let G be a bounded degree unit disk graph 
with node set V. Further let s C V and t E V be two nodes 
and let p~ and p~ be optimal paths from s to t on G with 
respect to the metrics induced by the cost functions 0 (') and 
c2(-), respectively. We then have 

c,(p~) e O(cl(p~)) and c2(p~) E O(c2(p~)), 

i.e. the costs of optimal paths .for different metrics only differ 
by a constant factor. 

PROOF. By the optimality of p~, we obtain 

c2(p~) > e2(p~). (3) 

p~ and p~ are cycle free and therefore we can apply Lemma 
5.1. We then obtain 

c2(p~) E O(cl(p~)) and cl(p~) C O(e2(p~)). (4) 

Combining Equations (3) and (4) yields o(p~)  C O(cl(p~)). 
But by the optimality of p~ we have cl(p~) _> cl(p~) and 
therefore, cl(p~) C O(el (p~)) holds. The second equation of 
the lemma then follows by symmetry. [] 

5.2 General Unit Disk Graphs 
In this section we consider the problem of geometric ad- 
hoc routing on general unit  disk graphs (i.e. of unbounded 
degree). As shown in the following the behavior around 
0 divides the cost functions defined according to Defini- 
tion 3.1 into two natural  classes. The cost functions lower- 
bounded by a linear function are called l i n e a r l y  b o u n d e d  
cost  func t ions ,  the cost functions not bounded by a linear 
function are called s u p e r - l i n e a r  cost  f unc t i ons .  

linearly bounded: 3 m > 0 :  c (d )_>m .d ,  VdE]0,1] ,  

super-linear: ~ m  > 0 : c(d) _> m .  d, Vd E]0, 1]. 
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Of the standard cost measures the link distance and the 
Euclidean metric are linearly bounded, whereas the energy 
metric is super-linear. The lower bound example of Sec- 
tion 5.2.2 exploits the property that with super-linear cost 
functions it is possible to construct chains with nodes of 
distance approaching zero which allow to cover a finite Eu- 
clidean distance "for free" in the limit. 

We now give an algorithm which is asymptotically optimal 
for linearly bounded cost functions. We subsequently show 
that there is no geometric ad-hoc routing algorithm whose 
cost is bounded by the cost of an optimal path for super- 
linear cost functions. 

5.2.1 L i n e a r l y  B o u n d e d  Cos t  F u n c t i o n s  
First we describe our algorithm as it can be applied to an 
arbitrary unit  disk graph G and for all linearly bounded 
costs. In a precomputation phase a routing backbone GBC 
is calculated. GBc is a subgraph of G sucb that  a) GBG 
is a bounded degree unit  disk graph and b) the nodes of 
GBG form a connected dominating set of G. Consequently, 
all nodes of G have at least one neighbor in GBG. The 
distributed construction of a subgraph of G with properties 
a) and b) is described in a number of publications (e.g. [1, 
9, 25]). 

As the backbone contains a dominating set of the underly- 
ing graph, every regular node (a node not in the backbone) 
can be associated to one of its dominators. Since this can 
be regarded as a clustering of all regular nodes around their 
dominators, we call this graph the Clustered Backbone Graph 
GCBG. In order to route a message from a regular node s to 
a regular node t, the message will first be sent to s's associ- 
ated dominator and then routed along the Backbone Graph 
to t 's associated dominator before finally being forwarded 
to t itself. Note that  while the Backbone Graph is bounded 
in degree, this is not the case for the Clustered Backbone 
Graph, since a dominator can have arbitrarily many domi- 
natees. 

The following lemma shows that  a route over the backbone 
is competitive with the optimal route for the link metric. 

LEMMA 5.3. The Clustered Backbone Graph is a spanner 
with respect to the link metric, i.e. a best path between two 
nodes on the Clustered Backbone Graph is longer than a path 
between the same nodes in the underlying unit disk graph by 
a constant factor only. 

