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Abstract-The information theoretic approach and the collision resolu- 
tion approach to multiaccess channels are reviewed in terms of the underly- 
ing communication problems that both are modeling. Some perspective on 
the strengths and weakness of these approaches is given, and the need of a 
more combined approach focused on coding and decoding techniques is 
argued. 

I. INTRODUCTION 

F OR THE LAST ten years there have been at least three 
bodies of research on multiaccess channels, each pro- 

ceeding in virtual isolation from the others and each using 
totally different models. The objective here is to contrast 
these bodies of work and to give some perspective on what 
is needed to provide some unification between the areas. 
We shall refer to the three areas as collision resolution, 
multiaccess information theory, and spread spectrum. 

The kind of communication situation that these three 
areas address is illustrated in Fig. 1. There are multiple 
transmitters and a single receiver. The received signal is 
corrupted both by noise and by mutual interference be- 
tween the transmitters. Each of the transmitters is fed by 
an information source, and each information source gen- 
erates a sequence of messages, successive messages arriving 
at random instants of time. There is usually some small 
amount of feedback from the receiver to the transmitter, 
but this feedback will not be our main focus. Our major 
focus, rather, is on the interference, the noise, and the 
random, or “ bursty,” message arrivals. 

This type of model is appropriate for the uplink of a 
satellite network, for a radio network where there is one 
central repeater, and for the traffic to the central node on a 
multidrop telephone line. It is also adequate in most re- 
spects for studying networks where a common channel 
allows all nodes to hear all other nodes. Common examples 
are a cable connecting many nodes and a fully connected 
radio network. 

The beginning of the collision resolution approach to 
multiaccess communication came in 1970 with Abramson’s 
ALOHA network [l]. The idea here was that whenever a 
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Fig. 1. Multiaccess channel. 

message (or packet) arrived at a transmitter, it would 
simply be transmitted, ignoring all other transmitters in the 
network. If another transmitter was transmitting in an 
overlapping interval, interference would prevent the mes- 
sage from being correctly received, the cyclic redundancy 
check (CRC) would not check, no acknowledgment would 
be sent, and the transmitter would try again later; the later 
time would be pseudorandomly chosen to avoid the cer- 
tainty of another collision if both transmitters waited the 
same time. 

Over the years, this basic strategy has been improved, 
generalized, and analyzed in many ways. A number of 
variations are in widespread use, and the general topic of 
collision resolution has provided many challenging and 
interesting problems for research. Section IV provides an 
introduction to these problems, and most of the other 
papers in this special issue are devoted to the current state 
of these problems. 

Collision resolution research has always focused on the 
bursty arrivals of messages and the interference between 
transmitters, but has generally ignored the noise. More 
generally, this approach ignores the underlying communi- 
cation process, assuming only that a message transmission 
is correctly received in the absence of collision and incor- 
rectly received otherwise. 

The multiaccess information theoretic approach to mul- 
tiaccess began in 1973 with a coding theorem developed by 
Ahlswede [2] and Liao [3]. This work has also been gener- 
alized in many ways and has opened up a separate area of 
research problems. Excellent summaries and descriptions 
of this research are given in [4]-[6]. In this approach, the 
noise and interference aspects of the multiaccess channel 
are appropriately modeled, but the random arrivals of the 
messages are ignored. 

Before proceeding, it is important to understand why 
information theorists and communication system designers 
have always essentially ignored random message arrivals 
for point to point channels, and why this is usually unrea- 

OOlS-9448/85/0300-0124$01.00 01985 IEEE 



GALLAGER: PERSPECTIVE ON MULTIACCESS CHANNELS 125 

sonable for multiaccess channels. For a point to point 
channel, one normally assumes an infinite reservoir of data 
to be transmitted. The reason for this is that it is a minor 
practical detail to inform the receiver when there is no data 
to send; furthermore, there is no other use for the channel, 
so potential lack of data might as well be left out of the 
model. For multiaccess channels, on the other hand, most 
transmitters have nothing to send most of the time, and 
only a few are busy. The problem is then to share the 
channel between the busy users, and this is often the 
central technical problem in multiaccess communication. 

A pure theoretician would properly point out here that 
bursty message arrivals have nothing to do with coding 
theorems for multiaccess channels. The arrivals have to do 
with the sources and can and should be dealt with through 
source coding. Even without source coding, if the arrival 
process is ergodic, then over the arbitrarily long time 
intervals used in the coding theorems, the bursty arrivals 
will not matter. 

From a more practical point of view, the single user limit 
theorems of information theory are interesting both be- 
cause they put an upper limit on what is achievable and 
because the limit is usually not too far from what is 
practically achievable. For a multiaccess channel, however, 
the long time intervals required for the source arrivals to 
appear smoothed out are typically far greater than the 
tolerable delays. Conversely, the time interval required for 
coding to be effective (i.e., the time for the noise to be 
smoothed out) is typically smaller than the tolerable delay. 
What is needed then is an information theoretic model that 
somehow precludes the possibility of imposing long delays 
on source messages. 

One approach to this, which is used in the collision 
resolution field, is to assume an infinite number of sources, 
or equivalently, that a new transmitter is created for each 
new arriving message and then destroyed when the message 
is successfully transmitted. The received sequence or wave- 
form would then be some function of noise and whatever 
was being transmitted by the active transmitters. It seems 
that to develop understanding in this area, it is necessary 
first to develop some understanding of coding (as opposed 
to coding theorems) in a multiaccess environment. This 
understanding should involve decoding in the presence of 
several messages being transmitted simultaneously, since 
otherwise the problem simply reduces to conflict resolution 
with coding added for reliable transmission in the absence 
of conflicts. 

In Section II, we discuss multiaccess information theory 
in more detail, and in Section III, we discuss what little is 
known about coding. In both sections, the discussion is 
restricted to systems with only two sources. The rationale 
for this is to understand multiaccess coding in the simplest 
context before tackling the problem of real interest with 
many sources and transmitters. 

The spread spectrum approach to multiaccess channels 
[7], [8] will not be discussed in any detail elsewhere in this 
paper, but is briefly discussed here in order to illustrate the 
types of possibilities for multiaccess communication that 

lie outside the conventional collision resolution and coding 
theory approaches. Spread spectrum is a mode of com- 
munication originally developed to protect against jam- 
ming in a military environment. The signal to be trans- 
mitted is modulated over a much broader frequency band, 
say /3 times more, than necessary. Assuming that the 
jammer does not know the modulating sequence, the 
jammer’s signal will essentially look like broadband noise 
to the signal, and the noise seen by the receiver after 
demodulation will be reduced by a factor of ,!!I. 

For multiaccess communication using spread spectrum, 
several sources can transmit at once using different mod- 
ulating sequences, and each will look like broadband noise 
to the others. If we compare this type of system to frequency 
multiplexing, using ,B frequency bands, it appears at first 
that spread spectrum is not a very good idea. When /3 
transmitters transmit together using spread spectrum, the 
self noise becomes considerable, and the resulting system is 
clearly inferior to frequency division multiplexing (FDM) 
in terms of capacity. The problem with FDM, however, is 
that if there are many more than /3 transmitters in the 
system, but typically many fewer than p with messages to 
send, there is a problem allocating the frequencies to the 
busy transmitters (this is the same fundamental problem 
handled by the collision resolution approach). Since many 
times more than p modulation sequences can be chosen 
that are almost orthogonal and that look like noise to each 
other, spread spectrum provides an automatic solution to 
the problem of allocating the channel to the busy users. 
This solution is not entirely satisfactory, since one still 
needs collision resolution when too many transmitters send 
at once, and the decoding is very complex. It illustrates, 
however, a  major point of this paper-that a better set of 
models and approaches are needed for multiaccess com- 
munication than collision resolution or information theory 
alone. 

II. THE INFORMATION THEORETIC APPROACH 

The coding theorems of information theory treat the 
question of how much data can be reliably communicated 
from one point, or set of points, to another point, or set of 
points. It is tacitly assumed that the sources have a never- 
empty reservoir of data to send. Thus the theoretical results 
in this area do not address the question of the delay that 
arises in multiaccess systems because of the random arrival 
times of data to be transmitted. 

The class of channels to be considered is illustrated in 
Fig. 2. Each unit of time, the first transmitter sends a 
symbol x from an alphabet X and the second transmitter 
sends a symbol w from an alphabet W . There is an output 

Fig. 2. Mult iaccess channel with two transmitters. 
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alphabet Y and a transmitter probability assignment 
P(y(xw) determining the probability of receiving each 
y E Y for each choice of inputs x E X and w E IV. The 
channel is memoryless in the sense that if x = (xi,. . . , xN) 
and w = (wi;.., wlv) represent the inputs to transmitters 
one and two, respectively, over N successive time units, 
then the probability of receiving y = ( yi,. + . , y,) for the 
given x, w, is 

pt Jew) = f-l NYnlxnwn). (2.1) 
We assume for the time being that the alphabets are all 
discrete, but it will soon be obvious that this can be 
generalized in the same way as for single input channels. 

As indicated in Fig. 2, there are two independent sources 
which are encoded independently into the two channel 
inputs. Consider block coding with a given block length N 
using A4 code words {xi, x2; . *, xM} for transmitter 1, 
and L code words { w,, . . . , wL} for transmitter 2; each 
code word is a sequence of N channel inputs. For conveni- 
ence we refer to a code with these parameters as an 
(N, M, L) code. The rates of the two sources are defined as 

R, = (In M)/N R, = (In L)/N. (2.4 

Each N units of time, source 1 generates an integer m 
uniformly distributed from 1 to M, and source 2 indepen- 
dently generates an integer I uniformly distributed from 1 
to L. The transmitters send x, and w,, respectively, and 
the corresponding channel output y enters the decoder and 
is mapped into a decoded “message” riz, i. If both riz = m 
and I= I, the decoding is correct and otherwise a decoding 
error occurs. The probability of decoding error P, is mini- 
mized for each y by a maximum likelihood decoder, 
choosing (rit, 1) as integers 1 I m’ I M, 1 I I’ I L that 
maximize P( y]x,, w,,). If the maximum is nonunique, any 
maximizing (m’, I’) can be chosen with no effect on P,. 
Both sets of code words, {x1;. ., xM} and { wi; . ., wL}, 
are known to the decoder, but, of course, the source 
outputs m, 1 are unknown. 

