
6.882 — Lecture 1: Discrete search — Fall 2010 1

Lecture 1: Discrete search

1 Decision-making problems
Sometimes we know how to state a problem, but don’t have an immediate way to compute the
answer. This class is about computational approaches to expressing decision-making problems
and finding optimal or good or satisfactory solutions.

Formulating problems will be at least as important to us as solving them.

We will consider optimization problems, which are specified with two components

• solution space S: the set of possible answers

• evaluation criterion f: a function from elements of the solution space to real numbers

The goal is to find an optimal solution, which is any s ∈ S satisfying

∀s′ ∈ S.f(s) > f(s′)

A useful subclass are satisfaction problems, in which f has the range {0, 1}, and we are satisfied
with any solution s such that f(s) = 1.

If we don’t know anything more about the problem, we’re in big trouble. There’s nothing better
to do than try all the s’s (if they are enumerable) or randomly guess (if not).

Throughout the course, we’ll explore different kinds of assumptions we can make about S and
f, and how we can take algorithmic advantage of those assumptions to solve the problem more
effectively.

Here are some of the properties that will affect our approach:

• Whether S is discrete or continuous;

• Whether S is has an atomic, factored, or structured representation;

• If S continuous, whether f is linear or convex or more complex;

• If S is continuous, whether its boundaries are linear or convex or more complex;

• Whether S can be interpreted as a set of paths through a state space X, governed by choices of
actions from an action space A (sometimes called a sequential decision problem);

• If S is a set of paths, whether f(s) = f([x0, a0, . . . , xn−1, an−1, xn]) is additive ; that is, that
there is some c such that f([x0, a0, . . . , xn−1, an−1, xn]) =

∑n−1
i=0 c(xi, ai);

• If S is a set of paths, whether the state xi+1 depends deterministically, nondeterministically,
or probabilistically on xi and ai;



6.882 — Lecture 1: Discrete search — Fall 2010 2

• If S is a set of paths, whether the state xi is is known (if it is not known, the problem is partially
observable, and we might know a set containing xi or a probability distribution over X);

• If S is a set of paths, whether the dynamics governing the dependence of xi+1 on xi and ai is
known (if not, then it is called reinforcement learning problem).

There are many other possible interesting properties, but we will concentrate on these in this
course.

2 Discrete space, atomic representation
If we don’t assume anything, there’s not much we can do.

Assume neighbor function, so that N(s) ⊂ S. Implicitly, the idea is that there is some kind of
smoothness; that neighbors of s will have similar f values.

2.1 Hill climbing
Algorithm:

hillClimb(S, f, N):
s = randomDraw(S)
loop:

bestNeighbor = argmax(N(s), f)
if f(s) >= f(bestNeighbor):

return s
s = bestNeighbor

Improved by random restarts

When there are too many neighbors, we can select one at random and move there if it’s an im-
provement:

hillClimb(S, f, randomNeighbor):
s = randomDraw(S)
loop until tired:

n = randomNeighbor(s)
if f(n) > f(s):

s = n
return s

2.2 Simulated annealing
Great paper: “Optimization by Simulated Annealing,” S. Kirkpatrick, C.D. Gelatt, Jr., and M. P.
Vecchi, Science, volume 220, number 4598, 1983.

Like hill-climbing, but get out of local optima by sometimes making steps that don’t improve the
objective. Gradually ’anneal’ the system by making it less and less likely to take non-improving
moves. Derived from a statistical mechanics simulation algorithm due to Metropolis.



6.882 — Lecture 1: Discrete search — Fall 2010 3

Usually described as minimizing energy. So we’ll try to minimize f.

Pseudocode taken from Wikipedia (9/9/2010):

sa(S, f, randomNeighbor, temp, kMax):
s = randomDraw(S)
e = f(s)
k = 0
while k < kMax:

sNew = randomNeighbor(s)
eNew = f(sNew)
if p(e, eNew, temp(k / kMax)) > random():

(s, e) = (snew, enew)
k += 1

Probability of accepting a proposed move:

p(e, e′, T) =

{
1 if e′ < e

e(e−e′)/T otherwise

If e′ is much higher than e, then the move is much less likely to be accepted (remember that we’re
trying to minimize e here); if T is high, then the move is more likely to be accepted.

This version takes a fixed budget of iterations kMax and selects a temperature as a function of the
fraction of those iterations that have already occurred.

Kirkpatrick et al. fix a temperature and run at that temperature until it has had some number (e.g.
10) successful moves, and then decrease it.

SA is particularly appropriate for domains where:

• There is no perfect solution, but it’s possible to find solutions much better than randomly
generated ones;

• many good near-optimal solutions, so stochastic search ought to find one; and

• no one of the near-optimal solutions is significantly better, so it’s not worth spending a lot of
time looking for the optimum.

Even simpler: threshold acceptance (Dueck and Scheuer 1990). Accept all improving moves;
accept other moves if e − e′ < D. Decrease D over time.

Example: Partitioning a circuit into two chips
You have N circuits, to be partitioned into two chips. Each pair of circuits i, j has aij wires be-
tween them. You want to:

• Minimize the number of wires running between the chips

• Roughly balance the number of circuits on each chip

Solution space: 〈µ1, . . . , µN〉.



6.882 — Lecture 1: Discrete search — Fall 2010 4

µi =

{
1 circuit i is on chip 1
−1 otherwise

Number of wires between chips:

Nc(µ) =
∑
i<j

aij

4
(µi − µj)

2

Imbalance:

B(µ) =

(∑
i

µi

)2

Objective (to be minimized). Trade off criteria with λ.

f(µ) = Nc(µ) + λB(µ)

Random Nc ≈ 6000; Hill-climbing Nc ≈ 1400; annealed Nc ≈ 600.

3 Example domains

• Best kind of car to buy

• Best town in the USA to live in

• Best path to drive to the Empire State building

• Traveling salesdroid problem

• Bin packing

• Route for vacuuming robot

• Route for surveillance plane

• Space telescope viewing schedule

• Object recognition (based on images or point clouds)