PROOF. Follows from [25, Lemma 5]. [] 

This property of the Clustered Backbone Graph does not 
only hold for the link distance metric, but for all linearly 
bounded cost functions. 

PROOF. Let ce(-) be the link distance metric. By Lemma 
5.3, we have a path p~ on GCBC such that ct(p~) E O(ce(p~)) 
where p~ is an optimal link distance path on G. Let p* 
denote an optimal path with respect; to the cost c(-) on G. 
We then have to show that c(p~) 60 (c (p* ) ) .  The Euclidean 
length of p* is cd(p*) where cd(-) denotes the cost function of 
the Euclidean distance metric. We partit ion p* into maximal 
subpaths of length at most 1. Because two consecutive such 
subpaths have a total length greater than 1, we get at most 
[2cd(p*)] subpaths. We define the path p' by replacing 
each subpath with a direct edge. Note that all edges of p' 
have length at most 1. The link distance cost ct(p') of p' is 
upper-bounded by ee(p') <_ 2cd(p*) + 1. By the optimality 

C * ofp~, we also have ct(p') > e(Pt) E O(ct(p~)). And because 
with respect to the metric c(-), each edge of p~ has cost at 
most c(1), we have c(p~) < c(1)ct(p~). Together, we get 

c(p~) ~ O(cd(p*)). (5) 

Note that c(1)' is a constant because c(x) has to be defined 
for all x 6 ]0, 1]. Since c(.) has to be a linearly bounded 
cost function, we have c(x) _> m .  Cd(X) for a constant m > 
0. Therefore also c(p*) _> m • cd(p*), and combined with 
Equation (5) we obtain 

c(p~) ~ O(c(p*)). 

[] 

Our routing algorithm GOAFR + works on planar graphs. 
There are several standard approaches to obtain a planar 
subgraph of the unit  disk graph, one of which is the Gabriel 
Graph (GG). We will now show that the Gabriel Graph has 
all required properties. It is well known that the intersection 
between the Gabriel Graph and the unit  disk graph (GG N 
UDG) is connected iff the UDG is connected. It is also well 
known that  GGMUDG contains an energy optimal path (see 
Figure 7 in [19]). This leads to the next lemma. 

LEMMA 5.5. Let G be a bounded degree unit  disk graph 
with node set V and let GcG be the intersection of G and 
the Gabriel Graph of V.  Further, we fix two nodes s 6 V 
and t 6 V. Let c(.) be a cost function and p* and pGc be 
optimal paths with respect to the metric c(.) on G and on 
GGG, respectively. We then have 

c(phG) ~ e(c(p*)), 

i.e. GGG is a spanner for  all cost functions. 

PROOF. As already mentioned, it is well known that  GGG 
contains an optimal path with respect to the metric corre- 
sponding to the cost function c(d) := d 2 (in fact, this also 
holds for exponents a > 2). By applying Lemma 5.2, we 
now see that the optimal energy path p~ is competitive for 

C * all cost functions c(.), i.e. (PE) 60(c(p*) ) .  [] 

LEMMA 5.4. The Clustered Backbone Graph GCBG is a 
spanner with respect to any linearly bounded cost metric c(.), 
i.e. the cost of an optimal path on GCBG is only by a con- 
stant factor greater than the cost of  an optimal path on the 
underlying unit  disk graph G. 

We are now ready to apply GOAFR + on general unit  disk 
graphs. In a precomputation phase the Clustered Backbone 
Graph and its intersection with the Gabriel Graph (on the 
nodes of GCBG) are constructed. Then the routing from 
source s to destination t works as follows. 
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F i g u r e  4: Lower  b o u n d  g r a p h  for supe r - l i nea r  cost  func- 
t ions  

- If s and t are neighbors in G (the uni t  disk graph),  
the message is direct ly  sent from s to t; otherwise,  s 
sends the  message to one of its dominators  if s is not  
a domina tor  itself. 