The most fundamental result about these channels is the 
coding theorem due to Ahlswede [2] and Liao [3]. Let 
Q,(x) and Q2( w) be probability assignments on the X and 
W input alphabets, respectively. Define the achievable rate 
region 6% as the convex hull of the set of rate pairs 
(R,, R2) which, for some choice of assignments Qi, Q2, 
satisfy each of the inequalities 

where P(Y) = ~,,Qltx)Q~tw)pt~lxw>~ f’Ww) = 
LQItxM~lxw)~ and KYIx) = C,Q,tw)pWw). 

The region bounded by (2.3)-(2.5) for a given Q,, Q, is 
shown in Fig. 3. It is easy to see that the break points of 
the boundary occur at R, = I( X, Yl IV), R, = I( W, Y) 
and at R, = 1(X, Y), R 2 = I( w, Y I X). In general, since x 
and w are independent, I( X, Y]IV) 2 I( X; Y) with 
equality if and only if x and w are also conditionally 
independent given y. 

I(:g:b l(wq--j Icw:p+ 
I(X;Y) I(X;YIW) I(X;Y) I(X;Y IW) 

R, R, R, 
NORMAL CASE SPECIAL CASE 

I(X;Y)= I(X;YIW) 
SPECIAL CASE 

I(X;YI * 0 

Fig. 3. Rate region of (2.3)-(2.5). 

Theorem 1 (Ahlswede, Liao): For each E > 0, 8 > 
0, (R,, R2) E G%“, there exists an N, such that for all N 2 
N,, it4 < exp N( R, - S), L I exp N( R, - S), there exists 
an (N, M, L) code with P, I e. For each S > 0 and 
(R,, R2) E .%?‘, there exists e > 0 such that P, 2 6 for all 
(N, M, L) codes with M 2 exp N(R, + S), L 2 exp N(R, 
+ 6). 

In effect, the theorem says that reliable communication 
is possible for source rates in the interior of the achievable 
region .G%? and is impossible outside of the achievable 
region. Slepian and Wolf [9] later generalized this result by 
considering a third source that could be encoded jointly for 
both transmitters. They also used a random coding argu- 
ment which showed that P, can be made to decrease 
exponentially with N and showed also, in a sense, that 
most codes have this behavior. Since this random coding 
argument is a very simple extension of random coding for 
single input channels but gives a great deal of insight into 
coding for multiple access channels, we now go through the 
argument for the two source case. 

A. A Multiaccess Coding Theoiem 

Let Q,(x) and QZ(w) be probability assignments on the 
X and W alphabets, respectively, and consider an ensemble 

R, + R, I I(XW;Y)= c QI(x)Q,(w)P(y)xw)ln ‘(d;lyx;’ 
X,W,Y 

(2.3) 

0s R, I 1(X; YpV) = c Q,(x)Q2(w)P(ylxw)ln :yi;w;’ (2.4) 
X,W,Y 

01 R, I I(W; Y]X) = c Q,(x)Q,(w)P(y]xw)ln pd{iyxy) (2.5) 
X,W,Y 
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of (N, M, L) codes where each code word x,, 1  I m  I M, 
is independently selected according to the probability as- 
signment 

Q,(x) = jfil Q,txn>, x = (X1,X2,“‘, XN) (2.6) 

and each code word w,, 1  I I I L  is independently selected 
according to 

N 

Q,(w) = Ii Q ,twn)~ w = (w,,-,w,). (2.7) 
n=l 

For each code in the ensemble, the decoder uses maximum 
likelihood decoding, and we want to upper bound the 
expected value p, of P, for this ensemble. Define an error 
event to be of type 1 if the decoded pair (I%, 1) and the 
original source pair (m, Z) satisfy riz # m, i = 1. An error 
event is type 2 if h  = m  and i #  1, and is of type 3 if 
riz # m  and ? # 1. Let Pei, 1  I i I 3, be the probability, 
over the ensemble, of a  type i error event; obviously 
Fe = P,, + Pe2 + Pe3. 

Taking the expected value of (2.11) over w, and then using 
the product form of Q,,. Q2, and P again, 

Cl s exp[~NR,l 

~Q,(x)P(ylx~)“(‘+~) l-+’ I 1  N x 
(2.12) 

Consider Pe3 first. Note that, when (m, I) enters the 
encoder, there are M  - 1 choices for riz and (L - 1) 
choices for !, or (M - 1) (L - 1) pairs, that yield a type 3 
error. For each such pair (riz, i), the code word pair xin, rq 
is statistically independent of x,, w, over the ensemble of 
codes. Thus, regarding (x, w) as a combined input to a 
single input channel with input alphabet X x W , we can 
directly apply the coding theorem [lo, Theorem 5.6.11 
which asserts’ that, for all p, 0  I p I 1, 

Applying the same argument to type 2 errors, for all 
p,o 5 p I 1, 

pe2  5  exp[~NR,l 

~Q,(w)P(~Jxw)‘(‘+~) ‘+’ . 1 1 N w 
(2.13) 

Pe3 I [(M - l)(L - l)] p  

. c [ 1  Q,(x)Q,( w)P( ylx~)‘“~+“lIII. (2.8) 
Y x,w 

Putting (2.9), (2.12), and (2.13) in a form to emphasize 
the exponential dependence on N, we have the following 
theorem. 

Theorem 2 (Slepian- Wolf): Consider an ensemble of 
(N,M,L) codes in which {xl;..,xM} and {wI;~~,wL} 
are independently chosen according to (2.6) and (2.7) for a 
given probability assignment Q(xw) = QI(x)Q2(w). Then 
the expected error probability over the ensemble satisfies Using the product form of Q,, Q2, and P ((2.1), (2.6), 

(2.7)), and the definition of rates in (2.2), this simplifies to 

pe3  5  exd~N(R, +&)I 

c Q,(x)Q,(w)P( JJ~xw)“(‘+~) I+’ . 
I I 

N 

x,w 

(2.9) 

Next consider Pel, the probability that riz # m  and I = i. 
We  first condition this probability on a particular message 
1 entering the second encoder, and a choice of code with a 
particular w, transmitted at the second input. Given w,, we 
can view the channel as a single input channel with input 
x, and with transition probabilities P( ylx,w,). 

A maximum likelihood .decoder for that single input 
channel will make an error (or be ambiguous) if 

for at least one m  * # m  . 

(2.10) 

,l The statement of [lo, Theorem 5.6.11 assumes that all code words are 
chosen independently, but the proof only uses pairwise independence 
between the transmitted word (x, , W)  and each other word ( xL , IV,-), P’+I # 
m,i# I. 

Since this event must occur whenever a type 1 error occurs, 
the probability of a  type 1 error, conditional on w[ being 
sent, is upperbounded by the probability of error or 
ambiguity on the above single input channel. Using [lo, 
theorem 5.6.11 again for this single input channel, we have, 
for anyp,O 5 p 5 1, 

P [type 1 error I We] 

I (M - 1)‘c xQ,(x)P( JJ)xw)“(‘+~) 
[ 1 l+P 

. (2.11) 
Y * 

Fe I P,, + P& + P&g (2.14) 

where 

P,i I exp[-N[-PRi + Eoi<P,Q>]], 
forallp,O<p<l,alli=1,2,3 (2.15) 

In M  In L 
R, = 7 R, = 7 R, = R, + R, 

&,,<P,Q) = 

(2.16) 

I l+P 

-1n c Q,(w) ~Q,(-dPbl-d’(lfp’ (2.17) 
Y3W x 

&<P,Q> = 

1 l+P 

-1n c Q,(x) CQ2(w)P<~lxw)1”‘+P) (2.18) 
Y3X w 

&(P,Q) = 

c Q,(x)Q,(w)P(ylx~)“(~+~) 1 l+P 

. (2.19) 
x,w 
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The behavior of the expressions E,,(p, Q), i = 1,2,3, is 
the same as for the single input case. In particular let 
I,, i = 1,2,3, be given by 

I1 = z(x; YIW) I, = I( w; YIX) I3 = I(XW; Y) 

(2.20) 

as defined in (2.3)-(2.5). Then, if Ii > 0, the function 
&,(p, Q) is concave, strictly increasing in p, and positive 
for p > 0. Furthermore, the maximum of Eoi(p, Q) - pR, 
over 0 I p I 1 is positive and decreasing in Ri for 0 I Ri 
< Ii (see [lo, Theorems 5.6.3 and 5.6.41 for proofs). Theo- 
rem 2 then asserts that if Ri < I,, i = 1,2,3, then p, 
decreases exponentially with increasing N. 

There are two questions we want to explore in the rest of 
this section. First, how tight is this bound on error prob- 
ability, and second, what indication does it give of the 
practicality of coding for multiaccess channels? To explore 
the question of tightness, we first interpret the terms P,,i in 
(2.14). 

Pel, as upper bounded in (2.12), is the error probability 
that would result if a “genie” informed the decoder about 
the second source message 1. This genie-aided error prob- 
ability is also clearly a lower bound to Fe, so that, when 
type 1 errors are the predominant cause of errors, the 
genie-aided error probability closely approximates Fe. Sim- 
ilarly, the bound for Pe3 is the conventional single input 
random coding bound for a single code of rate R, + R, 
using combined inputs with probability Ql(x)QZ(w). Our 
conclusion, then, is that the bound on Fe in Theorem 2 is 
quite tight for the given ensemble of codes. The problem, 
as we shall soon see through a set of examples, is that the 
best codes are not always representative of the ensembles. 

B. The Collision Channel 

Let X= {O,l, ..a K} and W = {O,l; . ., K}. We re- 
gard 0 as an “idle” input, and if 0 is the x input for a given 
w input, then y is the pair (0, w). Similarly, if w = 0, the 
output is (x, 0). Finally, if x # 0 and w # 0, the output y 
is a special symbol c representing “collision.” This is 
shown-in Fig. 4 for K = 2. - - 

X 
0 I 2 

Fig. 4. Output y = (y’, y2) as function of x, w for collision channel 
with K = 2. 

