
Concurrent online tracking of mobile users

Baruch Awerbuch * David Peleg t

Abstract

This paper deals with the problem of maintaining

distributed directory server, that enables us to keep

track of mobile users in a distributed network in the

presence of concurrent requests. The paper uses the

graph-theoretic concept of regional matching for imple-

menting efficient tracking mechanisms. The communi-

cation overhead of our tracking mechanism is within a

polylogarithmic factor of the lower bound.

1 Introduction

Since the primary function of a communication net-

work is to provide communication facilities between

users and processes in the system, one of the key prob-

lems such a network faces is the need to be able to

*Department of Mathematics and Lab. for Computer

Science, M. I.T., Cambridge, MA 02139, USA. Email:

baruch@theory.lcs .mit.edu. Supported by Air Force Con-

tract TNDGAFOSR-86-O078, ARO contract DAAL03-86-K-

0171, NSF contract CCR6611442, DARPA contract NOOO14-88-

.T-1988, and a special grant from IBM.
t DePmtment of Applied Mathematics and Computer Science,

The Weizmann Institute, Rehovot 76100, Israel. Email: pe-

leg@wisdom.bitnet. Supported in part by an Allon Fellowship,

by a Bantrell Fellowship and by a Walter and Elise Haas Career

Development Award.

Permission to oopy without fee all or part of this material is

granted provided that the copies ara not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinary. To copy otherwise, or to republish, requires a fee

and/or specific permission.

01991 ACM 0-89791-444-9/91 /0008/0221 . ..$1.50

locate the whereabout of various entities in it. This

problem becomes noticeable especially in large net-

works, and is handled by tools such w name servers

and distributed directories (cf. [LEH85, P89b]).

The location problem manifests itself to its fullest

extent when users are allowed to relocate themselves

from one network site to another frequently and at

will, or when processes and servers may occasionally

migrate between processors. In this case, it is neces-

sary to have a dynamic mechanism enabling one to

keep track of such users and contact them at their cur-

rent residence. The purpose of this work is to design

efficient tracking mechanisms, based on distributed di-

rectory structures, minimizing the communication re-

dundancy involved.

Networks with mobile users are by no means far-

fetched. A prime example is that of cellular telephone

networks. In fact, one may expect that in the future,

all telephone systems will be based on “mobile tele-

phone numbers, “ i.e., ones that are not bound to any

specific physical location. Another possible application

is a system one may call “distributed yellow pages,”

or “distributed match-making” [MV88]. Such a sys-

tem is necessary in an environment consisting of mo-

bile “servers” and “clients.” The system 1}ss to provide

means for enabling clients in need of some service to

locate the whereabouts of the server they are looking

for. (Our results are easier to present assuming the

servers are distinct. However, they are applicable also

to the case when a user is actually looking for one of the

closest among a set of identical servers.) The method

may also find engineering applications in concurrent

programming languages, and related areas.

221

In essence, the tracking mechanism has to support

two operations: a “move)’ operation, causing a user

to move to a new destination, and a “find” operation,

enabling one to contact a specified user at its current

address. However, the tasks of minimizing the commu-

nication overhead of the “move” and “find” operations

appear to be contradictory to each other. This can

be realized by examining the following two extreme

strategies (considered also in [MV88]).

The full-information strategy requires every vertex

in the network to maintain a complete directory con-

taining up-to-date information on the whereabouts of

every user. This makes the “find” operations cheap.

On the other hand, “move” operations are very expen-

sive, since it is necessary to update the directories of all

vertices. Thus this strategy is appropriate only for a

near static setting, where users move relatively rarely,

but frequently converse with each other.

In contrast, the no-information strategy opts not to

perform any updates following a “move,” thus abolish-

ing altogether the concept of directories and making

the “move” operations cheap. However, establishing a

connection via a “find” operation becomes very expen-

sive, as it requires a global search over the entire net-

work. Alternatively, trying to to eliminate this search,

it is possible to require that whenever a user moves, it

leaves a “forwarding” pointer at the old address, point-

ing to the new address. Unfortunately, this heuristic

still does not guarantee any good worst-csse bound for

the ‘%nd” operations.

Our purpose is to design some intermediate “partial-

information” strategy, that will perform well for any

communication/travel pattern, making the costs of

both “move” and “find” operations relatively cheap.

This problem waa tackled also by [MV88]. However,

their approach was to consider only the global worst-

case performance. Consequent y, the schemes designed

there treat all requests alike, and ignore considerations

such as locality.

Our goal is to design more refined strategies that

take into account the inherent costs of the particular

requests at hand. It is clear that in many cases these

costs may be lower than implied by the global worst-

ca.se analysis. In particular, we would like moves to a

near-by location, or searches for near-by users, to cost

less. (Indeed, consider the case of a person who moves

to a different room in the same hotel. Clearly, it is

wasteful to update the telephone directories from coast

to coast; notifying the hotel operator should normally

suffice.) Thus we are interested in the worst case over-

head incurred by a particular strategy. This overhead

is evaluated by comparing the total cost invested in a

sequence of “move” and “find” operations against the

inherent cost (namely, the cost incurred by the opera-

tions themselves, assuming full information is available

for free.) This comparison is done over all sequences of

“move” and “find” operations. The strategy proposed

in this paper guarantees overheads that are polyloga-

rithmic in the size and diameter of the network. Our

distributed directory does not assume synchrony and

allows full concurrency.

