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Lecture 3: Continuous spaces

1 General problem

min
x∈Rn

f(x)

subject to ci(x) = 0 and di(x) > 0.

1.1 Example problems

• Fitting a model to fixed data set

• Placing fire stations

• Allocating investments

1.2 Assumptions we can take advantage of

• f is linear

• f is quadratic

• f is smooth

• c and d are linear

When modeling: trade off simplicity of model (for ease of solution) against its goodness of fit to
the problem.

2 Unconstrained problems
If f is linear, then there’s no solution.

If it’s quadratic, and convex, then it’s easy.

More generally, we have to do local optimization.

xk+1 = xk + αkpk

where αk is a step size and pk is a direction.

2.1 Pick a direction
Gradient descent (or steepest descent):
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pk = −∇f(xk)

Newton direction:

pk = −(∇2f(xk))−1∇f(xk)

Exact if f is quadratic. Typically very expensive to deal with Hessian (δ2f).

Conjugate gradient: not as good as Newton, but much better than gradient and much more
efficient than Newton. Very popular. Tries to find a new direction that is conjugate to previous
one. Linear number of steps if f is quadratic.

pk+1 = −∇f(xk) + βk+1 · pk

where

βk+1 =
∇f(xk+1)T∇f(xk+1)

∇f(xk)T∇f(xk)

Calculating derivatives If you don’t know the derivative analytically, then you can do a simple
finite difference. Pick ε to be small, but be careful about roundoff.

∂f

∂xi
(x) ≈ f(x + εei) − f(x)

ε

where ei is the ith unit vector.

2.2 Pick a step size
Simple gradient descent uses a fixed α. Tricky to find a good one (too big can oscillate, too small
can be slow).

More effectively, once you have picked a direction, is to do a line search in that direction to find a
good step size. Could try to find the best, but usually stop after finding one that’s ’good enough’
based on theoretical criteria.

3 Constrained problems

3.1 Linear programs
Both f and the constraints are linear functions of x. Possible situations:

• infeasible (constraint region is empty)

• unbounded (insufficiently constrained in the direction that f is growing)

• due to perfect alignment, there is a set of solutions along a face or edge of the constraint simplex

• single solution at a vertex
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Simplex method: considers vertices. Usually efficient but worst case exponential in the number
of dimensions.

Interior point methods: worst case polynomial in dimenions (but early versions were usually
much worse than simplex on actual problems).

3.2 Quadratic programs
Linear constraints, but quadratic f. Relatively easy if f is convex. Also easier to deal with equality
constraints.

3.3 General form of function and constraints
Convert to an unconstrained optimization problem by added in a penalty:

Q(x; µ) = f(x) + µ
∑

i

c2
i (x) + µ

∑
i

([di(x)]−)2

Gradually increase µ. Changes minimizer.

Method of multipliers allows us to find a single optimization problem, with extra parameters,
whose minimizer is a minimizer of the original problem.

3.4 Sequential quadratic programming
Fit a local quadratic model; solve via QP; take a step; repeat.

4 Uncertainty

4.1 Stochastic gradient
In machine learning, we don’t always know the f we’re trying to optimize. For instance, we might
want a function to fit well in expectation, but we can only draw samples.

f(x) =
∑

s

Pr(s)g(s; x)

Gradient is also an expectation:
df

dx
(x) =

∑
s

Pr(s)
dg

dx
(s; x)

Two strategies:

• Draw a lot of samples of s to get a good estimate of the gradient, and then take a step.

• Draw a single sample and take a step.

The second approach can work, but need to use a shrinking step size (usually as 1/k).

4.2 Response surface methodology
We don’t know f, so we draw samples, fit a surface f̂, and take a gradient step with respect to f̂,
get a new point, fit a new surface, etc.