First consider the achievable rate region. For any given 
Q,(x), Q*(w), it is easy to see that, conditional on the 
output y, the two inputs are statistically independent; thus 
I( X; YIW) = I( X, Y) and the set of rates satisfying 
(2.3)-(2.5) forms a rectangle. We next want to find the set 
of rates so that (2.3)-(2.5) is satisfied for some choice of 

Q,, Q,. It should be clear from symmetry that Q,(x) 
should be constant for all x > 0 and that QZ(w) should be 
constant for w > 0; thus we need only consider the union 
of rates satisfying (2.3)-(2.5) over all choices of the idle 
probabilities Q,(O) and Q,(O). Fig. 5 shows the resulting 
union; for all K 2 8, the set of rates is nonconvex (the 
non-convexity for certain multiaccess channels was first 
shown by [ll]). The convex hull of this union region is the 
set of achievable rates of Theorem 1. Theorem 2 assures us 
that exponentially decaying error rates are achievable in 
the interior of the union region. Any given rate pair in the 
interior of the convex hull is on a straight line between two 
pairs of rates, each in the interior of the union region. By 
time division multiplexing (TDM) between codes for these 
rate pairs, reliable communication is achieved for the given 
rate pair. Thus Theorem 2 establishes the positive half of 
Theorem 1. 

R2 

R, 
Fig. 5. Achievable rate region for collision channel. 

It is rather surprising at first that the union region is 
nonconvex. We note that I( XW, Y) is a concave function 
of Q,(x) and a concave function of Q,(x), but is noncon- 
cave as a joint function of Q, and Q2. It is also concave as 
a function of Q(x, w), but the set of probability vectors 
Q(x, w), for which Q(x, w) = Qi(x)Q*(w) for some 
Q,, Q2, is a nonconvex region. Thus maximizing I( XW; Y) 
over Q, and Q2 can be viewed either as a nonconcave 
maximization or a concave maximization over a nonconvex 
region. Either way, multiple isolated extrema can exist and 
there is no analog of the Arimoto-Blahut [12], [13] al- 
gorithm that can be used to find the achievable rate region. 

It might also be surprising that the achievable region for 
the collision channel is not achieved by multiplexing be- 
tween Q,(O) = 0, Q2(0) = 1 and Q,(O) = 1, Q2(0) = 0 (i.e., 
by one user or the other “using” the channel while the 
other is idle). The reason is that the choice of whether or 
not to be idle also conveys information, and the multiplex- 
ing solution (although eminently practical for large K) 
loses this extra information. 

Next consider the achievable error probabilities for the 
collision channel. In general, for an input distribution 
Q(x,w) = Q,(x)Q*(w), we can express Theorem 2 in the 
form 

Fe I 3exp [ -NE,(Ri, Rz,Q>I (2.21) 
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where (with R, = R, + R2), 

(2.22) 

In principle, E,(R,, R,, Q) can be maximized over 
product distributions Q, 

E,(R,, R2) = mpE,(R,, R,, Q), (2.23) 

and this in principle creates an exponent of error decay for 
each R,, R, in the union region of Fig. 5. The same kinds 
of problems exist in performing this maximization as exist 
in finding the feasible region 9. Note now that if we want 
to achieve a given exponential decay (Y, and if there are two 
rate pairs, say R;, R; and R;‘, R;‘, such that E,(R;, R;) 2 
(Y and E,(R;‘, R;‘) 2 (Y, then, for any rate pair R,, R,, 

R, = XR; + (1 - X)R;’ R, = AR; +(l - A)R;’ 

(2.24) 

with 0 < h < 1, an exponent of (Y or more can be achieved, 
in a sense, ‘by time sharing between equal block length 
codes for R;, R; and for R;‘, R’; using the first code a 
fraction A of the time and the second a fraction (1 - X) of 
the time. 

This means that we can define a region R, of rate pairs 
as the convex hull of all pairs R, 2 0, R, 2 0 for which 
E,( R,, R,) 2 (Y. As (Y increases from 0, R, shrinks from 
the feasible region R down to the origin. 

There are several other approaches to defining a random 
coding exponent as a function of R,, R,. First, the random 
coding ensemble itself could use different probability as- 
signments QiQz on different letters of the block. This 
would lead to the functions E&p, Q) in (2.15) and (2.22) 
being replaced by weighted averages between the different 
choices of Q, as 

&&J,~,Q(~)Q(“)) = XE,,(p,Q”‘) +(l - X)E,,(p,Q”‘). 

(2.25) 

No examples have been found where this approach en- 
larges the regions R, defined above; this approach is 
sufficient, however, to achieve exponential decays in FC for 
all rate pairs in the interior of 9. 

Another approach is to consider random coding ensem- 
bles in which successive letters are statistically dependent. 
For the collision channel, for example, suppose the block is 
divided into subblocks of four letters each. W ithin each 
subblock, we choose (xi, x2, x3, x4) to have either the form 
(x, x, 0,O) or the form (O,O, x, x), each with equal prob- 
ability. Similarly, (wi, w,, w,, wq) has either the form 
(w, 0, w, 0) or (0, w, 0, w) with equal probability. Finally, x 
and w are independently and equiprobably chosen from 
{LL- * *> K). W ith this arrangement, each subblock of 
length 4 is equivalent to a noiseless x channel with 2K 
inputs and a noiseless w channel with 2K inputs (this 
example was suggested by Massey’s coding scheme for 
unsynchronized collision channels [14]). The resulting ran- 

129 

successive letters are independent with the same marginal 
probabilities. 

The purpose of the above discussion was not to find the 
largest exponents achievable for the collision channel, but 
rather to illustrate why error exponents are far more com- 
plicated for multiaccess channels than for single input 
channels. It also illustrates why there is no simple sphere 
packing lower bound to P, for multiaccess channels that 
yields the same error exponents as the random coding 
bound. Arutyunyan [15] has developed a type of sphere 
packing bound for multiaccess channels, but it is somewhat 
loose since it does not account for the separation of the 
two encoders for the type 3 errors. 

C. Additive White Gaussian Noise Channel (A WGN) 

We  now turn to another example of somewhat greater 
practical importance where the random coding exponents 
work out more nicely. Suppose the X, W , and Y alphabets 
are each the set of real numbers, and the output y is given 
by 

y=x+w+z (2.26) 

where z is a zero mean Gaussian random variable of 
variance u* independent of x and w. The x input and w 
input are each constrained to have mean square values at 
most S, and S,, respectively. If we consider the channel as 
a cascade of a noiseless channel adding x and w, followed 
by a single input Gaussian channel, we see that I( XW; Y) 
is at most the capacity of’ the single input channel with the 
input constrained to energy S, + S,. Thus 

I( xw; Y) I ; log 1 + [ 91. (2.27) 

It is also easy to see that I( X, Y 1 W) is the average mutual 
information between x and y in the absence of w. Thus 

1(x; YlW) I + log 1 + $ [ 1  
I(W ; YIX) I ; log [ 1 + 3 1 . 

(2.28) 

(2.29) 

These inequalities are satisfied for all independent distri- 
butions on x and w and are all satisfied with equality if x 
and w are independent zero mean Gaussian with variances 
S, and S,, respectively. Thus the rate region for which 
(2.3)-(2.5) are satisfied for some independent x and w 
distribution is 

Rl+R2+og[l+~] (2.30) 

0 I R, I ; log 1 + 3 [ I (2.31) 

O<R,+og I+3 I I (2.32) 

Since this region is convex already, it is the achievable rate 
dom coding exponent is clearly larger than that where the region B. 
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Fig. 

R, (BITS) 

6. Achievable rate region as function of signal/noise A. 

This region .C% is shown in Fig. 6 for various values of 
signal to noise ratios A = S/a2, S = S, + S,, for the case 
where S, = S,. Note that the region is almost rectangular 
for small A and almost triangular for large A. Note that if 
one uses TDM between a code for x and a code for w, 
then the achievable rates are limited to the region bounded 
by the straight line between the axis intercepts of the 
boundary of 9 (see Fig. 7). Thus, for large A, TDM is 
almost as good as the best coding, whereas for small A, 
TDM is quite inferior. The reason for this can be seen most 
clearly for the case R, = R, = R. Alternating between 
(R, 0) and (0, R) then wastes half the available power, 
since (by our model), the first transmitter stays within its 
power limitation while transmitting. Losing half the availa- 
ble power loses only a small fraction of the available 
capacity for large A whereas, for small A, a large fraction 
is lost. This suggests going to a continuous time model 
rather than the discrete time model here and using 
frequency division multiplexing; thus achieving the same 
simplicity as TDM, but being able to use all the available 
power. Fig. 7 shows the resulting rate region, assuming the 
same power for each transmitter and the optimal split of 
frequency between the transmitters as a function of the 
rates. 

Fig. 7. Comparison of TDM (as modeled) and FDM. 

Next consider the random coding exponent for these 
channels. Using the above Gaussian distribution for x and 
w, we can easily calculate E&p, Q) from (2.17)-(2.19), 
replacing sums with integrals. The result is 

E,;(p,Q) = cln 1 + si 

a*(1 + P> I 
(2.33) 

where S, = S, + S,. Letting Ai = S/u*, we can maximize 
[E&p, Q) - pRi] over p to get the parametric equations 

Eri( Ri) = 
Pf’; 

2(1 + p,)(l + pi + A;) ’ 

Ri=~1n[1+~]-2(1+~i~~~~pi+Ai)’ 

(2.34) 

where 0 I pi I 1. For rates lower than those where pi = 1, 

E,;(R,) = $ In 1 + $ - Ri, [ 1 
forRi<iln I+$ - [ 1 4 

4(2 + A;) ’ 
(2.35) 

As in (2.22) and (2.23), the random coding exponent 
E,( R,, R,) is the minimum of E,,(R;) over i = 1,2,3. The 
region W divides into three subregions, as shown in Fig. 8, 
where E,,(R;) for each i is dominant. As the rates de- 
crease, the error probability of type 3 errors decreases more 
rapidly than that for type 1 and 2 errors, so that, for small 
rates, the bound is dominated by errors in source 1 or 2 but 
not both. 

R2 
(BITS) 

(.5,.31 

I /(.238:.238) 1 1 

0.238) 0.5 
Rl 

(BITS) 

Fig. 8. Regions 9,-where E,,i dominates error bound; for A = 1. 

For a single input additive Gaussian noise channel, 
choosing a coding ensemble with the Gaussian distribution 
is not quite the best thing to do for error exponents. The 
best distribution results from a shell constraint; that is, 
code words are chosen with a Gaussian distribution condi- 
tional on the resulting word having an energy very close to 
NSi. This distribution (see [lo, Section 7.41) yields the same 
exponent to p, as the sphere packing bound for rates 
sufficiently close to capacity. 