Our strategy is based on a hierarchy of regional di-

rectories, where each regional directory is based on a

decomposition of the network into regions. Intuitively,

the purpose of the i’th level regional directory is to

enable any searcher to track any user residing within

distance 2i from it. This structure is augmented with

an elaborate mechanism of forwarding pointers

The organization of a regional directory is based on

the graph-theoretic structure of a regional matching

[AP90a]. An m-regional matching is a collection of

sets of vertices, consisting of a read set Read(v) and a

writ e set Write(v) for each vertex v, with the property

that Read(v) intersects with Write(w) for any pair of

vertices w, w within dist ante m of each other. These

structures are used to enable localized updates and

searches at the regional directories.

In a more general context, regional matchings pro-

vide a tool for constructing cheap locality preserving

representations for arbitrary networks. For inst ante,

this structure has recently been used in another appli-

cation, namely, the construction of a network synchro-

nizer with polylogarithmic time and communication

overheads [AP90b].

The construction of regional matchings is based on

the concept of sparse graph covers [P89a, AP90a].

222

Such covers seem to play a fundamental role in the

design of several types of locality preserving network

represent ations. Indeed, cover-based network rep-

resentations have already found several applications

in the area of distributed network algorithms [P89b,

PU89a, PU89b, AGLP89, AP90c, AP90b, AKP90].

Sparse covers and partitions can be constructed via

clustering and decomposition techniques developed in

[A85, PS89, P89a, AP90a, AP90d, LS91].

The rest of the paper is organized as follows. The

next section contains a precise definition of the model

and the problem. In Section 3 we give an overview of

the proposed solution. The regional directory servers

(and the regional matching structure upon which they

are based) are described in Section 4. The main, hi-

erarchical directory server is described in Section 5.

The mechanism is described under the assumption that

“move” and “find” requests arrive sequentially, and

Section 6 describes how to extend the solution to allow

concurrent accesses.

2 Preliminaries

2.1 The model

We consider the standard model of a point-to-point

communication network. The network is described by

a connected undirected graph G = (V, E), IV [= n,

The vertices of the graph represent the processors of

the network and the edges represent bidirectional com-

munication channels between the vertices. A vertex

may communicate directly only with its neighbors, and

messages to non-neighboring vertices are sent along

some path connecting them in the graph. It is as-

sumed that efficient routing facilities are provided by

the system.

We assume the existence of a weight function

w : E -+ ‘R, assigning an arbitrary non-negative weight

w(e) to each edge e G E. The weight w(e) represents

the length of the edge, or the cost of transmitting a

message on it.

Our code uses several commands suitable for a dis-

tributed environment. The first is “transfer-control-

to v“ which means that the center of activity (c. o. a.)

is moved to vertex v. When we mention a variable of

the protocol, we refer to the variable at the current

location of the c.o.a. When we write “Local_var t

remote-read Remet e-var from vertex v)’, while the

c.o.a. is located at u, we mean the following: go from

u to v, read variable Remet e_var, return to u and

write the retrieved value into variable Local_var at

u. At the end of this operation, the c.o.a. remains

at u. Similarly, “Remet e_var at vertex v + remote-

write Local-var” means that the value Local.var

at u is retrieved, and the c.o.a. carries it from u to v

and writes it into Remote_var variable at v. The c.o.a.

then returns to u.

Let us now define some graph notation. For two

vertices u, w in G, let dist (u, w) denote the length of

a shortest path in G between those vertices, where

the length of a path (el, e.) is ~l<i<$ w(ei). Let

D(G) denote the (weighted) diameter ~~the network

G, namely, the maximal distance between any two ver-

tices in G. Throughout we denote 6 = [log D(G)l.

2.2 Statement of the problem

Next, let us define the problem more formally. Denote

by Addr(~) the current address of the user <. A di-

rectory server ‘D is a distributed data structure (the

directory), combined with access protocols that enable

one to keep track of the users’ movements and to find

them whenever needed. Namely, the access protocols

enable their users to perform the following two opera-

tions.

Find(~, v) : invoked at the vertex v, this operation

delivers a search message from v to the current

location s = Addr(<) of the user ~.

Move(f, s, t) : invoked at the current location s =

Addr(<) of the user ~, this operation moves ~ to a

new location tand performs the necessary updates

in the directory.

For simplicity, we assume at first that individual ac-

tivations of the operations Find and 140ve do not in-

terleave in time, i.e., are performed in an “atomic”

223

fashion. This enables us to avoid issues of concurrency

control, namely, questions regarding the simultaneous

execution of multiple Find / Hove operations. The nec-

essary modifications for handling the concurrent case

are outlined in Section 6.

Communication complexity is measured as follows.

The basic message length is O(log n) bits. (Longer

messages are charged proportionally to their length.)

The communication cost of transmitting a basic mes-

sage over an edge e is the weight w(e) of that edge. The

communication cost of a protocol r, denoted Cost(~),

is the sum of the communication costs of all message

transmissions performed during the execution of the

protocol.

The assumption of efficient routing facilities in the

system is interpreted in this context as follows. Sup-

pose that processor v haa to send a message to proces-

sor u. Then the message will be sent along a route as

short as possible in the network, and the cost of the

routing is O(dist(u, v)).