- T h e n  we use G O A F R  + to route  the message along 
the  Gabriel  Graph  edges of the  Clustered Backbone 
Graph.  As soon as we arrive a t  a node whose Eu- 
clidean dis tance to t is at  most  one, the message is 
direct ly sent to t. Note  tha t  there  has to be such a 
node on the  boundary  of one of the  faces we visit. 

THEOREM 5.6. Let the cost of  the best path between a 
given source-destination path with respect to a given linearly 
bounded cost metric be c. The cost of GOAFR + as described 
above with respect to the same metric then is 0(c2). This is 
asymptotically optimal among all possible geometric ad-hoc 
routing algorithms for linearly bounded cost metrics. 

PROOF. The  case where s and t are direct neighbors fol- 
lows from the fact tha t  the  cost, function has to be l inearly 
bounded.  For the  o ther  cases we use tha t  the  intersection 
of the Gabriel  Graph  (on the nodes of GCBC) and the Clus- 
tered Backbone Graph  is a spanner  for l inearly bounded cost 
functions (Lemmas 5.4 and 5.5) and tha t  G O A F R  + has the 
given worst case cost on all bounded  degree unit  disk graphs 
(Theorem 4.5). Op t ima l i ty  follows from Theorem 4.5, since 
the ~2(c 2) lower bound  graph is also a Clustered Backbone 
Graph.  [] 

5.2.2 S u p e r - L i n e a r  Cos t  F u n c t i o n s  
For the  remainder  of this section we consider geometr ic  ad- 
hoc rout ing on general  uni t  disk graphs for super-l inear 
cost functions. Unlike for l inearly bounded cost functions, 
the  cost of a geometr ic  ad-hoc rout ing a lgor i thm cannot  be 
bounded by the  cost of an opt imal  pa th  in this case. 

THEOREM 5.7. Let the best route with respect to a super- 
linear cost fltnction c(.) for  a given source destination pair 
be p *. Then, there is no (deterministic or randomized) geo- 
metric ad-hoc routing algorithm whose cost is bounded by a 
function of c(p*). 

PROOF. We cons t ruc t  a family of uni t  disk graphs in the  
following way (see Figure  4). \Ve choose a posit ive integer 

n and place n + 1 nodes on a s t ra ight  (say horizontal)  line 
such tha t  two neighboring nodes have dis tance 0 < d < 1. 
S tar t ing  with  the  first node, we mark  every [2/dJ th node. 
For every marked node ul we then  place a node vl such tha t  
uivl has length 1 and such tha t  all the  new nodes lie on 
a line which is parallel  to the  line where we put  the  first 
n -4- 1 nodes. This  yields k vert ical  edges of length  one. The  
distance between two such edges is D = [2/dJ d. Note  tha t  
1 < D < 2 because we have chosen d to be smaller  than  
1. The  number  of marked  nodes (i.e. the  number  of such 
edges) k is then bounded  by 

k = > > -7 -  - 1. (6) 

Now we choose an arb i t ra ry  marked node (we call it w) and 
the corresponding v~. At  vi we add two o ther  ver t ical  edges 
and arrive at node w'  which has dis tance 3 from the  line wi th  
the original n + 1 nodes. Symmetr ica l ly  to the  original  n + 1 
nodes, we now place another  row of n + 1 nodes (including 
w')  on a horizontal  line wi th  dis tance 3. F igure  4 i l lustrates 
this construction.  We choose an arb i t ra ry  node of the  top  
n -4- 1 nodes for the  source s. The  des t ina t ion  t is chosen 
arbi t rar i ly  from the  bo t tom n + 1 nodes. The  opt imal  route  
p* from s to t then  first goes from s to w, then  from w to 
w'  and finally from w'  to t. The  cost of p* can be bounded  
by c(p*) < 2nc(d) + 3c(1). 