For a multiaccess channel, it seems reasonable to con- 
sider again a random coding ensemble using a shell con- 
straint on each set of code words. From the genie interpre- 
tation of type 1 and 2 errors, we see that P,, is upper- 
bounded by the probability of error for the first set of code 
words with the additive Gaussian noise, but without the 
second set of code words. Thus, for i = 1,2, we have 
P,; I a,Nexp [ - NE,,(R,)], where from [lo, Section 7.41, 
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a, is a constant and E,;( Ri) is given by 

E,;(R;) = +j+ + +lntD;-V,) (2.36) 
I 

for 

Jj In [(l/4)(2 + A; i /+)I 2  Ri I i In (1 + A;) 

(2.37) 

where 

y, = Ai(Pi - ‘1 
I 2 [/q&l] (2.38) 

pi = exp (2Ri). 

For Ri less than the lower limit in (2.37), 

(2.39) 

(2.40) 

(2.41) 

For rates satisfying (2.37), the sphere packing bound for 
the single input channel gives a lower bound 

Pei 2 exp [-N[Er;(R;) + o(N)]], i= 1,2 

for all codes, where o(N) approaches 0 with increasing N. 
For type 3 errors, the situation is less simple since the 

combined code words x + w are not constrained. In fact, 
if, after constraining x to have energy NS, and w to have 
energy NS,, we then constrained x + w to have energy 
N(S, + S,), we would then be constraining the code words 
of the two codes to be orthogonal, which corresponds (on a 
continuous time channel) to the frequency division multi- 
plexing discussed previously. 

We  now develop a bound on Pe3 using a shell constraint 
on the code words x, and w,. Choose each x indepen- 
dently using the density Q,(X) and each w using the 
density Q,(w) where 

Q;(x) = P;‘+;(X) (2.42) 

f&(x) = l9 for NSi - 6  < 2 x,” I NSi 
n=l 

YO, otherwise, 

(2.43) 

where 6 is an arbitrary positive number, and pi is a 
normalizing constant to make Q,(x) integrate to 1. Sub- 
stituting (2.42) for Q,(x) and Q2( w) into (2.8), replacing 
sums with integrals, and upper bounding +;(x) by 

+j(x) 5 exp r; 2  0, 

(2.44) 

we find that (2.8) breaks into a product form (as in [lo, 
Section 7.31). After some tedious integration we get, for 
any p, 0 5 p I 1, 

p  t-3 exp[6tr1+r2)1 l+pexp[-N(E (p,r)-pR )] 
i-w2 1 03 3 

(2.45) 

Eo3(pyr) = (1 + d in [gq-(%$A) 

(2.46) 

di = (1 f p)(l - 2riSi). (2.47) 

The first term in (2.45) is proportional to N’+” for any 
given choice of rl, r,, and 6, so we simply bound it by aN* 
for some suitable a. The exponent can be optimized over 
p,rl, r, (or equivalently over p, 8,, 0, for 0 I p  I 1,0 I Si 
I 1  + p). For the important case where A, = A,, the 
optimization can be carried out explicitly. Here by symme- 
try, the optimal 8, and 0, are equal, and such a solution is 
also valid, but not optimal, for all A, and A,. Using 0 for 
8, and S2 and A for A, + A,, 

&(p, r> = (1 + p)h -8+fln I+$. i 1  
(2.48) 

Optimizing the exponent, we find, for 

that 

I: R, 5 iln(1 + A), (2.49) 

e 
E,,(R,) = (1 + p - d) + In - 

l+P 
(2.50) 

e=l+P-A+1 
2 

&l + p)’ + A2 + 2A 

(2.51) 

p= [;+y-pp-1’2e1 

(2.52) 

p = exp (2R,). (2.53) 

For R, less than the lower bound in (2.49), 

(2.54) 

0=1-$++ln(A2+2A+4). (2.55) 

This exponent lies roughly halfway between the previ- 
ously derived exponent without a shell constraint and the 
exponent with a shell constraint that would result for a 
single input Gaussian channel with signal to noise ratio A 
(i.e., that given by (2.36)-(2.41). 
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When we take the minimum of the three exponents 
E,,(R,) for i = 1,2,3, we again find that the achievable 
region LJ? breaks into three subregions, one where each 
bound is dominant; the regions look the same as in Fig. 8, 
although numerically they are somewhat different. We now 
know, however, that whenever the rate pair (R,, R 2) is in 
L%‘i (or L%~) and R, (or R2) is above the critical rate of 
(2.36), then E,( R,, R,) is indeed the exponent for optimal 
codes. For the symmetric case where R, = R,, the region 
2, vanishes for small enough R, = R,, and if the point 
where g3 vanishes is above the critical rate for R, and 
R,, then the optimum exponent is given by (2.37)-(2.39) 
between the point where .%‘3 vanishes and the critical rate. 
This phenomenon occurs whenever the combined signal to 
noise ratio A, is below about 3. 

III. CODINGTECHNIQUES 

While the theoretical development of coding theorems 
for multiaccess channels is quite advanced, very little has 
been done with respect to general techniques for multi- 
access coding. As pointed out in the introduction, what is 
needed is a coding technology that is applicable for a large 
set of transmitters of which a small, but variable, subset 
simultaneously use the channel. Here, however, we restrict 
ourselves to the simpler problem of the two input channel 
of Fig. 2, where both sources always have something to 
send. 

First we observe that the error probability bounds 
evaluated in the last section apply equally well to ensem- 
bles of linear codes. The argument for this is the same as in 
[lo, Section 6.21. In general, binary linear codes can be 
generated for each transmitter, and subblocks of these 
binary digits can be mapped many-to-one into the channel 
input alphabet, thus achieving any desired relative 
frequency of utilization of the various input letters. 

Random coding bounds for convolutional codes have 
also been generalized from single input channels to multi- 
access channels [16] with the same type of enlarged expo- 
nent as occurs for the single input channel. Thus there is 
no problem generating good codes, either block or con- 
volutional. The problem, as with single input channels, is 
with decoding. 

Before discussing decoding, a brief discussion of channel 
modeling is in order. The discrete time channels dear to the 
hearts of information theorists implicitly assume that car- 
rier phase and sampling time in physical channels are part 
of the channel model. Furthermore, ideal performance of 
these elements is usually assumed. For single input chan- 
nels this separation is usually perfectly reasonable, but for 
multiaccess channels it is often questionable. For example, 
for the AWGN multiaccess channel, it is well known [17], 
[18] that feedback can increase the achievable R, + R, 
beyond that achievable by a single source of rate R, + R, 
and energy constraint S, + S,. In other words, the individ- 
ual transmitters are limited to S, and S, respectively, but 
the signal energy at the receiver exceeds S, + S,. This 
means that the two transmitting antennas are acting essen- 

tially as a phased array and that the additional receiver 
energy can be viewed as coming from antenna gain (along 
with very clever feedback coordination). While this is not 
impossible, it is certainly not a conventional situation. 

Typically we should expect the received carrier phase 
from the one transmitter to be roughly independent of that 
from the other. Approximate symbol synchronism between 
the transmitters is slightly more reasonable than phase 
synchronism, and approximate block synchronism is emi- 
nently reasonable with only marginal feedback communi- 
cation. 

There appears to be little of a general nature that can be 
said about the effect of asynchronism between the sources 
at the phase and symbol level. For the specific case of an 
AWGN channel, however, the situation is much simpler. 
Using a continuous time narrowband Gaussian ensemble 
(with or without a shell constraint) to generate code words, 
the discrete time code words of the last section can be 
considered as time samples over the block period of a 
narrow band stationary Gaussian process with alternate 
letters representing in phase and out of phase components. 
Thus for a given set of randomly chosen waveform code 
words, a change of receiver carrier phase and sample time 
will change the discrete time code but will not change the 
ensemble statistics (aside from some end effects at the ends 
of the block, which we ignore). The decoder must know the 
relative carrier phase and sample time for each of the two 
transmitters, but there is no need for the two to be syn- 
chronized together. In summary, the discrete time AWGN 
multiaccess model of the last section is adequate for non- 
feedback communication maintaining only block syn- 
chronization, but is only adequate for feedback techniques 
in the rare case where the two transmitters are phase and 
symbol synchronized. 

The problem of lack of block synchronization for multi- 
access channels is somewhat better understood than that of 
phase and symbol synchronization. Assuming a discrete 
time model (i.e., assuming away the phase and symbol 
synchronization problems), it has been shown [19] that 
with a bounded amount of uncertainty in timing between 
the transmitters, the feasible region W is the same as with 
perfect synchronization. Essentially one uses a coding con- 
straint so large that the timing uncertainty becomes negligi- 
ble. For complete uncertainty in timing, on the other hand, 
it has been shown [20], [55] that the feasible region is the 
union region of Fig. 5, rather than its convex hull. The 
.essential idea here is that time sharing cannot be used in 
the total absence of relative timing between the trans- 
mitters. 

Having cautioned the reader about the modeling prob- 
lems inherent in a discrete time memoryless model of 
multiaccess channels, we now return to this model to see 
what can be said about coding. 

First, there is a fairly simple general approach that can 
reduce the decoding problem to several single source de- 
coding problems. First suppose that (R,, R2) satisfies R, 
< 1(X, Y]IV), R, < I(W, Y) for some assignment 
Q,(x), QZ(w). Over the ensemble of codes using Q,, Q2, a 
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decoder can decode the w code word by ignoring the x 
code word and assuming a single input channel with transi- 
tion probabilities P(y]w) = C,Q,(x)P(y]xw). Over the 
ensemble of codes for the first encoder, this is precisely the 
set of transition probabilities from w to y. Thus a “good” 
decoder for a single input channel can decode w reliably. 
Given w, another decoder for a single input channel can 
decode x using P(y,]x,w,). This second decoding is some- 
what unconventional for single inputs in that the transition 
probabilities depend on w,, and thus vary with n, but a 
number of decoding techniques such as sequential decod- 
ing and Viterbi decoding can deal with this situation. 

As can be seen from Fig. 9, any (R,, R2) in the interior 
of the achievable region of (2.3)-(2.5) for a given Q,, Q2 
can be represented as a convex combination of two rate 
pairs, one of which, (R;, R;), satisfies 

R; < 1(X; YlW) R; < I(W ; Y) w 
and the other of which satisfies 

R;’ < 1(X; Y) R;’ < I(W ; YIX). (3.2) 

I(W,Y/X) 

I\, 

IL 

1 ‘1 
@I @\ 

\ 
I(W:Y) -r---f 

0; 0 

I(X,Yl 1(X, Y/W) 

REGION I: DECODE X.THEN 
W  GIVEN X 

REGION 2: DECODE X,W 
INDEPENDENTLY 

REGION 3: DECODE W  THEN 
X GIVEN W  

REGION 4: USE TIMESHARING 
BETWEEN 1,3 

TIMESHARING OF 
POINT TilN CONVEX 
HULL BETWEEN ; 

AND Ti” 

Fig. 9. Timesharing construction to obtain any achievable rate pair 
without joint decoding. 