We are interested in measuring the communication

complexity of the Find and Hove operations in our di-

rectories. More specifically, we study the overheads

incurred by our algorithms, compared to the minimal

“inherent” costs associated with each Find and Hove

operation. Consequently, let us first identify these op-

timal costs.

Consider a Find instruction F

that Cost(F) denotes the actual

of F. Define the optimal cost of

dist(v, Ad(tr(f)).

= Find(f, v). Recall

communication cost

F as Opt.cost(F) =

Consider a Hove instruction A4 = Move(<,s, t). Its

actual cost is denoted Cost (ikf). Let Reloc(~, s, t) de-

note the relocation cost of the user < from s to t.

We define the optimal cost of the operation M as

Opt-cost(M) = Reloc(&, s, t), which is the inherent

cost assuming no extra operations, such as directory

updates, are taken. This cost depends on the distance

between the old and new location, and we assume it

satisfies l?eloc(~, s,t) ~ dist (s, t). (In fact, the reloca-

tion of a server is typically much more expensive than

just sending a single message between the two loca-

tions.)

We would like to define the “amortized overhead” of

our operations, compared to their optimal cost. For

that purpose we consider mixed sequences of Move

and Find operations. Given such a sequence z =

Ul, ..., me, let F(6) denote the subsequence obtained

by picking only the Find operations from I?, and sim-

ilarly let M(5) denote the subsequence obtained by

picking only the Move operations from i? (i.e., i? con-

sists of some shuffle of these two subsequences).

Define the cost and optimal cost of the subsequence

F(i$)=(Fl,..., F~) in the natural way, setting

COst(qti)) = &Cosi(F,).

i=l

Opt-cost(F(d)) = ~ Opt.cost(Fi)

i=l

The jind-stretch of the directory server with respect

to a given sequence of operations F is defined as

Stretchjind(~) =
Cost(Y(ti))

opt-cost (F(ti)) “

The find-stretch of the directory server, denoted

%’eiChjjnd, is the least upper bound on stretchj~~d(~),

takenover all finite sequences 5.

For the subsequence A4(i?), define the cost

Cost(M (6)), the optimal cost Opt.cost (M(5)),

and the move-stretch factors Stretch ~~~,(~) and

Stretch~oue analogously.

We comment that our definitions ignore the initial

set-up costs involved in organizing the directory when

the user first enters the system.

Finally, define the memory requirement of a direc-

tory as the total amount of memory bits it uses in the

processors of the network.

We can now formally state our main result. We con-

struct a hierarchical directory server, D, guaranteeing

stretch~ind = @og2 n) and Stretc&o”. = 0(6.log n+

62/ logn) and requiring a total of O(N. fi.log n+ N.62+

n .6. log2 n) bits of memory (including both data and

bookkeeping information) throughout the network, for

handling A’ users, where 6 = [log D(G)l.

224

3 Overview of the solution

Our scheme is based on a distributed data structure

storing pointers to the locations of each user in various

vertices. These pointers are updated as users move in

the network. In order to localize the update operations

on the pointers, we allow some of these pointers to be

inaccurate. Intuitively, pointers at locations nearby to

the user, whose update by the user is relatively cheap,

are required to be more accurate, whereas pointers at

distant locations are updated less often.

Our hierarchical directory server V is composed of a

hierarchy of 6 = [log D(G)l regional directories X!’D;,

1 ~ i <$, with regional directories on higher levels of

the hierarchy based on coarser decompositions of the

network (i.e., decompositions into larger regions). The

purpose of the regional directory 73Di at level i of the

hierarchy is to enable a potential searcher to track any

user residing wit hin dist ante 2i from it.

The regional directory 7?Di is implemented as fol-

lows. As in the match-making strategy of [MV88], the

mechanism is based on intersecting “read’) and “write”

sets. A vertex v reports about every user it hosts

to all vertices in some specified write set, Writei(v).

While looking for a particular user, the searching ver-

tex w queries all the vertices in some specified read set,

Read~ (w). These sets have the property that the read

set of a vertex w is guaranteed to intersect the write

set of the vertex v whenever v and w are within dis-

tance 2i of each other. The underlying graph-theoretic

structure at the basis of this construction is called a

2i-regional matching. (In contrast, the match-making

functions of [MV88] do not have any distance limita-

tion, and they insist on having exactly one element in

each intersection.)

Let us now turn to outline the Hove and Find oper-

ations of the main, hierarchical directory server. Ide-

ally, whenever the user < moves, it should update its

address listing in the regional directory %!Di on all lev-

els 1 < i < 6, Unfortunately, such an update is too

costly. To prevent waete in performing a Hove oper-

ation we use a mechanism of “forwarding addresses”.

Our update policy can be schematically described as

follows. Whenever a user ~ moves to a new location

at distance d away, only the log d lowest levels of the

hierarchy of regional directories are updated to point

directly at the new address. Regional directories of

higher levels continue pointing at the old location. In

order to help searchers that use these directories (and

thus get to the old location), a forwarding pointer is

left at the old location, directing the search to the new

one.

The search procedure thus becomes more involved.

Nearby searchers would be able to locate f’s correct

address Addr(~) directly, by inspecting the appropri-

ate, low-level regional directory. However, searchers

from distant locations that invoke a Find operation

will fail in locating f using the lower-level regional di-

rectories (since on that level they belong to a different

region). Consequently, they have to use higher levels

of the hierarchy. The directories on these levels will

indeed have some information on <, but this informa-

tion may be out of date, and lead to some old location

Add~(f). Upon reaching Addr’(&), the searcher will be

redirected to the new location Addr(~) through a chain

of forwarding pointers. The crucial point is that up-

dates at the low levels are local, and thus require low

communication complexity.