We want this cost to be constant  and therefore choose c(d) = 
l / n ,  yielding d = c - l ( 1 / n ) .  Note  tha t  since c(-) has to be 
nondecreasing, c-1( . )  is v~ell-defined as long as there  are no 
intervals where c(-) is constant .  For those intervals we define 
c-1( . )  to take any of the  possible values. For the  cost of the 
opt imal  pa th  c(p*) we now get a cons tant  value (c(1) is a 
constant!),  i.e. c(p*) C O(1). In order to get the  cost of a 
geometr ic  ad-hoc rout ing  a lgor i thm .,4, we observe tha t  ..4 
has no informat ion about  the  locat ion of w and therefore has 
to test  all possible nodes by using the  k edges of length 1. 
For a determinis t ic  A we can always place w such tha t  it is 
the last marked node which is tried. For a randomized  .A we 
can place w such tha t  the  expected  number  of needed trials 
is at least k/2.  For the cost c(~A) of any geometr ic  ad-hoc 
rout ing a lgor i thm we therefore get c(,A) C ~(k)c(1)  -- ~2(k). 
Plugging d = c -1 ( I / n )  into Equa t ion  (6), we get 

> ~ n c - l ( 1 / n )  - 1, k 

and for n approaching infinity we then  obta in  

l im k > 
1 

l im ~-nc- l (1 /n)  - 1 
n ~ o o  2 " - "  

1 l im C-I(Y) 1 
2 u~0 y 
1 x 

= - l i m - - - - 1  = cx~, 
2 ~-~o c (z )  

where we subs t i tu ted  y :=  1/n in the  first s tep and x :=  
c - l ( y )  in the second step. The  last l imit  is c¢ by the  def- 
ini t ion of c(.), a super-l inear cost function,  which implies 
tha t  l imx~0 c (x ) / x  = 0 if this l imit  exists. (For convenience 
we assume tha t  the  l imit  exists. Otherwise  the  same re- 
sult  can be achieved by " tuning" the  graph more closely to 
the cost function.) Thereibre,  the  cost of any a lgor i thm ,.4 
is unbounded  with  respect  to the  best  pa th  p*, which has 
constant  cost. [ ]  
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6. CONCLUSION 
Trying to help br idging the  chasm between theory  and prac- 
tice in the  field of ad-hoc routing,  we proposed in this paper  
the  geometr ic  rou t ing  a lgor i thm G O A F R  +, which is more 
efficient t han  any previously s tudied a lgor i thm on average 
case graphs,  while being also in the  worst  case asymptot i -  
cally opt imal .  We defined a general  cost model  for rout ing 
algori thms and observed tha t  all possible cost functions fall 
into two classes, l inearly bounded and super-linear. For lin- 
early bounded  cost functions G O A F R  + could be extended 
such tha t  the  formerly necessary ~ (1 ) -mode l  restr ict ion on 
node dis tances could be dropped.  W i t h  super-l inear cost 
functions an example  graph was presented,  for which there  
exists no geometr ic  rou t ing  a lgor i thm of cost compet i t ive  
wi th  the  shor tes t  path.  

Of  the  most  popular  cost me t r i c s - - l i nk  dis tance (hop), Eu-  
cl idean distance,  and energy m e t r i c - - t h e  first two are lin- 
early bounded,  whereas  the  energy met r ic  is super-linear.  In 
pract ical  wireless ad-hoc networks, however , - -a l so  in sys- 
tems wi th  adap tab le  t ransmiss ion p o w e r - - t h e  energy re- 
quired for the  t ransmiss ion of a message will never drop 
below a cer ta in  base energy even for min imum transmis-  
sion distance. Consequent ly  also for power-adapt ive  trans- 
mission the  cost funct ion will be l inearly bounded.  For all 
pract ical  cost metr ics  it  is therefore possible to drop the  
~ (1 ) -mode l  assumpt ion  and still remain  asymptot ica l ly  op- 
t imal  by employment  of the  backbone construct ion.  
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