Codes for each of these rate pairs can be decoded by the 
two step procedure described above and (R,, R2) can be 
decoded by time sharing between two such codes. 

Finally, any point in the interior of the achievable rate 
region is a convex combination of two rate pairs, one of 
which satisfies (2.3)-(2.5) with strict inequality for some 
QiQ2 and the other for some other QTQZ. Thus an arbi- 
trary point in the interior of .%’ can be reliably decoded by 
time sharing between at most four codes, two of which use 
rates satisfying (3.1) and (3.2), respectively, for Q,Qz and 
the other two of which satisfy (3.1) and (3.2) for Q:Qz. 

This approach is not entirely satisfactory for two rea- 
sons. The first is that the random coding exponents for 
error probability in this approach are often much smaller 
than those for joint decoding of the two code words 
together. If we use error exponents as a crude measure of 
decoding simplicity, we see that joint decoding is poten- 
tially simpler than the above single input decoding. Note, 
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however, that error exponents can sometimes be misleading 
as a guide to decoding complexity. For example, the ran- 
dom coding exponent for a noiseless binary channel is not 
large, whereas coding and decoding are trivial. 

The other objection to this approach is that it fails to 
provide much insight into the question of joint decoding of 
several sources. It certainly does not generalize to the use 
of a small but unknown subset of a  large set of trans- 
mitters. 

A second, simpler but less general, approach is to decode 
the code words from each transmitter independently, re- 
garding the other as noise. From Fig. 6 it is seen that, for 
the AWGN channel with small signal to noise ratio, the 
achievable rate region is almost rectangular. Analytically 
I( X, Y) = (1/2)ln[l -t- A,/(1 + A*)], which is close to 
I( X; Y(W) = (1/2)ln [l + A,] when A, is small. In this 
case, the error exponent for individual decoding is almost 
the same as for joint decoding. This approach has the 
advantage of generalizing immediately to the case of a 
large number of sources with an unknown subset of the 
sources transmitting. Spread spectrum with pseudonoise 
(PN) sequences can be viewed as a special case of this 
approach, where the use of a PN sequence or its comple- 
ment over a given period is simply an added constraint on 
the encoding. Multiaccess pulse position modulation [21], 
[22], [56] can be viewed the same way. 

For an arbitrary discrete time memoryless multiaccess 
channel, perhaps with more than two transmitters, one can 
similarly investigate ways to choose code word sets for the 
individual transmitters in such a way that they are mutu- 
ally noninterfering (more precisely, so that they can be 
individually decoded with small error probability). Time 
sharing within a code word is one possibility, but, de- 
pending on the channel, other possibilities might be pref- 
erable, as we have seen for the AWGN channel. A more 
difficult related problem is to choose the code word sets in 
such a way as to maintain the noninterference property in 
the presence of lack of symbol synchronism between the 
transmitters. We  have seen that this can be done for the 
AWGN channel, and Massey’s coding scheme [14] for the 
asynchronous collision channel also achieves this objective; 
at present, however, no approaches are known for general 
discrete time memoryless channels. 

As a third approach to decoding, consider true joint 
decoding of the two code words. We  will not consider 
algebraic decoding techniques here since an algebraic struc- 
ture must be matched in some sense to the channel char- 
acteristics, and we are not aware of any examples of 
algebraic approaches for general multiaccess channels. 
Viterbi decoding of convolutional codes is another possibil- 
ity, but it does not appear very promising as a joint 
decoding technique. The problem is that the decoder should 
track all possible states of both encoders, which leads to a 
combined number of states which is the product of the 
individual numbers of states. W ith more than two trans- 
mitters, the problem is even worse. 

Finally, sequential decoding appears to be a general 
approach to multiaccess joint decoding, and it has been 
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shown [23] that lack of block synchronization is not a 
serious impediment to its operation. Unfortunately, at this 
time, it is not clear how to make sequential decoding work 
for a multiaccess channel. To explain the difficulty, recall 
that sequential decoding is a search procedure that hy- 
pothesizes the encoded sequence up to a given point and 
either proceeds forward by extending the encoded sequence 
or searches backward, depending on the value of a “metric” 
that stochastically drifts upward when the decoder is fol- 
lowing the actual encoded sequence and drifts downward 
when the decoder gets off the track. 

The problem, now, is that the decoder can go off the 
track in three ‘ways, corresponding to the three types of 
errors in Section II. Unfortunately the appropriate metric 
to use depends on the type of. error being made, and this 
knowledge is unknown to the decoder. 

Another fundamental problem with sequential decoding 
has recently been discovered by Arikan [24]. Arikan con- 
siders a multiaccess binary erasure channel where X = 
{O,l}, w= ((41) and Y = {(O,O), (0, I>, (LO), Cl), 
(e, e)}. With probability 1 - z, for some 6 > 0, y = (x, w), 
whereas with probability E, independent of the input, y = 
(e, e). In effect we have two erasure channels with per- 
fectly correlated erasures. Using equiprobable inputs for 
each transmitter, we can formally calculate the computa- 
tional cutoff region .%‘,-omp for a joint decoder as 

R, I E,,(l, Q) = -In [F] (3.3) 

R, I E,,(l,Q) = -In [T] 

R, I E,,(l, Q) = -In [F] 

we note that 

(3.4) 

(3.5) 

-2ln[F] > -ln[F], all<,0 <t < 1. 

(3.6) 
Thus for R, = R,, (3.5) is the active constraint and, 

even without any of the metric problems discussed above, 
(3.5) limits the achievable rate with joint sequential decod- 
ing. However, using separate sequential decoders for the 
two transmitters and ignoring the erasure correlation, we 
can achieve the higher rates of (3.3) and (3.4). 

To make the situation worse, we see that -ln[(l + 
3e)/4] is also the computational cutoff rate of a single 
input quaternary erasure channel. However, by regarding 
the inputs to the quaternary channel as two binary digits 
and using separate convolutional encoders and decoders 
for the two digits, we can again achieve the higher rates. 
The difficulty here does not reside in the particular search 
algorithm being used. Over the ensemble of convolutional 
codes for the quaternary input (or pairs of codes for binary 
inputs), the expected number of potential encoded se- 
quences (or pairs of sequences) at length N that are as 
likely as the transmitted sequence (or pair) is exponentially 
increasing in N for any combined rate in excess of - In [(l 
+ 3e)/4]. The conclusion that one must reach is that 

R camp is not really a fundamental parameter of communi- 
cation. This same example, in the context of the .photon 
channel, has been discussed by Massey [25] and Humblet 
WI. 

Summarizing the previous approaches to decoding, we 
see that much more research is necessary before any cohe- 
sive body of knowledge about coding and decoding for 
multiaccess channels will exist. 

IV. COLLISION RESOLUTION 

The collision resolution approach to multiaccess com- 
munication, as mentioned in Section I, focuses on allocat- 
ing the channel among a large set of users at different 
transmitting sites. It has the weakness of essentially ignor- 
ing the communication aspects of the problem. We start by 
a set of assumptions that limit the class of systems we will 
be considering. 

1) Slotted System: We assume that each message (packet) 
to be transmitted fits into one time unit (a slot) for 
transmission. All transmitters are synchronized so that the 
reception of each transmission starts at an integer time and 
ends before the next integer time. Such synchronization is 
usually not too difficult if one is given, first, a small guard 
space between packets, second, a small amount of timing 
feedback from the receiver, and third, stable clocks. Note 
that this assumption precludes both the possibility of send- 
ing short packets to make reservations for long packets and 
the possibility of carrier sensing, which we discuss later. 
Such systems can be understood easily after this basic 
model is understood. 

2) Collision or Perfect Reception: We assume that if more 
than one transmitter sends a packet in a slot, then there is 
a collision and the receiver gets no information about the 
contents or origins of the transmitted packets. If just one 
transmitter sends a packet in a slot, it is received with no 
errors. This is the assumption that removes the noise and 
communication aspects from the problem; it allows colli- 
sion resolution to be studied in the simplest context, but 
also severely limits the class of strategies and tradeoffs that 
can be considered. 

3) Infinite Set of Transmitters: Assume that each arriving 
packet arrives at a transmitter that has never previously 
received a packet. This precludes queueing at individual 
transmitters and precludes the use of TDM. This is an 
unreasonable assumption from a practical point of view, 
but note that, given any algorithm determining when the 
transmitters send packets, a finite set of transmitters can 
use the same algorithm, regarding each packet arrival as 
corresponding to a separate conceptual transmitter. In this 
case, a physical transmitter would sometimes send simulta- 
neous, colliding multiple packets. This shows, first, that 
assumption 3) provides a worst case bound on a finite set 
of transmitters and, second, that the difference is only 
significant when two or more packets are waiting at the 
same transmitter. Collision resolution algorithms are pri- 
marily useful for low input rates where multiple packets 
rarely queue up at one transmitter; in this region, the 
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performance with a finite set of transmitters should be well 
approximated by that with an infinite set. The maximum 
throughput of an algorithm under the infinite set assump- 
tion is a qualitative measure of the goodness of the 
algorithm, avoiding the less fundamental throughput im- 
provements achievable when queueing occurs at each trans- 
mitter. 

4) Poisson Arrivals: Assume that new packet arrivals are 
Poisson at an overall rate A. This is reasonable, given 
independent arrival processes at the individual nodes. 

5) 0, 1, c Immediate Feedback: Assume that by the end of 
each slot, each transmitter learns whether 0 packets, 1 
packet, or more than one packet (c for collision) were 
transmitted in that slot. This is the only information that 
each transmitter gets about the existence of packets 
elsewhere. The assumption of immediate feedback is often 
unrealistic, but collision resolution algorithms can usually 
be modified to deal with delayed feedback; the introduc- 
tion of delay in the feedback, however, complicates the 
analysis with little benefit in insight. The assumption of 
O,l, c feedback implies that the receiver (or the trans- 
mitters themselves) can distinguish between an idle slot 
and a collision, which is not always reasonable. It also 
implies that idle transmitters are always listening for this 
feedback, which is not always desirable. Some alternative 
forms of feedback will be discussed in what follows. 