We shall now proceed with a more detailed treat-

ment of the solution. The example at the end of Sec-

tion 5 may be of further assistance in clarifying the

overall structure of the directory server.

4 Regional directories

4.1 Regional matchings

Our construction revolves on the concept of a regional

mat thing. The basic components of this structure are

a read set Read(v) ~ V and a write set Write(v) ~ V,

defined for every vertex v. Consider the collection 7?W

of all pairs of sets, namely

%?W = { Read(v), Write(v) I v c V }.

The collection 7?W is an m-regional matching (for

some integer m ~ 1) if Write(v) (l Read(u) # 0 for

all v, u ~ V s.t. dist(rl, V) < m.

225

For any m-regional matching 7?W, define the follow-

ing four parameters:

DegreOd(7?W) = m~ev lRead(~)l,

Radrea~(RW) = & mw,v~v {disi!(u, v) [u E Read(v)},

and DegWrite(7?W), RadW,i,e(7ZW) are defined analo-

gously based on the sets Write(v).

We rely on the following result.

Theorem 4.1 For all m, k > 1, it is possible to con-

struct an m-regional matching RWm,k with

In what follows we use regional matchings in order

to design our regional directories. It turns out that

the complexities of the Move and Find operations in

these directories depend on the above parameters of

the matchings.

4.2 Constructing regional directories

Our directory mechanism is based on hierarchically or-

ganizing the tracking information in regional directo-

ries. A regional directory is based on defining a “re-

gional address” RAddr(~) for every user ~. In the hier-

archical context, this address represents the most up-

dated local knowledge regarding the whereabouts of

the user. In particular, the regional address R_Addr(~)

may be outdated, as ~ may have moved in the mean-

time to a new location without bothering to update

the regional directory.

The basic tasks for which we use the regional direc-

tory are similar to those of a regular (global) direc-

tory, namely, the retrieval of the regional address, and

its change whenever needed. For technical reasons, the

modification tasks are easier to represent in the form of

“insert” and “delete” operations, rather than the more

natural “move” operation. Thus an m-regionai di-

rectory %?.’Dsupports the operations R_f ind(7?D, ~, v),

R_del(RD, f,s) and R_ins(RD, ~, t). These operations

are defined as follows.

R_ins(7?D, <, t) : invoked at the location t,this oper-

ation sets t to be the regional address of ~, i.e., it

sets R-Addr(~) + t.

R-del(7?V, f,s) : invoked at the regional address s =

RJddr(&), this operation nullifies the current re-

gional address of ~, i.e., sets RAddr(<) + nil.

R-find(7?D, ~, v) : invoked at the vertex v, this op-

eration returns (to node v) the regional address

R_Addr(~) of the user (. This operation is guar-

anteed to succeed only if dist(v, RAddr(~)) < m.

Otherwise, the operation may fail, i.e., it may be

that no address is found for f. If that happens

then an appropriate message is returned to v.

The construction of an m-regional directory is based

on an m-regional mat thing 7?W. The basic idea is

the following. Suppose that the regional address of

the user ~ is s = RAddr(~). Then each vertex u in

the write set Write(s) keeps a pointer PointerU(<),

pointing to s.

In order to implement operation R_find(~Zl, <, v),

the searcher v successively queries the vertices in its

read set, Read(v), until hitting a vertex u that has

a pointer point eru (f) leading to the regional address

of <. In case none of the vertices in Read(v) has the

desired pointer, the operation is said to end in failure.

Note that by definition of an m-regional matching, this

might happen only if dist(v, RAddr(<)) > m.

The execution of operation R_del(7?D, ~, s), invoked

at s = R-Addr(<), consists of deleting the pointers

pointer. (~) pointing to s at all the vertices u c

Write(s). Similarly, operation R_ins(RD, ~, t), in-

voked at the vertex t, consists of inserting pointers

point eru (<) pointing to t at all the vertices u E

Write(t), thus effectively setting R_Addr(~) = t. The

two operations will be performed together, so ~ cannot

end up having more than one address in the regional

directory.

A formal presentation of operations Rfiind, R_del

and R.ins is given in Figure 1. The correctness of the

above implementation for an m-regional directory can

be verified in a straightforward manner from the prop-

erties of m-regional matchings. Analysis is deferred to

226

t_f ind(~~, <, u):

For all u 6 Read(v) do:

address + remote-read Pointer”(t) from vertex u

If address # nil then Return(raddress)

End-for

If address # nil then Return(”failure”)

t_del(%lD, ~, s):

For all u c Write(s) do:

Point eru(<) at vertex u + remote-write nil

End-for

~ins(7tD, if, t)

For all u 6 Write(t) do:

PointerU(<) at vertex u t remote-write t

End-for

Figure 1: The three operations of the m-regional directory 7?D,

based on an m-regional matching 7ZW.

the full paper.

5 Hierarchical directory servers

In this section we define our hierarchical directory

server D, and state its properties and complexity.

