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Lecture 3: Continuous spaces

General problem

min f(x)
xERM

subject to ¢i(x) =0 and dji(x) > 0.

Example problems

e Fitting a model to fixed data set
e Placing fire stations

e Allocating investments

Assumptions we can take advantage of

e fislinear

e fis quadratic

e fissmooth

e cand d are linear

When modeling: trade off simplicity of model (for ease of solution) against its goodness of fit to
the problem.

Unconstrained problems

If f is linear, then there’s no solution.

If it’s quadratic, and convex, then it’s easy.

More generally, we have to do local optimization.
Xk4+1 = Xk T XkPk

where xy is a step size and py is a direction.

Pick a direction

Gradient descent (or steepest descent):
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Pr = —Vf(xk)
Newton direction:
P = —(V3(xx)) " VF(xx)

Exact if f is quadratic. Typically very expensive to deal with Hessian (52f).

Conjugate gradient: not as good as Newton, but much better than gradient and much more
efficient than Newton. Very popular. Tries to find a new direction that is conjugate to previous
one. Linear number of steps if f is quadratic.

Pr+1 = —VF(xk) + Br41 - Pk
where

Vi(xx1) T ViE(xks1)
V(xi) TVF(xk)

Brr1 =

Calculating derivatives If you don’t know the derivative analytically, then you can do a simple
finite difference. Pick e to be small, but be careful about roundoff.

of f(x + eei) — f(x)
S~
X4 €

where e; is the ith unit vector.

Pick a step size

Simple gradient descent uses a fixed «. Tricky to find a good one (too big can oscillate, too small
can be slow).

More effectively, once you have picked a direction, is to do a line search in that direction to find a
good step size. Could try to find the best, but usually stop after finding one that’s ‘good enough’
based on theoretical criteria.

Constrained problems

Linear programs

Both f and the constraints are linear functions of x. Possible situations:

infeasible (constraint region is empty)

unbounded (insufficiently constrained in the direction that f is growing)

due to perfect alignment, there is a set of solutions along a face or edge of the constraint simplex

single solution at a vertex
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Simplex method: considers vertices. Usually efficient but worst case exponential in the number
of dimensions.

Interior point methods: worst case polynomial in dimenions (but early versions were usually
much worse than simplex on actual problems).

Quadratic programs

Linear constraints, but quadratic f. Relatively easy if f is convex. Also easier to deal with equality
constraints.

General form of function and constraints

Convert to an unconstrained optimization problem by added in a penalty:

Qlw) =f(x)+1) cf(x)+u) ([di(x)]")?

Gradually increase u. Changes minimizer.

Method of multipliers allows us to find a single optimization problem, with extra parameters,
whose minimizer is a minimizer of the original problem.

Sequential quadratic programming

Fit a local quadratic model; solve via QP; take a step; repeat.
Uncertainty

Stochastic gradient

In machine learning, we don’t always know the f we're trying to optimize. For instance, we might
want a function to fit well in expectation, but we can only draw samples.

f(x) =) Pr(s)g(s;x)

Gradient is also an expectation:

¥ = X Prlsi (s

Two strategies:

e Draw a lot of samples of s to get a good estimate of the gradient, and then take a step.

e Draw a single sample and take a step.

The second approach can work, but need to use a shrinking step size (usually as 1/k).

Response surface methodology

We don’t know f, so we draw samples, fit a surface f, and take a gradient step with respect to f,
get a new point, fit a new surface, etc.