A. Slotted ALOHA 

The simplest form of collision resolution strategy using 
the assumptions above is slotted ALOHA (Roberts [27]). 
Slotted ALOHA is a variation of pure ALOHA (Abramson 
[l]), which will be described subsequently. In slotted 
ALOHA, whenever a packet arrives at one of the trans- 
mitters, that packet is transmitted in the next slot. Whenever 
a collision occurs in a slot, each packet involved in the 
collision is said to be backlogged and remains backlogged 
until it is successfully transmitted. Each such backlogged 
packet is transmitted in each subsequent slot with some 
fixed probability p > 0, independent of past slots and of 
other packets. Note that, if p  were 1, backlogged packets 
would continue colliding and no more packets would ever 
be successfully transmitted. Also note that, because of the 
effectively infinite set of transmitters, the collision cannot 
be resolved by transmitters waiting for some number of 
slots determined by the identity of the transmitter. Such 
strategies can be used with a known set of transmitters and 
can be made to behave like time-division multiple access 
(TDMA) under heavy loading. 

It can be seen that slotted ALOHA can be analyzed as a 
homogeneous Markov chain, using the number of back- 
logged packets at each integer time t as the state. The state 
at time t includes packets that collided in the slot from 
t - 1  to t, but does not include new packet arrivals from 
t - 1  to t. Let k be the state at time t and k + i be the 
state at t + 1. Thus i is the number of new packet arrivals 
in [t - 1, t) less the number of successful transmissions (if 
any) in {t, t + 1). It follows that i = - 1  if no new packet 

arrives in {t - 1, t) and one backlogged packet is trans- 
mitted in {t, t + 1). Similarly, i = 0 if either no new 
packet arrives and no successful transmission occurs, or 
one new packet arrives and is successfully transmitted. 

Analyzing the cases i > 0 in the same way, we see that 
the state transition probabilities Pk, k+ i are given by 

I 

kp (1 - p) ‘-‘e-‘, i= -1 

[l - kp(l -p)k-l]e-x +(l -p)kXe-x 7 

P i=O 
k’k+i= 

r- 

[l -(I -p)k]&-X, i = 1 

xc-x 

i! ’ 
i 2  2. 

(4.1) 
In understanding how this Markov chain behaves, we look 
first at the drift D, defined as the expected value of i 
conditional on k (i.e., the expected difference between the 
state at t + 1 and that at t conditional on the state at t). 

D, = X -[(l - p)kXe-x + kp(1 -p)k-le-“]. (4.2) 

The first term A is the arrival rate and the second term is 
the departure rate or throughput. Note that, for any X > 0 
and any p > 0, D, will be positive for all sufficiently large 
k. This means that, if the system becomes sufficiently 
backlogged, it drifts in the direction of becoming more and 
more backlogged; this should not be surprising since colli- 
sions occur on almost all slots when the backlog gets 
sufficiently large. Kaplan [28] gives a simple but elegant 
proof that this type of chain is unstable (i.e. nonergodic). 

Despite the instzbility of slotted ALOHA, it can still be 
a useful collision resolution approach, especially if the 
system is modified to avoid or recover from the heavily 
backlogged state. Using a small value of p helps postpone 
the onset of the catastrophic behavior described, above, 
and, for small p, (4.2) can be well approximated by 

Dk = X - (A + pk)e-(x+J’k). (4.3) 

Fig. 10 illustrates this equation. For A > e-l, we see that 
D, > 0 for all k. For X < e-‘, there is a range of k for 
which D, < 0, and the size of this range increases as A 
decreases and as p decreases. Unfortunately, X is the 
arrival rate, which we would rather not decrease, and small 
p  means large delay between retrials of a  collided packet. 

x =X+pk 

Fig. 10. D, as function of A, p, k. 
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This tradeoff in, p is very undesirable; large p makes it 
very easy to enter the unstable heavily backlogged region, 
whereas small p causes large delay for collided packets in 
the stable region. The engineering solution is almost obvi- 
ous-change p as the backlog k changes. Ideally, we 
would like to adjust p to minimize D,, which occurs at 
pk + A(1 - p> = 1. For large k, this maintains a 
throughput of e-‘. For small k, on the other hand, p is 
large and thus delay is small. The problem with this 
solution is that k is unknown, and either k must be 
estimated from the feedback or an appropriate value of p 
must! be estimated. Hajek and VanLoon [29] have analyzed 
a class of algorithms in which p is updated at each slot 
simply as a function of the previous p and the feedback 
information. They showed that such functions can be cho- 
sen for any X < e-l so as to make the resulting system 
stable. 

From (4.3), we see that D, is positive whenever X > l/e. 
This is only an approximation of (4.2), but the approxima- 
tion is good when p is small, and p must be small when k 
is large to minimize D,. Thus, for A > l/e, D, is positive 
for all sufficiently large k no matter how p is chosen, so 
that slotted ALOHA is unstable in this case even if k is 
known. 

In the next subsection we show that much higher 
throughputs, and presumably smaller delays, are possible 
when newly arriving packets are sometimes held up and 
collisions are resolved in more sophisticated ways. Slotted 
ALOHA, however, has the advantage of not requiring all 
the feedback information we have assumed. For many 
physical multiaccess channels, particularly dispersive fad- 
ing channels, it is difficult to distinguish an idle slot from a 
collision with high reliability. It is usually straightforward, 
through use of a cyclic redundancy check, to distinguish a 
successful transmission from idle or collision, and it can be 
seen that this kind of feedback is sufficient for slotted 
ALOHA but not sufficient for the more sophisticated 
strategies. Unfortunately, it is much more difficult to 
estimate the backlog with this type of feedback. Cruz [47], 
however, has shown that slotted ALOHA can be stabilized 
for throughputs less than l/e whenever the feedback can 
be modeled as the idle, success, or collision information 
passed through a discrete memoryless channel of positive 
capacity, and the case above can be modeled in this way. 

Pure ALOHA [l] was the precursor of slotted ALOHA 
and avoids our assumption of a slotted system, although 
we continue to assume that each packet requires one time 
unit for transmission, that overlapping packets collide, and 
that assumptions 3) 4), and 5) hold. Each newly arrived 
packet is transmitted immediately upon arrival and back- 
logged packets are transmitted after an exponentially dis- 
tributed delay. The probability of collision is higher here 
than in a slotted system; a packet starting transmission at 
time t will collide with other packets starting anywhere in 
the interval (t - 1, t + 1). The upper bound on throughput 
becomes (2e))i and the same kinds of stability issues arise 
as for the slotted system. A major practical advantage of 
pure ALOHA, however, is its ability to handle packets of 
different lengths [30], [31]. 

B. Splitting Algorithms 

In our discussion of slotted ALOHA, we saw that the 
throughput is upper bounded by l/e regardless of the 
strategy used to adjust the retransmission probability of 
collided packets. This bound was imposed by the restric- 
tion that new arrivals were always transmitted in the next 
slot after their arrival and that backlogged packets 
depended upon a single parameter p for retransmission. To 
get an intuitive idea of why the transmission of new 
arrivals should sometimes be postponed, consider a slot in 
which two packets collide. If the new arrivals were held up 
until the collision were resolved, then a reasonable strategy 
would be for each colliding packet to retransmit in the 
following slot with probability l/2. With probability l/2, 
then, a successful transmission occurs and the other packet 
would be transmitted in the following slot. Alternatively, 
with probability l/2, another collision or an idle slot 
ensues, wasting one slot. Again, in this case, each packet 
would be transmitted in the following slot independently 
with probability l/2, and so forth until the two packets are 
successfully transmitted. The expected number of slots 
required to successfully transmit the two packets is easily 
seen to be 3, which yields an effective throughput of 2/3 
during the collision resolution period. 

This concept of probabilistically splitting the set of 
packets involved in a collision into a transmitting set and a 
nontransmitting set while making other packets wait is the 
central idea of a variety of collision resolution algorithms 
that achieve throughputs larger than l/e while using as- 
sumptions l)-5); we call these algorithms splitting al- 
gorithms. These algorithms differ in the rules used for 
splitting the collision set (which might involve more than 
two packets) and in the rules for allowing waiting packets 
not involved in a collision to transmit after the collision is 
resolved. 

The first splitting algorithms were the tree algorithms 
developed by Capetanakis [32], Hayes [33], and Tsybakov 
and Mikhailov [34]. In these algorithms, the system al- 
ternates between two modes, normal mode and collision 
resolution mode. When a collision occurs in normal mode, 
all transmitters go into collision resolution mode, all new 
arrivals wait until the next transition into normal mode, 
and all packets involved in the collision independently 
select one of two subsets with equal probability. We view 
each subset as corresponding to a branch from the root of 
a rooted binary tree (see Fig. 11). In the slot following the 
collision, the first of these subsets is transmitted. If another 
collision occurs, this subset is further split into two smaller 
subsets, corresponding to further branches growing from 

ORDER OF TRANSMISSION 
AFTER INITIAL COLLISION 

1) SUBSET I 
PI SUBSET II 

(SUBSET OF SUBSET I) 
3) SUBSET 12 

(OTHER SUBSET OF SUBSET I I 

41 SUBSET 121 
5) SUBSET (22 
6) SUBSET 2 

Fig. 11. Tree algorithm for collision resolution. 
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the original branch. The first of these subsets is transmitted 
in the next slot, and if this transmission is successful or 
idle, the second of the subsets is transmitted in the follow- 
ing slot. In general, whenever the transmission of a subset 
results in a collision, the subset is split and two new 
branches of the tree are grown from the old branch. 
Whenever the transmission of a subset is idle or successful 
(i.e., the subset is empty or contains one packet), the next 
slot is used to transmit the next subset. When all subsets 
have been exhausted, the normal mode is again entered. 

It should be apparent that if this algorithm spends many 
slots resolving a collision, then typically many new arrivals 
will eagerly be awaiting the return to normal mode and a 
resounding collision will ensue. What is even worse is that 
many successive collisions will follow until the expected 
number of packets in a subset becomes on the order of 1. 
Thus the algorithm can be improved by eliminating the 
normal mode; at the end of a collision resolution period, a 
new collision resolution period is immediately entered and 
each waiting packet randomly joins one of k subsets. The 
number k increases with the length of the preceding colli- 
sion resolution period so that the expected number of 
packets per subset is on the order of one. The correspond- 
ing tree has k branches rising from the root and two 
branches rising from each nonleaf node. 