5.1 The construction

The hierarchical directory server D is defined as fol-

lows. For every 1 < i < 6, construct a 2i-regional

directory %Vi based on a 2i-regional matching as de-

scribed in the previous subsection. Further, the col-

lection of 2i-regional matchings used for these regional

directories is constructed so that all of them have the

same h%~..ad, De9,.ad, Radurite and DegWrite values,

i.e., these parameters are independent of the distance

parameter 2i (the construction described earlier enjoys

this independence property).

Each processor v and each user < participate in each

of the 2i-regional directories ‘R’Di, for 1 < i < 6.

In particular, each vertex v hss sets Writei(v) and

Readi(v) in each ‘RDi, and each user ~ has a regional

address RAddri (<) stored for it in each l?Di. We de-

note the tuple of regional addresses of the user (by

d(~) = (RAddrl(t),..., R-Addrj(()).

As discussed earlier, the regional address v =

R-Addr~(f) (stored at the regional directory of level

i) does not necessarily reflect the true location of the

user ~, since < may have moved in the meantime to a

new location w’. Thus, for every 1< i ~ 6 and every

user &, at any time, the regional address RAddri (~) is

either ~‘s current address, Addr(<), or one of its pr~

vious residences. The only variable that is guaranteed

to maintain the true current address of< is its lowest

level regional address, i.e., RAddrl(@ = Addr(f). (As

a rule, the lower the level, the more up-to-date is the

regional addres~.)

This situation implies that finding a regional address

of the user ~ alone is not sufficient for locating the user

itself. This potential problem is rectified by maintain-

ing at each regional address R-Addri (f) a forwarding

pointer Forward(f) pointing at some more recent ad-

dress off. (It should be clear that the user may in the

meantime have moved further, and is no longer at the

vertex pointed at by Forward(t).)

The invariant maintained by the hierarchical direc-

tory server regarding the relationships between the re-

gional addresses stored at the various levels and the

forwarding pointers is expressed by the following defi-

nit ion.

The reachability invariant: The tuple of regional

addresses d(~) satisfies the reachability invariant if

for every level 1 < i < 6, at any time, R-Addri(f)

stores a pointer Forward(c) pointing to the vertex

R.Addri- 1(<).

Thus, the reachability invariant essentially im-

plies that anyone starting at some regional address

R-Addri(f) and attempting to follow the forwarding

pointers will indeed reach the current location of <,

and moreover, will do so along a path going through

all lower-level regional addresses of ~.

Let us associate with each regional address

227

R.Addri([) a path denoted by Higrat ei(<), which is

the actual migration path traversed by ~ in its migra-

tion from R_Addri (<) to its current location, Addr(f).

As users move about in the network, the system

attempts to maintain its information as accurate as

possible, and avoid having chains of long forwarding

traces. This is controlled by designing the updating

algorithm so that it updates the regional addresses fre-

quently enough so as to guarantee the following invari-

ant.

The proximity invariant: The regional addresses

R-Addri (~) satisfy the proximity invariant if for every

level 1< i <6, at any time, the distance traveled by

~ since the

satisfies

In order

last time R_Addri (f) was updated in l?’Di

lHigratei(&)[< 2i-1 -1.

to guarantee the proximity invariant, the

vertex Addr(~) currently hosting the user f maintains

also the following two data structures: the tuple of re-

gional addresses d(~), and a tuple of migration coun-

ters

c(t) = (cl(t),..., c%(t)).

Each counter C’i(~) counts the distance traveled by <

since the last time R.Addri (() was updated in %?2Di,

i.e., C’i (~) = lHigrat ei (~) 1. These counters are used

in order to decide which regional addresses need to be

updated after each move of the user.

5.2 The procedures

Let us next describe the procedures we use. A

Find(f, v) instruction is performed as follows. The

querying vertex v successively issues instructions

Rfi ~nd(~~~, ~, v) in the regional directories 73D 1,

%392 etc., until it reaches the first level i on which

it succeeds. (There must be such a level, since the

highest level always succeeds.)

At this point, the searcher v starts tracing the user

through the network, starting from R.Addri(~), and

moving along forwarding pointers. This tracing even-

tually leads to the real address of the user, Addr(f).

i+O

address + nil

Repeat

ii-i+l

address + R.f ind(~Di, ~, V)

Until address # nit

transfer-control-to vertex address

Repeat

foTward + Forward(f)

transfer-control-to vertex forward

Until reaching Addr(~)

Figure 2: Procedure Find(&, v), invoked at the vertex v.

The procedure Find(~, v) is formally described in Fig-

ure 2.

A Xove(~, s, t) operation is carried out as follows.

All migration counters Ci are increased by dist(s, t).

Let CJ be the highest level counter that reaches or

exceeds its upper limit (2 J- 1 – 1) as a result of this

increase. Then we elect to update the regional directo-

ries at levels 1 through J. This involves erasing the old

listing of< in these directories using procedure R_del

and inserting the appropriate new listing (pointing at

t as the new regional address) using R-ins. It is also

necessary to leave an appropriate forwarding pointer

at R-AddrJ+l (() leading to the new location t,and of

course perform the actual relocation of the user (along

with its d(~) and C(() tuples). The update procedure

Ilove(&, s, t) is described in Figure 3.

Detailed correctness proof and analysis are deferred

to the full paper. We establish the following.