Capetanakis [32] showed that this algorithm has a maxi- 
mum throughput of 0.43 and is stable for all input rates 
less than 0.43. The maximum throughput attainable with 
tree algorithms was later increased to 0.46 due to a simple 
improvement first suggested by Massey [35]. Note what the 
algorithm does when the set involved in a collision is split 
into two subsets of which the first is empty. The first slot 
following the collision is then idle and the next is a 
collision, involving all the packets in the first collision. 
Massey’s improvement was to avoid this predictable colli- 
sion by immediately resplitting the second subset of a  
collision set whenever the first subset is found to be empty. 

The next improvement in throughput was due to 
Gallager [36], and somewhat later, with a more complete 
analysis, to Tsybakov and Mikhailov [37]; this involved 
eliminating the tree structure entirely. We  shall describe 
this algorithm precisely later, since it is considerably easier 
to analyze than the tree algorithm. First, however, we view 
it as another modification of the tree algorithm. At the end 
of a collision resolution period, each of the k newly found 
subsets contains a Poisson distributed number of packets. 
If a  collision occurs for such a subset and then another 
collision occurs in the first of the two resulting subsets, 
then, conditional on these collisions, the number of packets 
in the second of the two subsets is Poisson distributed. 
Thus, as far as the algorithm is concerned, this subset is 
statistically identical to some time interval of new arrivals, 
and the algorithm would be improved if, rather than wast- 
ing a slot on this subset, we simply treated it like waiting 
new arrivals. We  will get to the bookkeeping issue of how 
to do this shortly, but note that if we eliminate the second 
subset as a separate entity every time the first subset is 
divided, then we never have more than two subsets to 
consider. 

The easiest way to do the bookkeeping concerning sub- 
sets and waiting packets is by means of the arrival times of 
the packets. If all the packets that arrived in a given time 
interval are transmitted in a slot and a collision results, 
then the interval is split into two equal subintervals and the 
packets in the first subinterval are regarded as the first 
subset and those in the second as the second subset. W ith 
this approach, packets are always sent in a first-come 
first-served (FCFS) order, so we call this an FCFS splitting 
algorithm. 

We  now express the algorithm precisely. Suppose that at 
integer time t the algorithm has successfully transmitted all 
packets that arrived before some time T(t) (not necessarily 
integer). In the slot [t, t + l), all the packets that arrived 
between T(t) and T(t) + p(t) are transmitted. The time 
T(t) and the interval size p(t) are determined by each 
transmitter based on the history of the feedback up to time 
t. It is helpful to view the packet arrivals in [T(t), t) as 
being in a distributed queue (see Fig. 12). We  would like to 
allocate the queued packets one at a time, starting at the 
front of the queue, but the individual arrival time of each 
packet is unknown except to the transmitter of that packet. 
Thus the algorithm attempts to allocate an interval p(t) at 
the front of the queue so as to transmit the waiting packets 
as quickly as possible. Note that maximizing the probabil- 
ity of success in the next slot is not the best thing to do 
since, as we have seen, a collision in the next slot allows a 
higher throughput in the succeeding few slots than is 
possible with an idle slot or successful slot. 

BY TIME t 

A, 
- a  t t+1 

-p(t1-J 
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+fp(t+2y- t+2 
I 
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T(t+2) 
TIME 

SLOT[t+2, t+3) 

Fig. 12. Record of collision resolution period for FCFS splitting 
algorithm. 

The algorithm given below determines p(t), T(t), and 
Q(T) E {1,2} for the slot [t, t + 1) in terms of p(t - l), 
T( t - l), Q(t - l), and the feedback (0, 1, c) for the slot 
[t - 1, t). The state Q(t) represents the number of subsets 
currently under consideration. Q(t) is set to 2 if one of the 
intervals for slot [t - 1, t) has been divided into 2 for slot 
[t, t + 1) and is set to 1 otherwise. The algorithm also has a 
parameter p0 that determines the size of allocation interval 
to be used after a collision resolution period is completed. 
It turns out that, to achieve maximum stable throughput, 
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p0 = 2.6. Note that the allocation interval is also limited 
by t - T(t), the interval of arrival times that 
waiting for transmission. 

FCFS Splitting Algorithm: 

if feedback = c then 

T(t) = T(t - 1) 

Q(t) = 2 

P(f) = PL(f - w 
if feedback = 0 or 1 and Q(t - 1) = 1 then 

T(t) = T(t - 1) + p(t - 1) 

Q(t) = 1 

cl(t) = Inin [h t - T(t)] 

if feedback = 1 and Q(t - 1) = 2 then 

T(t) = T(t - 1) + p(t - 1) 

Q(t) = 1 

P(t) = dt - 1) 
if feedback = 0 and Q(t - 1) = 2 then 

T(t) = T(t - 1) +p(t - 1) 

Q(t) = 2 

CL(t) = At - w. 

are still 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
In case of a collision in slot [t - 1, t), (4.4) splits the 

allocation interval [T(t - l), T( t - 1) + p(t - 1)) into two 
equal subintervals. Q(t) = 2 allows the algorithm to “re- 
member” the existence of these two subintervals. If there 
was a previous subinterval [T( t - 1) + p( t - l), 7’( t - 1) 
+ 2p(t - l)), the algorithm “forgets” about it at this 
point, regarding that subinterval as part of the waiting 
queue. As pointed out before, the number of packets in 
that subinterval, conditional on the feedback history, is 
Poisson with parameter Xp(t - 1). 

Step (4.5) corresponds to the end of a collision resolution 
period or a subsequent period with no collisions and 
simply moves the head of the queue and allocates a new 
interval. Step (4.6) corresponds to a successful transmission 
of the first subinterval from a previous collision and move- 
ment to the second subinterval. Finally, (4.7) corresponds 
to Massey’s improvement on the tree algorithm when a 
collision followed by an idle (or perhaps several idles) is 
followed by splitting the second subinterval. 

The FCFS splitting algorithm can be analyzed as a 
homogeneous Markov chain, using Q(t), p(t) and t - T(t) 
as the state for integer values of t. It is simpler, however, to 
segment the sequence of slots into collision resolution 
periods, where a new collision resolution period is defined 
to start each time that (4.5) is executed; note that a 
collision resolution period could be a single idle or success- 
ful slot, as well as a collision with its subsequent resolution. 
The Markov chain for a single collision resolution period 
depends on p(t) = min[pO, t - T(t)] for t at the be- 
ginning of the period, but is otherwise independent of 
t - T(t). Consider the case where the initial p(t) = pO, 

Fig. 13. Markov chain for collision resolution period. 

since this is the critical case corresponding to large back- 
logs. At each update in the period, p either stays the same 
or is halved, so p = 2-j~~ for some i 2 0. The state of the 
chain at time t is described by Q(t) and p(t), so we denote 
the state at time t by Sj, i where j = Q(t) and i is such that 
p(t) = 2-$,. Fig. 13 shows the possible state transitions 
as defined by (4.4)-(4.7). From S, i, i > 0, an idle or 
collision leads to S,:,+i whereas a success leads to S, i. 
From &, i 2 0, an idle or success leads to S,,, whereas’a 
collision leads to S,, i+ i. 

All that remains to complete the chain is to calculate the 
transition probabilities. In state S,, i, we have two subinter- 
vals each of size pi = ~~2~‘. The number of packets in 
each subinterval is a Poisson random variable, with param- 
eter Api, conditional on the sum of the number of packets 
in the two subintervals being two or more. The transition 
to S,,i occurs if the first subinterval contains exactly one 
packet (i.e., the transmission of the first subinterval is 
successful). The probability of this is then 

p = Xpie-xpl[l - e-xpi] 
2.l 1 - e-2X”l(1 + 2Xpi) ’ 

i 2 1. (4.8) 

In state Sl,i, i 2 1, we are about to transmit the second 
of two subintervals each of size pi. The number of packets 
in each subinterval is Poisson, with parameter Xhi, condi- 
tional both on the sum being two or more and the first 
interval containing exactly one packet. This means that the 
number of packets in the second subinterval is Poisson 
conditional on being one or more. The probability of a 
transition to S,,, is then the probability of exactly one 
packet, so 

p, i = X~ie-hC’ 
1 - e-h, ’ 

i 2 1. (4.9) 

Finally the probability of a direct transition from S,,, to 
Sl,O is 

P l,. = (1 + Apo)e-+o. (4.10) 

The number of slots in a collision resolution period is 
simply the number of states entered before the first return 
to s1.y The queue length, t - T(t), has an increment, over 
a collision resolution period, equal to the number of slots 
in the period less the change in T(t); the change in T(t) is 
at most p,, but is reduced by pi if a collision occurs in S2,i. 
Letting V be the increment in queue length over a collision 
resolution period, E(V) can be evaluated numerically as a 
function of X and pcLo and, for each pO, there is a maximum 
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X for which E(V) I 0. This maximum X is maximized 
over p0 at p0 = 2.6, and the resulting maximum X is 
0.4871. 

Since we see now that the drift in the queue length is 
negative for X < 0.4871, it is plausible that the algorithm is 
stable in this region. To make this more precise, we define 
a busy period of the algorithm as a consecutive string of 
collision resolution periods starting with a queue length 
t - T(t) < p0 and running up to the beginning of the next 
collision resolution period with t - T(t) < pO. The se- 
quence of queue lengths at the beginning of each collision 
resolution period forms a random walk with an absorbing 
barrier at the end of the busy period. The queue length 
increments are independent and are identically distributed, 
except for the first increment where the initial p(t) is less 
than pO. Observe from (4.9) and (4.10) that P2,i + l/2 
and P, i + 1 as i + cc. This means that the random 
variable V (the queue length increment over a collision 
resolution period) has an exponentially decaying distribu- 
tion function and thus has a moment generating function. 
From Wald’s identity, it then follows that the number N of 
collision resolution periods in a busy period has an ex- 
ponentially decaying distribution function for X < 0.4871. 
It is also easy to see that the number of slots in a busy 
period is at most NpO, and therefore the number of slots in 
a busy period also has an exponentially decaying distribu- 
tion function. Finally, all arrivals in a busy period (except 
perhaps those in the last interval of length pO) are success- 
fully sent in that busy period. Therefore the packet delay 
has an exponentially decaying distribution function for 
X < 0.4871 and the algorithm is stable. 

Tsybakov and Likhanov [38] have found an upper bound 
on delay, and more recently Huang and Berger [39] have 
constructed tight upper and lower bounds and have given 
simulation results as well. The expected delay is about 5.5 
slots at A = l/e and about 16 slots at X = 0.46. 

The FCFS splitting algorithm can be improved some- 
what if the intervals are split in an optimal way after 
collisions. Because of the possibility of more than two 
packets in a collision, equal subintervals are not quite 
optimal. Mosely and Humblet [40] and Tsybakov and 
Mikhailov [37] showed that choosing the optimum subin- 
tervals increases the maximum throughput to 0.4878. Re- 
cently, another throughput improvement of 3.6 X lop7 has 
been made by Vvedenskaya and Pinsker [41]. Although this 
gain is small, it is of theoretical interest since it is achieved 
by departing from the principle of always resolving one 
collision before trying any new intervals. 

Considerable effort has been spent on finding upper 
bounds to the maximum throughput that can be achieved 
using the assumptions l)-5) [42]-1461. The tightest bound 
known is 0.587 and is due to Mikhailov and Tsybakov [46]. 
Pippenger’s result [42] is also of particular interest since he 
shows that if the amount of feedback is increased to give 
the number of packets involved in each collision, then any 
throughput up to one may be achieved. 

One negative aspect of FCFS splitting algorithms (and 
also Massey’s improvement on the tree algorithms) is their 

susceptibility to noisy feedback. If an idle slot is mis- 
takenly fed back to the transmitters as a collision, then the 
algorithm as stated will forever continue to split a  stnaller 
and smaller second subinterval. This problem could be 
solved, of course, by only splitting a given number of times 
in a row on receipt of 0  feedback and then trying the entire 
interval. The general subject of noisy feedback is still not 
well understood, but a number of partial results are known 
[35], [47], [48]. The review paper by Tsybakov [48] also 
reviews many variations on collision resolution algorithms 
for a variety of other assumptions. 

The splitting algorithms discussed so far require all 
transmitters to sense the channel feedback at all times, so it 
is interesting to investigate algorithms in which sensing is 
only required after a: transmitter has a packet to send. 
Mathys and Flajolet [49] have developed an algorithm with 
a maximum stable throughput of 0.4 that has this limited 
sensing capability and is attractive both for its simplicity 
and robustness against feedback errors. Very recently, 
Humblet [55] has shown that the FCFS splitting algorithm 
can be modified into a last-come first-serve algorithm 
which also has this limited sensing capability but maintains 
the same maximum throughput of 0.487. 

For multiaccess systems with a finite number of users, it 
is also of interest to modify these splitting algorithms so as 
to take advantage of the finite number of transmitters and 
to make a graceful transition from collision resolution to 
TDMA as the arrival rate increases. Specific approaches to 
this are discussed in [50], (511. The approach in [51] is also 
of interest because of drawing a parallel between splitting 
algorithms and group testing, as developed in the statistics 
community in the 1940’s and 1950’s. 

C. Carrier Sensing 

We  now want to change the basic assumptions l)-5). 
Note that in many multiaccess systems such as local net- 
works, each transmitter can hear whether or not the other 
transmitters are sending. In such a situation, it makes sense 
to give up the strict slotting specified in assumption l), and 
assume instead that a transmitter can start to send a packet 
in the middle of a data slot if no other transmitters are 
currently sending. Not only does this allow idle slots to be 
shortened, but it can also reduce the number of collisions. 
Carrier sense multiple access (CSMA) techniques were first 
developed by Kleinrock and Tobagi [52]. The terminology 
“carrier sense” does not necessarily imply the use of a 
carrier, but simply the ability to quickly detect use of the 
channel. 

Let LY be the time required for all sources to determine 
that nothing is being transmitted; i.e., (Y is the sum of the 
maximum propagation delay between sources and the time 
required by a receiver to reliably distinguish between signal 
and no signal. Assume that if nothing is being transmitted 
in a slot, then that slot terminates after (Y time units and a 
new slot begins. We  still assume that all packets require 
one time unit for transmission, that feedback is instanta- 
neous at the end of a slot, that arrivals are Poisson with 
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intensity h, and that there are effectively an infinite num- 
ber of sources. We first modify slotted ALOHA for this 
new situation and then modify the FCFS splitting al- 
gorithm. 

The major difference between slotted ALOHA CSMA 
and ordinary slotted ALOHA is that idle slots now have a 
duration (Y. The other difference is that, if a packet arrives 
at a source while a transmission is in progress, the packet is 
regarded as a backlogged packet and begins transmission 
with probability p after each subsequent idle slot; packets 
arriving during an idle slot are transmitted in the next slot 
as usual. This technique was called nonpersistent CSMA in 
[52] to distinguish it from two variations. In one variation, 
persistent CSMA, all transmission attempts during a busy 
slot would simply be postponed to the end of that slot, thus 
causing a collision with high probability. In the other, 
P-persistent CSMA, collided packets and packets waiting 
for the end of a busy period use different probabilities for 
transmission. We ignore these variations in what follows, 
since they appear to be uniformly inferior to nonpersistent 
CSMA. 

To analyze CSMA, we can use a Markov chain again, 
using the number of backlogged packets as the state and 
the ends of idle slots as the state transition times. Rather 
than write out the state transition equations, which are not 
particularly insightful, we simply modify the drift in (4.2) 
for this new model. The expected number of arrivals in the 
idle slot before a given transition is Xa and, with prob- 
ability 1 - eph”(l - P)~, this is followed by a full slot with 
X expected arrivals. Note that there is always an unused 
idle slot at the end of each full slot, but we count the 
corresponding arrivals as part of the following transition. 
The model could be changed to eliminate this wasted idle 
slot, but the difference is negligible for small (Y. The 
expected number of departures per state transition is sim- 
ply the probability of a success. Thus, for k > 0,O I p I 1, 

D, = Xa + X[l - e-““(1 -p)“] 

- [ Xa + pk/(l - p)] e-&*(1 - p)“. (4.11) 

For X(1 + a) < 1, this is minimized over p at 

1 - A(1 + a) 
’ = k - X(1 + a) ’ 

(4.12) 

For k = 0, D, is given by X(1 + cy)(l - echo), which is 
independent of p. 

The stability issues with slotted ALOHA CSMA are 
almost the same as with ordinary slotted ALOHA. One can 
control p by monitoring the feedback, or one can simply 
operate at a small value of X and p and hope that the 
backlog rarely becomes too large. If we use the optimal 
value of p for each k and substitute this in (4.11), we find 
that D, is negative for all k > 0 so long as 

X(1 + a) I e-l+h. (4.13) 

By expanding (4.13) in a power series in 1 - X, we find 
that, for small (Y, the system is stable for all A less than 
1 - &. The optimal value of p then satisfies pk = a. 

It is interesting to observe that this optimal point occurs 
where the time spent on idle slots is approximately equal to 
that spent on collisions; naturally, there are many more 
idle slots than collisions, but idle slots have a much shorter 
duration. Delays also tend to be much smaller in a CSMA 
system since backlogged packets get a transmission oppor- 
tunity after every idle slot and, although the probability of 
transmitting in an idle slot decreases with 6, the probabil- 
ity of transmitting per unit time increases as l/ &. 

Next consider CSMA with pure ALOHA. We will not 
analyze this in detail, but simply note that with the same 
carrier sensing time (Y and the same transmission probabil- 
ity p, the probability of collision increases by a factor of 2. 
For maximum throughput, p should be decreased by a 
.factor of fi leading to a maximum throughput of 1 - 26 
for small (Y. We see that the difference between pure and 
slotted ALOHA for CSMA is quite small for small a; 
moreover, the synchronization required for slotting with 
CSMA is somewhat trickier than that for ordinary ALOHA. 
Thus, pure ALOHA appears to be the natural choice with 
CSMA. 

Finally consider the FCFS splitting algorithm modified 
for CSMA. The same algorithm as in (4.4)-(4.7) can be 
used, although the parameter p0 should be changed and, as 
we shall see shortly, intervals with collisions should not be 
split into equal subintervals. Since collisions waste much 
more time than idle slots, the basic allocation interval p0 
should be chosen small. This means in turn that collisions 
with more than two packets can be neglected, and thus the 
analysis is simpler than before. 

We first find the expected time and the expected number 
of successes in a collision resolution period, including a 
single idle or successful slot as a degenerate case of a 
collision resolution period. Let 9 = XpO. With probability 
e-+, an original allocation interval is empty, yielding a 
collision resolution time of (Y with no successes. With 
probability +e-+, there is an initial success, yielding a 
collision resolution time 1 + (Y (as before, we include an 
empty minislot at the end of each full slot). Finally, with 
probability (+*/2)e-“, there is a collision, yielding a colli- 
sion resolution time of 1 + (Y + T, for some T to be 
calculated later, and two successes. Thus, ignoring the 
probability of more than two packets in a collision, 

E (time/period) 

= ae-+ +(l + cY)+e-+ + (1 + (Y + T)(+*/2)e-G 

(4.14) 

E (packets/period) = +e-@ + 2( ~~/2) e-+. (4.15) 

As before, the maximum achievable throughput for given 
+ is the ratio of (4.15) to (4.14), 

h max = ($ + +*)/[a + +(l + a) + (+*/2)(1 + (Y + T)] . 

(4.16) 

We can now maximize the right hand side of (4.16) over 
$ (i.e., over pO). In the limit of small (Y, we get the 
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asymptotic expressions 

C#B = \/2a/(T- 1) (4.17) 

x max -l-Jcu(T-l). (4.18) 

Finally we must calculate T, the time to resolve a colli- 
sion after it has occurred. Let x be the fraction of an 
interval used in the first subset when an interval is split. 
The first slot after the idle slot terminating the collision is 
idle, successful, or collision with probabilities (1 - x)*, 
2x(1 - x), or x2, respectively. The expected time required 
for the idle case is (Y + T, that for the successful case is 
2(1 + a), and that for the collision case’is 1 + (Y + T. Thus 

T  = (1 - ~)‘(a + T) + 4x(1 - x)(1 + CX) 

+ x2(1 + (Y + T). (4.19) 

T  is minimized by x = \/(Y + (Y* - (Y, and the resulting 
value of T, for small (Y, is T  = 2 + 6. Substituting this in 
(4.18) we see that 

A ,,-1-G. (4.20) 

For small (Y, then, the FCFS splitting algorithm has the 
same maximum throughput as slotted ALOHA. This is not 
surprising since, without CSMA, the major advantage of 
the FCFS algorithm is its efficiency in resolving collisions 
and, with CSMA, collisions rarely occur. It is somewhat 
surprising at first that if we use the FCFS algorithm with 
equal subintervals (i.e., x = l/2), then we are limited to a 
throughput of 1  - fi. This degradation is due to a 
substantial increase in the number of collisions. 
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