Lemma 5.1 Given an appropriate family of regional

matchings, the hierarchical directory server D constructed

as above satisfies Stretchjjnd = O(DegVead . Radve.d)

and Stretc~OUe = O(RadW~it~ .Deg WVite .6+82 /logn),

and requires a total of O(N . DegWrite .6. logrz + N .

62 + n . Degread .6. log n) memory bits throughout the

network in order to handle N users. I

Using Lemma 5.1 and Theorem 4.1, and picking k =

log n, we get

Corollary 5.2 The hierarchical directory server D sat-

228

Forl<i ~&do:

Ci(f) + C’i(f) + O!iSt(S,t)

End-for

.-l + ltlaX{i I C’~(<) ~ 2’-1}

Forward(f) at vertex R-Addr.r+l (<) + remote-write t

Forl<i~J do:

ai ~ R-Addri (<)

transfer-control-to vertex @g

Foruard(~) - nil

R.del(RDi, f, ai)

End-for

Relocate user f to vertex t, with ~(f) and c?(<) tuples

Forl<i<J do:

ILAddri(() + t

R-ins(7?Di, f, t)

G (t) + o

End-for

Figure 3: Procedure Move(<,s, t), invoked at s = Ad&-(<).

logn+62/logn) and uses a total of O(N.6 .logn+N.

62+ n. 6. log2 n) memory bits for handling N users. I

Example: Finally let us consider an example case,

illustrating the data structures held in the system and

the way they are manipulated. The example concerns a

searcher v, and a user <. This user has initially resided

at xl, then migrated to X2, then to x3, and finally to Z4,

which is its current address, Addr(~) = X4. The initial

situation is depicted in Figure 4, including f’s migra-

tion path, the sets Writei (~) and forwarding pointers,

and the sets Readi (v).

Let us first consider a Find(<, v) request issued by

v. Then v will fail to retrieve a pointer for ~ in its

queries to the regional directories 7i!Di for i = 1,2,3,4,

since Readl (v), ReadZ(v), Reads(v) and Readq(v) do

not intersect Writel(zA), Writez(zq), Writ@(zs) and

Write, respectively. However, it will retrieve the

pointer Point erz (~) = 22 stored at the vertex z, since

this vertex belongs to Read4(v) n Write. The

search will now proceed from zz along the forwarding-

pointers to X3 and from there to X4.

Now let us consider move operations. The re-

gional addresses of the user (are as illustrated in

the figure, Also, the corresponding migration paths

are l!igratel(~) = l!igratez(~) = 0, ltigrate3(t) =

PI, Migrate = Migrates(<) = PZ “ P1, and

Mgrat e6(t) = P3 . pZ . PI, where the lengths of the

segments are Ipl [= 3, lp2 I = 2 and lp31 = 20. Hence

the current values of the tuples

and migration counters are

d(~) = (~q,~q,~s,~z,~z,xl),

(Note that the counters satisfy

ant.)

Now suppose that the user ~

of regional addresses

d(~) = (O, 0,3,5, 5,25).

the proximity invari-

performs three move

operations, as follows: Ml = 140ve(~, z4, ZS), M2 =

~ove(~, 25, ~15), and M3 = Hove(<, ~6, z7), where

diSt(Z4, X5) = diSt(Z5, ~6) = did(~6, ZT) = 1.

Then the data structures of the directory change

as follows. In the first move Ml, the counter C3

is increased to 4, thus exceeding its allowed upper

limit. This requires updates to the regional directe

ries %?.Di for 1 < i ~ 3, which now all point to X5.

More specifically, the pointers Point eru (~) = X4 are’

erased at all vertices u E Writel (X4) U Writ@ (xq), the

pointers Point eru(() = X3 are erased at all vertices

u G Writ~(z3), and new pointers PointerU(f) = X5

are added at all vertices u E Writel (25) U Writq(z5) U

Write. Also, the forwarding pointer at 23 is

erased (since vertex 23 ceases to play any role in the

directory w.r.t. the user <), and the forwarding pointer

at Z2 is now directed at X5. The resulting address and

counter tuples of ~ are now

In the second move M2, the only counter that ex-

ceeds its upper limit is Cl. Therefore only %KD1 is

updated to lead to 26, and a new forwarding pointer

is added at 25, directed at ~6. The resulting address

and counter tuples of < are now

d(<) = (26,25,23,22,22,21), ~(f) = (0,1, 1,7,7,X).

The third move MS causes C4 to overflow. This

results in updates to the regional directories 77.Di for

1< i <4, which now all point to 27. The forwarding

229

Reads (v) Read, (v) Reads (v) ReadZ (v) Readl (v)

Write6(zl)

Write5(z~)

\ \

\ \
\

\

I
I P2, 2

(1

Writes (ms)

/

/

\

\ ‘n’---

Write2(z~)

Writel (z4)

m7

1/
1/
1/

--------- 4
“~xz

p3, 20
‘3L----.JX4=A””)

PI, 3

Figure 4: Data structures involved in the example. The solid winding line represents themigration path of theuser f,compos4 of three

segments PI, PZ. pa. The number listed next to each segment represents its length. The dotted arrows represent the forwarding pointers

Ieading to f’s current residence. The dashed arrows represent thepointers toregional addresses, stored at the appropriate Write sets.

230

pointer at X2 is now directed at Z7. The resulting

address and counter tuples of [are now

d(<) = (~7,~7,~7,~7,~2,~1), c(<) = (0,0,0,0,8,28).

6 Handling concurrent accesses

Our solution, as described so far, completely ignores

concurrency issues. It is bssed on the assumption that

the Find and Hove requests arrive “sequentially? and

are handled one at a time, i.e., there is enough time

for the system to complete its operation on one request

before getting the next one. This assumption would be

reasonable if all network communication, as well as all

Hove and Find operations, were performed in negligible

time. However, in some practical applications, e.g.,

for satellite links, communication suffers a significant

latency. Also, the Move and Find operations may in

fact take a considerable amount of time. In such csses,

concurrency issues can no longer be ignored.

Interesting problems arise when many operations are

issued simultaneously. Specifically, problems may oc-

cur if someone attempts to contact a user while it is

moving. It is necessary to ensure that the searcher

will eventually be able to reach the moving user, even

if that user repeatedly moves. In this section we in-

formally outline the particular modifications (both in

the model and in the algorithms) needed to handle the

case in which operations are performed concurrently

and asynchronously.

6.1 Modifications in the model

In order to facilitate reasoning about concurrent oper-

ations, we need to introduce some modifications into

the model. In particular, it is necessary to address

timing issues more explicitly. The input to the sys-

tem now consists of a stream of (possibly concurrent)

requests to perform Hove and Find operations, and

the function of the system is to implement these op-

erations. Both Hove and Find operations are viewed

as occupying some time interval. A Find(~, v) opera-

tion starts upon the requesting processor v issuing the

request. Its implementation consists of the delivery

of a message to the current location of the migrating

process, and is terminated at the time of delivery. A

llove(i$, s, t) operation again starts upon the request-

ing user < issuing the request at s. Its implementation

consists of the actual move of the process, followed by

the updating of various data structures, followed by a

signal indicating the termination of the operation. For

any operation X, let T,ta,i(X) and Tend(X) denote

the start and termination times of X, respectively. At

any given time r, we define AddrT (~) to be the current

residence of the user & at time r. If at this time ~

is in transit on the way from s to t, then its current

residence is considered to be node t.

The concurrent case poses some complications for

our cost definitions. In particular, consider a request

F = Find(<, v). It may so happen that while the di-

rectory server attempts to satisfy this request, and de-

liver the search message from v to ~, the user ~ itself

is busy migrating, in some arbitrary direction. In fact,

~ could possibly perform several moves while searched

by v. How then should we define the inherent cost of

the search? The approach adopted here is the follow-

ing. First, the correctness requirement of the directory

server is that a Find operation F always terminates

successfully within finite time, i.e., the “chase” cannot

proceed forever, and Tend(F) < co.

The operation F takes place in the time interval

[T$tart(F), Tend(F)]. Since the user f may have moved

(Perhaps more than once) during this period, we rede-

fine the optimal cost of this operation to be the msx-

imal distance from v to any location occupied by <

throughout the duration of the operation, namely

Opt.cost(F) = max {dist(v, Addr’(&))}.
T,tart(F)<7<Tend (F)

Despite its seeming permissiveness, this definition is in

fact quite reasonable, as can be realized by considering

some naturally occurring scenarios.

6.2 Algorithmic modifications

Let us next discuss the necessary algorithmic modi-

fications. The problems that arise in the concurrent

case can be classified into two types, roughly corre-

sponding to the two parts of procedure Find(f, v). The

231

first part involves the retrieval of some regional address

R.Addri (f) of the user. The second involves proceed-

ing from that address to “trace down” the user. This

second part can be thought of as sending a “tracing

message” to chase the user, along forwarding pointers.

The idea is that in order to prevent endless chases,

the invariant that we would like to preserve is that the

searcher is allowed to “miss” the user while searching

for it on level i only if the user is currently on transition

to a new location farther away than distance 2i. If the

user is currently moving within the 2i vicinity of the

searcher, then it must be found.

In order to enforce such invariant, it is necessary

to make sure that both parts of the Find procedure

succeed. First, the searcher should be able to retrieve

a regional address of the user at level i. Secondly,

once such an address is retrieved, it should sufice to

lead the tracing message to the user within a “short”

chase (where “short” is to be understood in accordance

with our stretch bounds). Specifically, this is imposed

by ensuring that following a move that involved up-

dating regional directories up to level 1, the user & is

not allowed to start a new move before it is found by

any searcher that is already at the second stage of the

search, i.e., that has already retrieved some current

regional address R.Addri (f), for i <1 + 1.

Our algorithms have the same general structure as

before, except for some minor modifications. Most of

the changes involve permuting and altering some of the

steps in the implementation of Move(f, s, i’). The first

two changes handle the second problem, of enabling

the tracing message to reach the user, once some re-

gional address has been obtained. To begin with, the

user f first registers in its new address t,before delet-

ing its registration at the old address s. Thus, & may

be temporarily “doubly-registered” at both the new

and old addresses. As a result, the Point sr(g) mecha-

nism is not necessarily a single pointer any longer, but

rather a collection possibly cent aining two pointers.

A second change is that the old regional addresses

are deleted top-down, i.e., starting from the highest-

level regional directory and ending with the lowest-

level one. Along its way, the deletion process also

“swaps” the route and verifies that there are no trac-

ing messages for < in transit. A similar change is made

in procedure R_del(??Zli, f,s). Implementation of the

swap operation is omitted.

A third change required for the concurrent imple-

mentation involves the R.f ind operation in a regional

directory of level i, and addresses the first part of the

Find procedure, I.e., the purpose of this change is to

guarantee the retrieval of the i’th level regional ad-

dress RAddri(<) of the user < even while this address

is being changed, as long as both the new and the old

addresses are within distance 2i of v.

To see where a problem might arise, consider a

node v invoking R_f ind(~D~, ~, v), while RAddri(<)

is changed from s! to tt,such that both dist(v, s’) < 2i

and dist(v, t’) < 2i. The implementation of this op-

eration consists of the remote-read of point eru (<)

from u, for all u G Readi(v). Even though deleting

the pointers point erU (~) = s’ at all u E Writei (s’)

(in sub-operation R-del(7ZD~, ~, s’)) is performed af-

ter adding the pointers to t’, Point eru (<) = t’, at all

u ~ Writei (t’) (in sub-operation R_ins(7?Di, ~, t’)), it

is still easy to design a scenario in which all of the

remote-read operations done by v fail to detect a

pointer to ~. This type of “race problems” is typical to

asynchronous systems. In our case, there are two ways

to go about solving this problem. The first is based on

strengthening the definition of m-regional matchings.

Specifically, let us introduce the additional require-

ment that for every v, U1 and U2, if dist(v, Ul) < m

and dist(v, U2) < m, then

Bead(v) n Write(ul) n w’rite(q) # 0.

This would eliminate the difficulty outlined above,

since when v queries all nodes in Readi (v), ithits also

some node z G Readi (v) (T Writei (s’) n Writei (t’),and

at this node, the set point era(~) must contain at least

one of s’ and t’.

Yet a stronger requirement that can be imposed on

an m-regional mat thing is that for every v and u, if

dist(v, u) < m then Read(v) ~ Write(u). This last

requirement clearly implies the former one. In the

full paper we show how this property is achieved by

slightly modifying the construction of regional match-

232

ings. This modification results also in (minor) changes

in the stretch complexities of the ‘(find” and “move”

operations (in particular, a log n factor is shifted from

$tretchjind to $tretch~.o,).

Our second, more traditional approach to solving

the problem, does not involve any changes in complex-

ity. This approach is based on the observation that

the difficulty would have been resolved if remote-

read operations from v to nodes in Read(v) were

performed at the same instance of time. Unfortu-

nately, simultaneous actions are impossible to coor-

dinate in asynchronous systems; however, “causal in-

dependence” [L78] is typically sufficient. This type of

independence can be achieved in our case. Details are

deferred to the full paper.

References

[AGLP89] B. Awerbuch, A. Goldberg, M. Luby and S.

[AKP90]

[A85]

[AP90a]

[AP90b]

[AP90c]

Plotkin, Network decomposition and local-

it y in distributed computation, Proc. 30th

IEEE Symp. on Foundations of Computer

Science, 1989.

B. Awerbuch, S. Kutten and David

Peleg. On buffer-economical store-and-

forward deadlock prevention, Proc. IIVFO-

COM,1991.

B. Awerbuch, Complexity of network syn-

chronization, J. of the ACM 32, (1985),

804-823.

B. Awerbuch and D. Peleg, Sparse Parti-

tions, 31st IEEE Symp. on Foundations of

Computer Science, Oct. 1990,503-513.

B. Awerbuch and D. Peleg. Network syn-

chronization with polylogarithmic over-

head, 31st IEEE Symp. on Foundations of

Computer Science, 1990, pp. 514-422.

B. Awerbuch and D. Peleg, Routing with

polynomial communication-space trade-off,

SIAM J. on Discrete Math., to appear.

[AP90d]

[L78]

[LEH85]

[LS91]

[MV88]

[PS89]

[PU89a]

[PU89b]

[P89a]

[P89b]

B. Awerbuch and D. Peleg, Efficient Dis-

tributed Construction of Sparse Covers,

Technical Report CS90-17, The Weizmann

Institute, July 1990.

L. Lamport, Time, clocks, and the ordering

of events in a distributed system, Comm. of

the ACM 21, (1978), 558-565.

K.A. Lantz, J.L. Edighoffer and B.L. His-

ton, Towards a Universal Directory Ser-

vice, 4th ACM Symp. on Principles of Dis-

tributed Computing, 1985, pp. 261-271.

N. Linial and M. Saks, Decomposing

Graphs Into Regions of Small Diameter,

2nd ACM Symp. on Discrete Algorithms,

San Francisco, 1991.

S.J. Mullender and P.M.B. Vitfinyi, Dis-

tributed Match-Making, Algorithmic 3,

(1988), pp. 367-391.

D. Peleg and A.A. Schaffer, Graph span-

ners, J. of Graph Theory 13, (1989), 99-

116.

D. Peleg and J .D. Unman, An optimal syn-

chronizer for the hypercube. SIAM J. on

Comput. 18, (1989), 740-747.

D. Peleg and E. Upfal, A tradeoff between

size and efficiency for routing tables, J. of

the ACM 36, (1989), 510-530.

D. Peleg, Sparse Graph Partitions, Re-

port CS89-01, Dept. of Applied Math.,

The Weizmann Institute, Rehovot, Israel,

February 1989.

D. Peleg, Distance-Dependent Distributed

Directories, Information and Computation,

to appear. Also as Report CS89-10, Dept.

of Applied Math., The Weizmann Institute,

Rehovot, Israel, May 1989.

233

